Improving Qiskit strategies for circuit synthesis using the
Reed-Muller spectrum

Raphael B. F. Lima', Luis Antonio B. Kowada', Fabio G. dos Santos'

! Instituto de Computagio — Universidade Federal Fluminense (UFF)
Niter6i — RJ — Brazil

rbernardino@pm.me, luis@ic.uff.br, fabiogsrj.2007@gmail.com

Abstract. Reversible computing and quantum computing have gained increas-
ing attention due to their potential to overcome some of the fundamental lim-
itations of classical computing, particularly regarding energy efficiency and
computational power. In this paper, we compare the synthesis process using
the well-known Qiskit framework developed by IBM and an approach based on
Reed-Muller spectra. We show that some approaches are efficient for small val-
ues and others are better for the general use case. The synthesis results are
presented using four strategies: unitary matrices, linear function synthesis, per-
mutation synthesis, and Reed-Muller spectra. Our analysis shows that, on av-
erage, our proposal surpasses the Qiskit synthesis algorithms when considering
the gate count metric. Additionally, a post-synthesis evaluation is performed us-
ing our proposed method, which employs a Reed-Muller—based representation
to assess its effectiveness.

1. Introduction

The emerging fields of reversible computing and quantum computing have gained in-
creasing attention due to their potential to overcome some of the fundamental limitations
of classical computing, particularly regarding energy efficiency and computational power.
Classical digital computing, based on Boolean logic, typically involves irreversible oper-
ations such as AND, OR, and NAND gates. These gates destroy information by com-
pressing many possible input states into a single output, leading to energy dissipation. As
a result, traditional computing approaches face a theoretical lower bound on energy effi-
ciency, as described by Landauer’s principle in his seminal work [Landauer 1961], which
states that any logically irreversible operation that erases one bit of information must dis-
sipate at least kg7 In 2 joules of heat, where kg is Boltzmann’s constant, and 7' is the
temperature in Kelvin.

To mitigate this, reversible computing proposes computation without information
loss, which means that all operations are invertible, and no bits are erased. This eliminates
the fundamental source of energy dissipation associated with irreversible processes. In re-
versible circuits, each output uniquely determines its inputs, allowing the computation to
be performed backward and preserving the original information. Classical reversible gates
like the Toffoli [Toffoli 1980] and Fredkin [Fredkin and Toffoli 1982] gates demonstrate
that universal computation can be achieved reversibly, without erasing bits.

Simultaneously, quantum computing, grounded in the principles of quantum me-
chanics, offers a computational model that is inherently reversible. In quantum systems,
the evolution of the quantum state is described by unitary transformations, meaning that

the entire history of the system can be inferred from the present state. This implies that
quantum gates, such as the Hadamard, Pauli-X, and controlled-NOT (CNOT) gates, are
intrinsically reversible since unitary operations conserve information by the laws of quan-
tum mechanics [Nielsen and Chuang 2000]. As a result, quantum computers naturally
align with the objectives of reversible computing. This also means that any quantum
computation, at least theoretically, can be decomposed into reversible steps.

The overlap between these fields becomes more apparent in circuit design. While
reversible computing primarily focuses on reducing energy dissipation in classical sys-
tems by preserving information, quantum computing employs reversible logic as a nat-
ural aspect of its operation. Moreover, many quantum algorithms are expressed using
networks of reversible gates, highlighting the connection between reversible computing
and quantum circuit design. For instance, Shor’s factoring algorithm uses reversible logic
within its quantum components to achieve exponential speedup over classical factoring
methods [Shor 1999]. The Grover’s algorithm [Grover 1996] also benefits from improve-
ments in reversible circuits.

Moreover, reversible circuits, such as those made with Toffoli gates, can be used
in the classical components of quantum computers to ensure that no information is lost
during ancillary classical computations. Thus, research in both areas not only advances
the quest for energy-efficient computing but also lays the foundation for the develop-
ment of quantum technologies, particularly in quantum error correction and fault-tolerant
quantum circuits [Gottesman 1998, Knill and Laflamme 1997]. In both paradigms, circuit
design is a critical challenge. Quantum circuits require fault-tolerant gate operations due
to the fragile nature of quantum states, whereas reversible circuits focus on minimizing
the number of ancillary bits (known as “garbage” bits) to ensure the computation is done
efficiently and the original information remains preserved [Maslov and Dueck 2003].

2. Background

In the early 1980s, Benioff demonstrated through his work [Benioff 1980, Benioff 1982a,
Benioff 1982b] that classical computation could be modeled using reversible circuits.
This was very important for the field of quantum computing because quantum compu-
tation, which relies on quantum mechanics, evolves according to unitary transforma-
tions and is therefore reversible. Thus, Benioff’s research helped establish a theoretical
foundation for understanding how computation could align with the reversible nature of
quantum-mechanical processes.

Building upon Benioff’s foundational work, quantum computing has seen signifi-
cant advancements, leading to the development of sophisticated circuits for implementing
novel algorithms. These circuits are constructed from a universal set of quantum gates,
among which the controlled-NOT (CNOT) and Toffoli (CCNOT) gates are fundamental.
The CNOT gate flips the target qubit if and only if the control qubit is in the state |1), while
the Toffoli gate flips the target qubit only when both control qubits are in the state |1). To
illustrate the fundamental role of CNOT and Toffoli gates in quantum circuit design, we
can examine their application within Shor’s algorithm.

Shor’s algorithm [Shor 1999] is a quantum algorithm designed to efficiently fac-
tor composite integers of the form N = p - ¢, where p and ¢ are prime numbers. This
algorithm marked a pivotal advancement in quantum computing, showcasing an expo-

nential speedup over classical factorization methods. Peter Shor’s ingenious insight lay in
reformulating the factorization problem as an order-finding problem within a finite abelian
group. Specifically, the algorithm examines the sequence generated by successive powers
of a randomly & chosen number, modulo N: [z; mod N,z mod N,..., z; mod NJ,
where i < k. When z; is coprime ! to N, this sequence exhibits a periodic pattern.
By leveraging the quantum Fourier transform (QFT), Shor’s algorithm efficiently deter-
mines this period. Using the period and some classical postprocessing, the factors p and ¢
of NV can be extracted. The period found is related to the order of x modulo N, which is a
divisor of the least common multiple of (p — 1) and (¢ — 1), not necessarily equal to it.

The quantum circuit implementation for Shor’s algorithm employs Hadamard
gates to initialize the input register into a uniform superposition; subsequently, a modu-
lar exponentiation circuit generates a sequence that encodes the periodic behavior (some-
times referred to as an oracle), and finally, the quantum Fourier transform (QFT) is applied
to extract the period, which directly produces the factors of the input integer.

é N\
- o

Oracle

f(x) =a*mod N
[|0) ii 4‘ |a* mod N)]
\ J

Figure 1. Quantum oracle for the modular exponentiation in the Shor’s algorithm.

In Shor’s algorithm, the computationally intensive component lies in the order-
finding function, specifically the modular exponentiation (z* mod V) performed by the
oracle within it (see Figure 1). This modular exponentiation can be decomposed into a
series of modular multiplications, which can be further broken down into modular ad-
ditions. The exponentiation can be efficiently implemented through a technique called
repeated squaring, which significantly reduces the number of multiplication operations
required for modular exponentiation.

At the quantum implementation level, this method follows the decomposition ap-
proach mentioned above. The key to achieving these computational reductions is the use
of control qubits, which is precisely where the Toffoli gate plays an important role. As a
reversible three-qubit gate that performs controlled-controlled-NOT operations, the Tof-
foli gate enables the conditional logic necessary for implementing the modular arithmetic
operations while maintaining quantum coherence throughout the computation.

3. Our proposal

Our proposal is to compare the synthesis process using the well-known Qiskit frame-
work developed by IBM [IBM 2017] and an approach based on Reed-Muller spec-
tra [Maslov et al. 2007, Zakablukov 2016]. The Qiskit framework provides implementa-
tions of some synthesis algorithms, such as Linear Function Synthesis [Patel et al. 2008],

'A number z is coprime to k if their greatest common divisor (GCD) is equal to 1. In our case, x is
coprime with NV if it is not divisible by p or q.

Permutation Synthesis [Kutin et al. 2007], and the Unitary Transformation Synthesis.
The latter synthesis is constructed using the unitary matrix as input and creating an equiv-
alent operator. We then use the findings of [Bernardino and Kowada 2025] to elaborate
on our post-synthesis results and test if the synthesis algorithms can be further optimized.

The aforementioned Reed-Muller approach uses the positive-polarity Reed-
Muller (PPRM) form that is a canonical representation of Boolean functions and suit-
able for reversible circuit synthesis [Bandyopadhyay and Rahaman 2014]. In PPRM, a
Boolean function is expressed as a sum of products of variables, with each term con-
taining only positive literals (no negations). The benefit of this form lies in its min-
imality and simplicity, which directly translates to more efficient reversible circuits,
both in terms of gate count and depth. To evaluate each approach, we perform a post-
synthesis process in each of the generated reversible circuits. The post-synthesis proposed
in [Bernardino and Kowada 2025] consists of three techniques:

 Using the rules defined in [Dalcumune et al. 2021] that cancel consecutive dupli-
cated gates, elimination of NOT gates, and merge gates that are similar.

* Replacement of a set of gates for the optimal equivalent circuit if the Hamming
distance h within the set is less than 4 (h < 4).

* Performing a post-synthesis using Reed-Muller spectra, in the form of Mixed Po-
larity Reed-Muller (MPRM), when the Hamming distance h is equal or greater
than 4 (h > 4).

In other words, we use the algorithm based on Reed-Muller spectra, a set of rules,
and a set of exact circuit templates for n < 4 bits. The templates were generated using
a simple brute-force technique to test every 2"! possible combination, considering only
Generalized Toffoli gates. In total, we need to test 2! + 4! 4+ 8! = 40, 346 cases.

The experiment was realized using an Oracle Cloud machine with the following
specifications. The Reed-Muller algorithm was implemented using the programming lan-
guage Python 3.12, and Qiskit is also written in the same language.

¢ OS: Linux Ubuntu 22.04.4 LTS (kernel: 6.5.0-1027-oracle).
¢ CPU: ARM Neoverse-N1 4x OCPU.
e RAM: 24 GB.

In order to evaluate the synthesis results, we generate a fixed number p = 10 of
random permutations that use n bits. The permutations are generated using the pseudo-
random function with the seed = 10. Then, we use the strategies described above and
synthesize a network of reversible gates. We also perform a post-synthesis afterwards
using the synthesized circuits aforementioned.

For the sake of clarity, we briefly explain the Generalized Toffoli library in Sec-
tion 3.1 and the Reed-Muller MPRM algorithm in Section 3.2.

3.1. Generalized Toffoli (GT) library

The Generalized Toffoli library includes NOT gates with multiple controls, which can be
either positive or negative. For example, the Controlled NOT (CNOT) gate, which has one
control, is shown in Figure 2a. The Toffoli gate, shown in Figure 2b, has two controls.
Note that, the Toffoli is also known as C2NOT gate.

xy x
xl xl xQ xz
T T1 D T T3 (21 - 22) B 3
(a) CNOT gate. (b) Toffoli gate.

Figure 2. Representation of CNOT gate and the Toffoli gate.

The gates can be generalized by adding more m controls to the NOT gate. The
Generalized Toffoli (GT) and Multiple Controlled Toffoli (MCT) libraries are similar, al-
though the MCT library does not have negative controls. The representation of a negative
control in MCT can be achieved using a NOT gate before the positive control.

For instance, using the generalization example shown in Figure 3, with m controls.
The control z; is negative and the other controls are positive. In other words, the value
of z,, 41 is inverted when 1 = 0 and x; = 1, for i € {2,...,m}. A generalized Toffoli
gate C""NOT uses 2m — 3 Toffoli gates for its implementation in a real system, either
reversible or quantum [Barenco et al. 1995].

I —O0— I
T —— T2

——

Tm+l —D— (T1T2 T) © T

Figure 3. Generalized Toffoli representation using multiple controls, which can
be positive or negative. The negative control is shown in the first line of
the circuit, where all the other lines have a positive control.

3.2. Mixed Polarity Reed-Muller (MPRM)

The positive polarity Reed-Muller (PPRM) form only uses positive controls, thereby miss-
ing many opportunities. In [Bernardino and Kowada 2025], the MPRM is used in the
post-synthesis process, yielding excellent results. From this starting point, we use the
proposed algorithm to perform the synthesis, with minor adjustments. The polynomials
generated through the Reed-Muller expansions in the form of mixed polarity Reed-Muller
(MPRM), or Kronecker form, result in smaller circuits, as the polynomial terms start with
smaller values, which are then translated into Toffoli gates with fewer controls.

A study conducted by [Abbe et al. 2020] shows the various parameters for the
Reed-Muller code, as well as their relationships and impacts for each approach. It is
important to note that [Kaufman et al. 2012] demonstrates techniques for constructing
the codes, and thus, [Abbe et al. 2015] could manage to improve and prove that such
construction has several benefits.

The synthesis process starts with a Boolean function f (1, xs, ..., Z,,), which can
be written as a sum of EXOR products, also known as ESOP, where a; € 0, 1:

flar, 20, T) = a0 B a121 D a2Z2 D - B A T1T2 . . . Ty,

Each term of the polynomial corresponds to an interaction related to the input
variables. These terms can, in turn, be mapped to reversible gates, where each gate im-
plements a specific term of the polynomial. Additionally, each term can be interpreted,
either partially or entirely, using the idea of complement x; = 1 & z;.

The MPRM approach, discussed in [Porwik 2002], demonstrates the possibili-
ties of forms in the Reed-Muller spectrum and highlights that using positive polarity
Reed-Muller (PPRM) reduces the number of generated expressions. Other methods, such
as fixed polarity Reed-Muller (FPRM), are less effective for circuits with many vari-
ables [Falkowski and Chang 1995]. Notably, in FPRM, each variable appears with the
same polarity across all terms, whereas in MPRM, a variable can appear with both positive
and negative polarities. Based on this, [Porwik 2002] suggests using Walsh coefficients
to determine the best expression from MPRM expansions.

By definition, we say that the spectrum of a Boolean function is obtained through
the multiplication between the output vector of this function and a transformation matrix.
The result is the spectral vector, which contains the spectral coefficients of the function.
In our case, we will use a transformation matrix K and a vector V' that represents the
outputs of the Boolean function. The transformation matrix K is defined recursively
using Equation 1. That is, each Walsh-Hadamard matrix K, is generated from a previous
matrix /(,,_;. In a simpler way, we can apply the Kronecker product to matrix ; a total
of w times in order to obtain K,,. Note that the size of the matrix, as well as the number
of operations, is related to the number of variables involved in the function.

K, (0) = [1] Ku(l) = E —11]

Ky(n—1) Kyn-—1)]
Ky(n—1) —Ky(n—1)

ey

In this way, we can define our algorithm and give an example using a generic func-
tion f that has 3 variables: x, 9, and x3. Suppose the output generated by this function is
V =10,1,0,1,0,1,1,0]. Based on this information, we will calculate the transformation
matrix K (3) and adapt the output V" using the following formula: {0,1} — {1, —1}.

The next step is to calculate the spectral vector S = V- K. Analyzing the spectrum
S, we will choose the position that has the highest correlation with the output, which is
indicated by the largest value in magnitude. The correlation found using the line of the
spectrum helps us determine which variables are involved. If the value of .S is negative, we
have the case where the correlation is inverse, and if the value is positive, we have a direct
correlation. In other words, when the correlation is inverse, we have the complement of
all the involved variables, and when there is a direct correlation, we have the variables
without complement. For example, in Table 1, only the last row has S < 0, which implies
an inverse correlation involving the variables x1, x5, and x3.

In Table 1, we can see that the largest value in magnitude is equal to 4. In
our approach, we use the first row with the largest value, although any of the val-
ues could be used. Therefore, the chosen correlation is 3. We then use this cor-
relation to simplify the original function, as follows: d(z) = g(x3) @ f(z1,x2,x3).
This process repeats recursively using the new function d(z) = fi(x1,z2,..., %)

Table 1. Example, using a function f, of how to obtain the expressions in the
MPRM form, the spectrum S, intermediate functions, and its correlations.

T1T9T3 f(x1, 29, x3) V S correlation g(x3) d(x)
000 0 1 0 0 0 0
001 1 -1 4 T3 1 0
010 0 1 0 T 0 0
011 1 -1 4 ToX3 1 0
100 0 1 0 Ty 0 0
101 1 1| 4 T\ 1 0
110 1 -1 0 T1T2 0 1
111 0 1 -4 T1T2T3 1 1

until it converges entirely to zero or to one. Each step of the recursion returns a
set of variables that must be combined in the ESOP form. In other words, we will
have: f(xh T2, Jfg) = fl(xla I, :L‘S) D f2(x17 T2, .I'3) DD fk(xh T2, 1'3), where k& rep-
resents the number of reductions needed to represent the original function.

After another round of the process described above, we will obtain the following
expression: f(x1, s, x3) = x3® x122. From Table 1, it is easy to verify that the next step
generates x; X9, since d(z) is equal to 1 only when z1 = x5 = 1.

il —— T
'—

i) e To
T3 €3
0 &b %

Figure 4. The resulting circuit from the synthesis of the function f using an
ancillary bit x,.

Note that, due to its versatility, this approach is capable of indirectly performing
a post-synthesis process. However, keep in mind that optimizations are not performed on
the result. In our approach, we use the expression found to generate ancillas 2. In the
example above, presented in Table 1, we would place the terms with the target in a new
line x4 — as shown in Figure 4. Each function adds one ancilla in the generated circuit.

4. Synthesis results

Using the Qiskit framework we performed the synthesis process for n = 2,--- |8 bits.
The synthesis results are shown in Table 2 using the gate count metric. This metric is
straightforward and represents the number of gates in the network of reversible gates.
The first column is the size of bits to represent a Boolean function. The other columns
are, respectively: the number of gates using the unitary synthesis, the linear synthesis, the

By definition, ancilla is an auxiliary bit that exists in the circuit to assist with specific operations, such
as simplifying the problem, enabling certain transformations, or facilitating the manipulation of the system
without affecting the final outcome.

permutation synthesis, and the Reed-Muller synthesis. The last row of the table shows the
average result for a given synthesis algorithm.

Table 2. The synthesis results (in terms of gate count) are presented using four
strategies: unitary matrices, linear function synthesis, permutation syn-
thesis, and Reed-Muller spectra. The first column represents the number
of input bits. Columns 2-4 display the gate counts using the Qiskit frame-
work, while the last column shows the gate count for our approach.

Qiskit framework ours

n Unitary Linear Permutation Reed-Muller
2 1.80 5.40 9.60 3.20
3 19.00 16.20 42.00 8.70
4 99.70 38.10 190.50 23.00
5 444.00 82.20 746.40 57.80
6 1,868.00 177.00 3,036.60 144.00
7 7,660.00 366.30 11,987.10 347.50
8 31,020.00 750.30 48,428.10 785.60
avg. 5,873.21 205.07 9,205.76 195.69

Notice that the unitary approach for synthesis uses the least amount of gates for
small values of n, but increases faster than the other approaches. This happens because
the unitary matrices and the algorithm do not consider the use of additional ancilla bits.

The linear synthesis approach uses 2" — 1 bits and achieves a better gate count.
In contrast, the permutation synthesis employs SWAP gates, and when translated into
Toffoli gates, the gate count increases on average by a factor of 3, as one SWAP gate is
equivalent to three Toffoli gates. The permutation approach requires approximately 2"
bits. The Reed-Muller strategy is preferred for n > 2, as it uses 2n bits and yields the
best results. On average, its performance is better, with a more reasonable growth in gate
count and significantly fewer bits compared to the other methods.

In Figure 5 is noticeable that the Reed-Muller strategy surpasses the current tech-
niques available in the Qiskit framework.

5. Post-synthesis results

The second part of our proposal is to evaluate which synthesis process gives the best result,
considering our post-synthesis approaches. The results after applying the post-synthesis
strategies are shown in Table 3. The first column represents the strategy used to evaluate
the synthesis, the columns 2-6 show the number of bits used in the input function, and the
last column shows the average gate count for the strategy. For columns 2-6, the average
number of gates is also shown in the last row.

The strategies used consist of combining each strategy described in Section 3. For
the sake of simplicity and readability, we use the following abbreviations:

* OT: Optimal template matching strategy. Outputs the best set of gates for any
circuit with a Hamming distance less than 4.

* RM: Reed-Muller spectra based algorithm. Through the PPRM form, finds the
minimal spectra and outputs the near-minimal network of reversible circuits.

Zo
X1
X2
xs3
Xy
X5
Te
X
xrg
Ty
Z10
T11
Z12
x13
L14
T15

Zo O0—0 O0—0O0—0—0O——0—0 o
1 -O D— D—(—@—P—(I
T2 +—0—0—P—0—0D—0— D—(D—O —o—0D—e— L2
T3 __fc|\ D—(00— D—(T3
1 DDDDDDDD T
C AN VAN VAN VANPAN AN AN AN 4
T JAnYARVARYARYARYARYAR T
5 NPANVANVNVANZANPANY 5
T MDD T
6 NPANANN VNN 6
T fanVanVanVanVanVanVanVan W
NIANPANPIN ZAN AN PN AN
(a) The resulting circuit obtained using the Reed-Muller synthesis approach.
M
N
M M
N N
M
N
M
N
JanYan M
NPANY N
Jan Jan
N N
M
N
JanYan M
NPANY N
M M Jan D Wan
N N NVASNY)
M
N
Jan M M
N N N
JanYan Jan Jany Wan
NPANY, N VANV,
MDD Jan M
NPANPAND N N
JanYar D W W War W Wan Jan Y Wan
NZANVASNVA SN VA SN/ NVA ANV

(b) The resulting circuit obtained using the linear synthesis approach [Patel et al. 2008].

Figure 5. Comparison between (a) our approach using Reed-Muller and (b) the
optimal technique in Qiskit when the unitary approach is not applicable.
Note that while the unitary method is preferred, it is not always feasible
due to the requirement for inputs to be represented as a unitary matrix.

* RU: Rules for canceling and merging gates. Limited to some cases, but is an all
around strategy that does not have limitation in terms of bits or number of gates.

For example, when reading in Table 3 RU+RM+OT that means the following
strategies were applied, in that order: rules, Reed-Muller, and template matching. Notice
that, in most cases, the strategy order matters. The best average result for each strategy is
marked in bold.

Some strategies could not be finished for using much memory. That was the case
for Reed-Muller. To calculate the Reed-Muller spectra we use a Walsh-Hadamard matrix
with dimensions 2" x 2", where n is the number of bits. As n increases, the matrix
becomes infeasible to create in memory. For example, using 1 byte to represent each bit,
n = d uses 128 Gb for some cases of linear and permutation synthesis. Recall that these
approaches generate 2" bits for an input using n bits. In other words, the dimensions of
the Walsh-Hadamard matrix are 2% x 2*, where & = 2" and n is the number of input bits.

Thus, Table 3 only shows the average values when all the cases were run success-
fully. That is, 40 cases for n < 5 and 20 cases for n > 5. The number of cases p = 10
was chosen for each strategy, which represents 40 cases in total. Further information can

Zo
1
)
x3
Ty
Ts
Ze
X7
xs
L9
Z10
T11
x12
x13
L14
T15

Table 3. The post-synthesis strategies for each value of n, and its average for
each strategy and n value.

Number of input bits (n)
Strategy 2 3 4 5 6 avg.
oT 4.15 16.28 65.55 73.35 269.35 85.74
OT+RM 4.40 17.08 63.65 50.55 165.75 60.29
OT+RM+RU 4.28 16.55 62.70 47.10 153.00 56.73
OT+RU 4.15 16.00 64.35 59.85 211.40 71.15
OT+RU+RM 4.40 17.08 63.15 39.55 124.75 49.79
RM 4.70 17.28 68.28 72.55 274.75 87.51
RM+OT 4.15 16.45 62.50 42.80 142.75 53.73
RM+OT+RU 4.15 16.08 62.03 40.65 129.25 50.43
RM+RU 4.63 17.00 67.85 71.10 270.00 86.12
RM+RU+OT 4.15 16.28 62.18 41.85 139.70 52.83
RU 4.63 17.40 71.68 122.20 492.30 141.64
RU+OT 4.15 16.13 64.00 64.45 239.45 77.64
RU+OT+RM 4.40 17.08 65.15 61.05 226.25 74.79
RU+RM 4.70 17.28 69.28 81.55 313.75 97.31
RU+RM+OT 4.15 16.45 64.00 44.80 153.75 56.63
avg. 4.35 16.69 65.09 60.89 220.41

be accessed at https://github.com/raphaelbernardino/rblk.

As expected, for n = {2, 3}, the template strategy works best. In some cases,
the template strategy is combined with another strategy and yields the same result. For
higher values, such as n = 4, the RM+RU+OT is the best result. The overall best result is
OT+RU+RM, but we think there is no statistical significance given that for n = {5,6} it
only analyzes half of the cases.

Notice that OT+RU+RM and RM+RU+QOT are the best in 2 out of 5 values, but the
RM+RU+OT also achieves the second best result in 3 out of 5. Although the OT+RU+RM
for n = 2 is third best, n = 3 is eighth best, and for n = 4 it is fifth best. Thus, the average
does not reflect the ideal performance of the strategies.

Based on these preliminary results, we can conclude that the Reed-Muller strategy
for synthesis yields promising outcomes. When we examine the post-synthesis strategies,
as shown in Table 3, the proposed approach outperforms, on average, the post-synthesis
for every value of n and in all cases.

6. Conclusion

The synthesis strategies discussed face challenges related to memory usage, gate count,
and scalability as the input size n increases. For large values of n, approaches like Reed-
Muller (RM) synthesis become computationally expensive due to the use of large matrices
like the Walsh-Hadamard matrix. This leads to high memory requirements, making it
difficult to handle cases when n > 5, limiting the analysis and reducing the statistical
significance of results.

In terms of gate count and efficiency, the unitary synthesis approach is the most

efficient for small n, using n bits. The permutation synthesis gate count increases rapidly
as n grows, making it impractical for larger inputs as it utilizes 2" bits. Permutation
synthesis, which uses SWAP gates, results in a significant increase in gate count when
translated into Toffoli gates, as each SWAP gate corresponds to three Toffoli gates. The
linear synthesis outputs the best network of reversible circuits, but uses 2"~ ! bits, making
it infeasible for large values of n.

Reed-Muller synthesis, on the other hand, is the most balanced strategy for
larger n, using only 2n bits and maintaining a reasonable growth in gate count, mak-
ing it scalable for larger circuits. This strategy is preferred for n > 2, as it provides better
results with fewer resources compared to the linear and permutation approaches.

For small values of n, the template strategy performs best, while for intermediate
values like n = 4, combinations such as RM+RU+OT yield better results. For larger
values of n, combinations like OT+RU+RM show the best performance, though memory
constraints limit the ability to fully analyze all cases for n = 5 and n = 6. As a result, the
choice of synthesis strategy depends heavily on the input size, with Reed-Muller synthesis
being the most efficient for larger n.

References

Abbe, E., Shpilka, A., and Wigderson, A. (2015). Reed-muller codes for random erasures
and errors. In Proceedings of the forty-seventh annual ACM symposium on Theory of
Computing, pages 297-306.

Abbe, E., Shpilka, A., and Ye, M. (2020). Reed—muller codes: Theory and algorithms.
IEEE Transactions on Information Theory, 67(6):3251-3277.

Bandyopadhyay, C. and Rahaman, H. (2014). Synthesis of esop-based reversible logic
using positive polarity reed-muller form. In Emerging Trends in Computing and Com-
munication: ETCC 2014, March 22-23, 2014, pages 363-376. Springer.

Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., Sleator,
T., Smolin, J. A., and Weinfurter, H. (1995). Elementary gates for quantum computa-
tion. Physical review A, 52(5):3457.

Benioff, P. (1980). The computer as a physical system: A microscopic quantum mechan-
ical hamiltonian model of computers as represented by turing machines. Journal of
statistical physics, 22:563-591.

Benioff, P. (1982a). Quantum mechanical hamiltonian models of turing machines. Jour-
nal of Statistical Physics, 29:515-546.

Benioff, P. (1982b). Quantum mechanical hamiltonian models of turing machines. Jour-
nal of Statistical Physics, 29:515-546.

Bernardino, R. and Kowada, L. (2025). Reversible circuit optimization using reed-muller
spectrum and rules decomposition. In 2025 IEEE 16th Latin America Symposium on
Circuits and Systems (LASCAS).

Dalcumune, E., Kowada, L. A. B., Ribeiro, A. C., Figueiredo, C. M. H., and Marquezino,
F. L. (2021). A reversible circuit synthesis algorithm with progressive increase of
controls in generalized toffoli gates. JUCS - Journal of Universal Computer Science,
27(6):544-563.

Falkowski, B. J. and Chang, C.-H. (1995). An exact minimizer of fixed polarity reed-
muller expansions. International journal of electronics, 79(4):389—409.

Fredkin, E. and Toffoli, T. (1982). Conservative logic. International Journal of Theoreti-
cal Physics, 21(3):219-253.

Gottesman, D. (1998). The heisenberg representation of quantum computers. arXiv
preprint quant-ph/9807006.

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pages 212-219.

IBM (2017). Qiskit. Available at https://giskit.org/.

Kaufman, T., Lovett, S., and Porat, E. (2012). Weight distribution and list-decoding size
of reed—muller codes. IEEE transactions on information theory, 58(5):2689-2696.

Knill, E. and Laflamme, R. (1997). Theory of quantum error-correcting codes. Physical
Review A, 55(2):900.

Kutin, S. A., Moulton, D. P., and Smithline, L. M. (2007). Computation at a distance.
arXiv preprint quant-ph/0701194.

Landauer, R. (1961). Irreversibility and heat generation in the computing process. /IBM
Journal of Research and Development, 5(3):183—-191.

Maslov, D. and Dueck, G. W. (2003). Garbage in reversible design of multiple output
functions. In 6th International Symposium on Representations and Methodology of
Future Computing Technologies, pages 162—170.

Maslov, D., Dueck, G. W., and Miller, D. M. (2007). Techniques for the synthesis of
reversible toffoli networks. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 12(4):42—es.

Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Informa-
tion. Cambridge University Press, New York, NY, USA.

Patel, K. N., Markov, I. L., and Hayes, J. P. (2008). Optimal synthesis of linear reversible
circuits. Quantum Inf. Comput., 8(3):282-294.

Porwik, P. (2002). Efficient calculation of the reed-muller form by means of the walsh
transform. Int. J. Appl. Math. Comput. Sci, 12(4):571-579.

Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM review, 41(2):303-332.

Toffoli, T. (1980). Reversible computing. In de Bakker, J. and van Leeuwen, J., edi-
tors, Automata, Languages and Programming, page 632, New York. Springer. MIT
Technical Memo No. MIT/LCS/TM-151, 1980 (unpublished).

Zakablukov, D. V. (2016). Application of permutation group theory in reversible logic
synthesis. In Reversible Computation: 8th International Conference, RC 2016,
Bologna, Italy, July 7-8, 2016, Proceedings 8, pages 223-238. Springer.

