
Gerenciadores de Dados Biológicos: Genéricos ou Ad-hoc?

Sérgio Lifschitz

1 Departamento de Informática
Pontifı́cia Universidade Católica do Rio de Janeiro (PUC-Rio)

sergio@inf.puc-rio.br

Resumo. A necessidade de eficiência no gerenciamento de dados biológicos
traz novos rumos e desafios para as pesquisas em sistemas de bancos de dados.
Neste artigo discute-se a oportunidade de construção de gerenciadores de da-
dos especı́ficos para a área de biologia computacional e afins. São necessárias
muitas adaptações para que o uso de sistemas relacionais ou baseados em
modelos de dados conhecidos seja eficaz. Nesse artigo discute-se a viabili-
dade de um SGBD ad-hoc para dar suporte adequado à gestão e acesso de
dados biológicos. São apresentadas as abordagens correntes baseadas em ex-
tensões de SGBDs existentes e discute-se algumas das estratégias particulares,
propostas ou em desenvolvimento, para lidar com esta nova área de aplicação.

1. Introdução e Motivação

Um Sistema de Gerência de Bancos de Dados (SGBD) permite o controle de grandes
volumes de dados, oferecendo persistência em memória estável, e garantindo o acesso de
múltiplos usuários com eficiência e segurança. Os SGBDs normalmente implementam
um determinado modelo de dados, que define tanto uma estrutura de representação para
os dados como também o formalismo de manipulação. Há vários anos o modelo rela-
cional de dados, baseado em relações matemáticas, comumente abstraı́das como tabelas,
vem sendo utilizado como modelo padrão de mercado [Silberschatz et al. 2005]. Para
aplicações ditas convencionais, envolvendo administrações empresariais ou coorporati-
vas, os SGBDs relacionais disponı́veis no mercado atendem os requisitos de dados e fun-
cionais sem maiores dificuldades.

Entretanto, novas aplicações trazem desafios de estruturação de dados nos diversos
nı́veis de memória, especificação de consultas e manipulações complexas, sobre conjuntos
de dados cada vez maiores. Esse é o caso das aplicações cientı́ficas (life sciences), com-
preendendo objetos geográficos e dados semi-estruturados, petabytes de dados e proces-
samentos complexos [Jagadish and Olken 2004, Bell et al. 2006, Sinha et al. 2007]. Em
vários casos, como por exemplo, sistemas compreendendo imagens ou dados espaciais
de forma geral, é difı́cil utilizar SGBDs convencionais ou mesmo suas versões com fun-
cionalidades estendidas. Por exemplo, abstrair mapas para armazenamento em tabelas de
SGBDs relacionais exige muitas adaptações e simplificações que podem comprometer a
semântica da aplicação. Cabe observar que, mesmo assim, muitos dos sistemas correntes

2085

utilizam os SGBDs atualmente disponı́veis ou mesmo sistemas de arquivos tradicionais
para gerência dos dados [Topaloglou et al. 2004].

Assim, visando o desenvolvimento de sistemas eficazes, robustos e eficientes,
pode-se pensar em duas abordagens básicas para sistemas de bancos de dados que venham
dar suporte para essas novas áreas de aplicação:

1. estender e usar os gerenciadores existentes e adaptá-los para os tipos de dados e
manipulações necessárias; ou

2. construir um sistema ad-hoc que atenda as particularidades da aplicação.

Há prós e contras nas duas abordagens. Pode-se aproveitar a base dos sistemas
já existentes e, com custo relativamente baixo, obter-se uma solução em curto prazo,
porém com algumas restrições operacionais. Há também o problema da utilização de sis-
temas de propósito geral, que envolvem vários módulos e componentes, muitos dos quais
desnecessários para uma aplicação particular. Já as soluções projetadas especificamente
para o problema em questão por construção atendem à demanda especı́fica porém têm
custo alto e pouca abrangência, conseqüentemente, não serem economicamente viáveis.

A alternativa de um sistema especialista, dedicado já é adotada em outras área
de aplicação conhecidas, como é o caso dos SIG: Sistemas de Informação Geográficas
(e.g. [Neteler and Mitásová 2002]). Por outro lado, alguns SGBDs comerciais vêm há
muito tempo incorporando funcionalidades especı́ficas. É o caso das novas bibliotecas
e APIs que viabilizam soluções internas do SGBD para mineração e armazém de dados
(e.g. [Poess and Othayoth 2005]).

Neste artigo estamos particularmente interessados com o contexto de aplicações
cientı́ficas, em particular, a bioinformática ou biologia computacional. Sabe-se que há
projetos de pesquisa que visam seqüenciar o genoma de várias espécies. As seqüências
obtidas são normalmente representadas por longas cadeias de caracteres que, por sua vez,
têm sido armazenadas em ”bancos de dados”, não necessariamente controlados por um
SGBD. Devido ao grande interesse público e às novas tecnologias sendo disponibilizadas,
o volume de dados vem aumentando consideravelmente. Experimentos com micro-arrays
vêm gerando dados da ordem de petabytes, tornando obrigatória a busca por soluções de
bancos de dados apropriadas.

As duas áreas, de computação e biológica, podem ganhar muito com a integração
de tecnologias. De fato, técnicas para gerenciamento de dados possuem um papel funda-
mental para o desenvolvimento de aplicações biológicas pois fornecem abstrações ad-
equadas para projetar, acessar e armazenar os dados. Por outro lado, as abstrações
da áreas biológica podem trazer idéias novas de abordagem na solução de problemas
computacionais (computação bio-inspirada), como é o caso da computação por DNA
[Adleman 1994].

Embora sistemas de bancos de dados propriamente ditos ainda sejam pouco uti-
lizados na prática para a manipulação de bancos de dados biológicos, alguns trabal-

2086

hos na literatura já vêm investigando estruturas de ı́ndices [Hunt et al. 2002], integração
de fontes de dados e aplicações [Seibel 2002], persistência para dados ditos cientı́ficos
[Buneman et al. 2004], linguagens de acesso aos dados [Tata et al. 2006], processamento
de consultas [Chen et al. 2005] e sistemas de workflow [Lemos 2004], apenas para citar
alguns.

Neste trabalho coloca-se em discussão a viabilidade de um Sistema Gerenciador
de Bancos de Dados (SGBD) especı́fico para aplicações de biologia computacional. A
maioria das ferramentas existentes ora acessa dados diretamente de arquivos textos ou
binários, sem a utilização de um gerenciador apropriado, ora faz uso de SGBDs rela-
cionais comerciais que necessitam de muita adaptação e capacidade de abstração. De
certa forma cria-se obstáculos que impedem as aplicações de se beneficiar de mecanis-
mos eficazes de armazenamento, acesso eficiente a disco e gerenciamento inteligente da
memória, entre outros.

Assim, pretende-se listar aqui alguns dos principais tópicos de pesquisa no
domı́nio de bancos de dados relacionados direta ou indiretamente às aplicações em bi-
ologia computacional. Em particular, discute-se indiretamente a idéia de construção
de um ”Bio-SGBD”, um gerenciador de bancos de dados ad-hoc voltado especialmente
para lidar com dados biológicos. Na próxima Seção são apresentadas algumas das car-
acterı́sticas de SGBDs e como estas vem sendo consideradas na literatura e nos novos
sistemas em desenvolvimento. Em seguida, na Seção 3, questões mais especı́ficas ao con-
texto de aplicações da bioinformática e bancos de dados são explicitadas com algumas
soluções ad-hoc existentes ou em preparação. O artigo termina na Seção 4 com con-
clusões e comentários finais.

2. Abordagens de Gestão de Dados Biológicos

Algo relevante no contexto desse artigo envolve lidar com sequências biológicas, rep-
resentadas por cadeias de caracteres de tamanhos variados, que podem ser agrupadas
também distintamente, em função da semântica associada e da manipulação relacionada
com os programas de acesso.

A análise através da comparação de seqüências por similaridade tornou-se uma
das operações mais importantes na biologia computacional, cujos resultados dão origem
a novos tipos de dados biológicos, como as anotações, ou ainda são entradas para muitas
outras operações mais elaboradas, como a busca de padrões.

É de fundamental importância mencionar a famı́lia de programas BLAST
[Altschul et al. 1990] - Basic Local Alignment Search Tool - que realizam o alinhamento
e a comparação entre biosseqüências. Estes programas são na verdade baseados em
heurı́sticas, o que trouxe uma grande melhora nos tempos de respostas em relação aos al-
goritmos exatos propostos inicialmente. O BLAST é bastante utilizado e, por esta razão,
melhorias nas estratégias de execução são muito importantes. No contexto particular deste
artigo, considera-se vários aspectos relevantes, como por exemplo:

2087

• estruturas de persistência das sequências do banco de dados;
• ı́ndices que reduzam o espaço de busca e facilitem a análise dos dados;
• a polı́tica de substituição de páginas de dados em memória;
• o escalonamento adequado dos processos; e
• a possibilidade de distribuição e alternativas de alocação dos dados.

A interpretação dos dados obtidos experimentalmente, onde se busca gerar con-
hecimento biológico, é outra atividade essencial. São registradas anotações manuais,
e também automáticas, resultantes da execução de programas especı́ficos de análise.
Métodos de mineração de dados e descoberta de conhecimento podem ser aplicados a
grandes volumes de dados biológicos. Há de se preparar também diferentes visões dos
dados, diversos tipos de relatórios e interfaces de consulta flexı́veis e amigáveis.

Uma das necessidades básicas em bioinformática está relacionada com a capaci-
dade de integração de dados obtidos em bases (ou fontes) de dados públicas ou privadas,
visando comparações e análises mais precisas de uma determinada pesquisa. Em muitos
casos estas informações são produzidas por um único laboratório e suas informações são
únicas, isto é, não estão replicadas nos repositórios públicos. Todas essas fontes de da-
dos relevantes para os pesquisadores contêm informações biológicas (ex.: homologias,
estrutura e similaridades) e afins (ex.: anotações relevantes e artigos cientı́ficos).

Em sua maioria estas fontes de dados diferem na forma de armazenamento de
dados e nas informações relevantes à pesquisa. Também estão associadas a aplicativos
que diferem nos serviços oferecidos: de visualização dos dados, de busca, de alinhamen-
tos, de comparação de seqüências, entre outros. Há implementações de sistemas que
armazenam informações biológicas em arquivos texto (e.g. GenBank), em bancos de da-
dos relacionais (e.g. Swiss-Prot) e em sistemas orientados a objetos persistentes (e.g.
AceDB). No entanto, como a pesquisa na área está em constante evolução, há a necessi-
dade de alteração dos esquemas já implantados, sugerindo a adoção de modelos de dados
mais flexı́veis. Isto porque novas informações biológicas surgem a cada momento e é
fundamental que elas possam ser representadas nas fontes de dados existentes.

Existem diferentes abordagens na literatura para tratar o problema de integração
de informações de fontes de dados distribuı́das e heterogêneas. A primeira trata da
integração de bancos de dados através de um Sistema Gerenciador de Bancos de Da-
dos Distribuı́dos e Heterogêneos (SGBDH). Uma segunda alternativa lida com múltiplas
fontes de dados com uma abordagem Multidatabases. Outra idéia seria usar a tecnologia
de Data Warehouses, que implementa uma visão materializada do esquema das fontes de
dados componentes da integração.

A abordagem SGBDH pode não ser adequada para integração de dados da biolo-
gia molecular pois muitas fontes de dados são arquivos texto, com pouca estruturação.
Também não há esquema global, padronizado e aceito pelos produtores de dados. Já
com Multidatabases há o problema usual de indisponibilidade dos dados em momentos
de acesso e a falta de controle sobre o desempenho em ambientes distribuı́dos. Por fim,

2088

o uso de Data Warehouses é o mais promissor porém também pode não ser adequado
quando há atualização frequente de esquemas e das instâncias de dados.

A integração de fontes de dados e aplicações para a área de bioinformática ainda
é considerado um problema em aberto e com vários desafios importantes na prática
[Topaloglou et al. 2004]. Alguns se referem à persistência dos dados após a efetivação
da integração, e posterior acesso eficiente para análise e manipulação.

Já existem algumas boas iniciativas para lidar com dados biológicos, em partic-
ular sequências e respectivas anotações. São várias as propostas para representar esses
dados em XML porém é necessário considerar a eficiência do armazenamento e acesso
posteriores. Há propostas interessantes de repositórios XML (e.g [Wong et al. 2000]) que
levam em consideração aspectos de armazenamento fı́sico para as anotações e sequências
em XML. Em particular, vale mencionar a idéia de catálogo ou dicionário, presente nos
SGBDs tradicionais, onde se descrevem a estrutura completa dos dados em XML, os tipos
de dados e também algumas estatı́sticas, estendendo consideravelmente a noção de DTD
para o caso particular.

Outros trabalhos de pesquisa, envolvendo ou não o desenvolvimento de protótipos,
envolvem a extensão de sistemas baseados no modelo relacional, tanto para persistência
como para acesso. Na prática considera-se tabelas para armazenar os dados e adaptações
na linguagem de acesso (como a SQL) para produzir os resultados particulares deseja-
dos. Esta abordagem é adotada por exemplo em [Tata et al. 2006], com extensões sendo
propostas para o SGBD PostgreSQL. Já em [Eltabakh et al. 2007] há uma abordagem
semelhante, com ênfase particular na gerência de anotações. Os usuários podem incluir
os dados de anotações de forma transparente em relação à forma como as anotações são
persistidas. Também é oferecida diferentes granularidades para anotação, por tuplas in-
teiras ou atributos únicos de determinadas tuplas, ou mesmo múltiplas colunas da tabela.

Neste caso, há a proposta de estender SQL com comandos de criação de tabelas
de anotação, que têm propostas de armazenamento especı́ficas, incluindo ı́ndices de busca
sobre as anotações. Considera-se também um suporte para arquivamento de anotações que
permita recuperar dados antigos rapidamente, de forma análoga à uma gestão de versões.
Esta gestão de anotações viabiliza também um controle de proveniência de dados, que
pode ser especificado no momento de uma consulta aos dados. Em [Eltabakh et al. 2007]
há proposta de estruturas de ı́ndices para dados biológicos compactadas que podem ser
usadas posteriormente sem necessidade de descompactação.

Utilização de SGBDs

Alguns dos bancos de dados biológicos utilizam sistemas baseados no modelo relacional,
sistemas orientados a objetos ou ainda alguns gerenciadores especı́ficos. No EMBL,
SwissProt, TrEMBL, o SGBD Oracle foi adotado como repositório mas são utilizados
arquivos texto para troca de dados. Na maioria dos casos onde gerenciadores de banco
de dados relacionais são utilizados como repositórios de seqüências (DNA ou proteı́nas),

2089

estas são armazenadas como cadeias de caracteres. Arquivos texto são diretamente per-
sistidos como objetos grandes, por exemplo, do tipo CLOB. Isto facilita a carga dos
repositórios a partir de arquivos texto, porém o acesso aos dados é limitado aos oper-
adores tradicionais.

O SGBD Oracle versão 10g merece uma atenção em particular devido ao grande
número de funcionalidades incluı́das para facilitar o trabalho dos pesquisadores na área
de ciências da vida, principalmente no sentido de acesso a dados provenientes de diversas
fontes, algo muito comum na biologia computacional. O Oracle 10g incorpora o BLAST
como função. Também consultas em linguagem SQL para pré-filtrar as seqüências ou
ainda pós-processar os resultados obtidos são permitidas.

Outra estratégia semelhante foi colocada em prática utilizando o gerenciador
de dados PostgreSQL. Esta implementação, chamada de BlastGres [Hsiao et al. 2005],
também incorpora o programa BLAST ao gerenciador de banco de dados. Além disto,
foram criados novos tipos de dados para representar segmentos de seqüência, em conjunto
com um novo tipo de ı́ndice para acelerar o acesso a uma região de uma seqüência e as
propriedades correspondentes. No entanto, nesta abordagem as seqüências são guardadas
como cadeias de caracteres. A idéia é representar um segmento de seqüência com o tipo
de dados range, números indicando o inicio e fim de um segmento de seqüência, e um tipo
location, onde um valor de range é associado ao identificador de uma seqüência, podendo
ainda utilizar um ı́ndice para realizar a busca de uma região de uma seqüência dada - o
atributo do tipo location.

Outro exemplo de sucesso e bastante usado é o sistema ACeDB. O ACeDB está
baseado no modelo orientado a objetos mas conta com um módulo de gerenciamento
de banco de dados, em um modelo flexı́vel, projetado especificamente para manipu-
lar informações biológicas. No ACeDB (A Caenorhabditis elegans Data Base) são ar-
mazenados os resultados de projetos de sequenciamento e mapeamento de larga escala.

O ACeDB representa internamente os dados em forma de árvore, em formato
binário. A entrada e saı́da dos dados é feita via arquivos texto denominados ACE files,
onde as informações são representadas de acordo com uma sintaxe especı́fica, semelhante
à XML. A base do AceDB é utilizada para outras pesquisas, como é o caso do TcruziDB,
coordenado pelo DBBM da FIOCRUZ, Rio de Janeiro.

3. Algumas Soluções Ad-hoc
Como já visto anteriormente, a famı́lia de programas BLAST é a mais utilizada pelos
pesquisadores e existem diversos sı́tios WWW que disponibilizam os programas para os
usuários, podendo ocorrer diversos acessos simultâneos. Os programas de comparação de
biosseqüências objetivam ser ao mesmo tempo rápidos e confiáveis. Como são largamente
usados, mesmo pequenas melhorias nestes podem trazer grandes benefı́cios.

Uma idéia seria a inclusão de um gerenciamento de buffer adequado, tornando
mais rápidos seus tempos de execução. Uma estratégia de gerenciamento de buffer

2090

Figura 1. Driver para Gerência de Buffer

para o BLAST foi publicada em [Lemos and Lifschitz 2003], sugerindo o uso de es-
truturas de armazenamento de seqüências na memória denominadas anéis. Já em
[Lifschitz and Mauro 2005], sugere-se a implementação de uma arquitetura de driver para
realizar este gerenciamento de buffer. Outros programas podem ser beneficiados por essas
técnicas.

Há dois modos de implementar o gerenciamento de buffer para o BLAST, de
maneira intrusiva no código e de maneira não-intrusiva. A maneira intrusiva de imple-
mentar é através da substituição, no código, de cada chamada às funções de leitura de
seqüências por outras funções que se comunicam com um processo que irá realizar o
gerenciamento de buffer. A maneira não-intrusiva de implementar é não modificando o
código do BLAST, o que pode ser feito através da criação de um driver que simule o fun-
cionamento dos arquivos do banco de dados e realize ao mesmo tempo o gerenciamento
de buffer.

Aqui será descrito brevemente como se dá a implementação de maneira não-
intrusiva através de um driver [de Noronha 2006]. Este é um programa que possibilita
a comunicação de aplicativos com dispositivos de hardware e software, escondendo a
maneira como é realizada a comunicação direta com os mesmos. O uso de um driver para
implementar o gerenciamento de buffer para o BLAST traz grandes vantagens, pois ele
não exige modificações no código fonte e pode ser utilizado para diferentes versões do
BLAST com poucas modificações (ou nenhuma) no código do driver.

No caso de sistemas operacionais Linux, os drivers devem ser implementados
como módulos do kernel. A Figura 1 mostra a arquitetura do driver para o BLAST.

2091

Devido às limitações existentes para implementações de módulos do kernel,
optou-se por criar um processo provedor, com o qual o processo do driver irá se comu-
nicar, que acessará os arquivos do banco de dados e fará o gerenciamento de buffer. Como
pode ser visto na Figura 1, os processos BLAST realizarão leituras dos falsos arquivos do
banco de dados, executando a função de leitura do driver, e informando deste modo quais
páginas desejam ler do banco de dados.

O driver irá comunicar-se com o processo provedor, enviando as novas
requisições. O processo provedor possuirá os anéis de buffer, além das posições do ar-
quivo de seqüências a partir das quais cada processo iniciou a leitura. Estas posições serão
usadas para o cálculo da posição real do arquivo que será lida por cada processo quando
este requisitar novas páginas, somando-se a posição da página requisitada com a posição
a partir da qual o processo iniciou a leitura. O processo provedor poderá acessar o banco
de dados diretamente, e fornecerá ao driver as seqüências desejadas, lidas do banco ou
dos anéis em memória, ao executar a função de escrita do driver. Finalmente, ao receber
os dados do provedor, o driver os envia aos processos.

Cabe observar que a polı́tica de escalonamento do processo provedor pode ser
adaptada da maneira que a aplicação que solicita sequências desejar. No caso de atendi-
mento aos processos BLAST, há a preocupação com a ordem sequencial de leitura e
cálculo de posições reais e virtuais nos arquivos de dados. Para outros programas, este
inteligência de provimento de sequências pode ser modificada, mantendo-se a estratégia
não intrusiva de lidar com as aplicações e os dados. No que diz respeito aos trabalhos em
andamento e futuros, podemos mencionar estudos de desempenho especı́ficos de técnicas
de compactação de dados [Rosa 2006] aplicadas na execução do BLAST em conjunto
com a ferramenta BioProvider [de Noronha 2006].

Distribuição e Paralelismo de E/S
Como alternativa para obtenção de melhor desempenho, a utilização de ambientes parale-
los para a resolução de problemas complexos têm sido amplamente estudada. Os avanços
nas tecnologias de microcomputadores e de redes fez com que o emprego de máquinas de
arquitetura de memória distribuı́da se tornasse viável. Esse é o caso dos clusters de PCs,
que têm sido cada vez mais utilizados, pois apresentam uma relação custo vs. desempenho
bastante atrativa [de Carvalho Costa and Lifschitz 2003].

Para a execução do BLAST em máquinas de memória distribuı́da, uma primeira
abordagem consiste na replicação da base de dados em todos os nós. Para este caso,
apresentamos um esquema mestre-escravo, conforme apresentado na Figura 2(a). As
requisições (seqüências para comparação com a base de dados) são submetidas ao nó que
desempenha o papel de mestre. Cada requisição recebida pelo nó mestre pode conter
uma ou mais seqüências. Em cada nó escravo existirá uma réplica de toda a base de
dados. Além disso, os nós escravos terão o algoritmo BLAST devidamente implementado
e configurado, pronto para execução. Assim, cada nó escravo terá a possibilidade de
executar a “operação de BLAST” sobre a base de dados local, independentemente dos

2092

Nó Mestre
Montagem da Saída

Nó 1

...

Arquivo de
Saída

Nó Mestre
Montagem da Saída

Arquivo de Entrada
Seqüência 1
Seqüência 2

...
Seqüência k

Seqüência 1
Seqüência 2

...
Seqüência i

Resultados do BLAST

Réplica 1

Seqüência i+1
Seqüência i+2

...
Seqüência j

Seqüência l+1
Seqüência l+2

...
Seqüência k

Nó Mestre

Nó 2

Réplica 2

Nó N

Réplica N

Nó 1

...

Arquivo de Entrada
Seqüência 1
Seqüência 2

...
Seqüência k

Seqüência 1
Seqüência 2

...
Seqüência k

Resultados do BLAST

Fragmento 1

Seqüência 1
Seqüência 2

...
Seqüência k

Seqüência 1
Seqüência 2

...
Seqüência k

Nó Mestre

Nó 2

Fragmento 2

Nó N

Fragmento N

(a) Esquema com Replicação da Base de Dados

Arquivo de
Saída

(b) Esquema com Fragmentação da Base de Dados

Figura 2. Esquemas de Distribuição e Alocação de Dados

outros.

O nó mestre deve distribuir as seqüências recebidas pelos diversos nós, alocando,
assim, tarefas aos nós escravos. Esta alocação deve fazer com que a carga de trabalho
de cada um dos nós escravos seja semelhante. Para a distribuição de tarefas, adotaremos,
inicialmente uma estratégia circular semelhante a tradicional. Uma tarefa a ser atribuı́da
a um nó escravo é a de realizar a comparação de uma dada seqüência com a base de
dados. Após a distribuição das seqüências pelos nós escravos estes devem executar o
BLAST para cada uma das seqüências recebidas. Vários resultados serão gerados. Cada
um deles deverá ser remetido ao nó mestre. Este receberá todos os resultados e montará
um resultado único para a solicitação recebida.

Para a execução do BLAST, considerando um particionamento da base de dados
com a devida alocação dos fragmentos pelos diversos nós, é proposto, também, um es-
quema mestre-escravo, apresentado na Figura 2(b). O nó mestre é o responsável por rece-
ber as requisições e encaminhá-las aos nós escravos, os quais realizam o BLAST. Porém,
nesta etapa, cada nó escravo conterá somente uma parte da base de dados e não toda ela,
como no caso anterior. A principal dificuldade desta abordagem reside, justamente, na
geração dos fragmentos.

Na distribuição das tarefas surge outra diferença entre a estratégia replicada e
a fragmentada. Na estratégia fragmentada, para completitude do resultado final, cada
seqüência submetida ao nó mestre deve ser repassada a todos os nós escravos, para que
o BLAST seja executado sobre toda a base de dados original. Após a realização do
BLAST em cada nó, os resultados são enviados para o nó mestre. Este é responsável
pela montagem do resultado final e apresentação ao usuário. A montagem do resultado
final é mais uma etapa mais complexa para o caso com fragmentação da base de dados do

2093

que para o caso com replicação pois, no esquema com fragmentação, existirão para cada
seqüência submetida, n resultados de BLAST, onde n vale o número de fragmentos da
base de dados.

Vários testes foram realizados em um cluster de até 32 nós, com três bases de da-
dos de tamanhos variados: Ecoli.aa, SwissProt e nr. Maiores detalhes podem ser obtidos
em [de Carvalho Costa 2002].

São vários os fatores que influenciam no desempenho da implantação do algoritmo
BLAST em máquinas de memória distribuı́da. O desvio de carga foi apresentado como
um dos problemas a ser resolvido. Caracterı́sticas como similaridade das seqüências de
entrada com as da base de dados, comprimento das seqüências de entrada e das formado-
ras de fragmentos da bases de dados, entre outras, mostraram-se causadoras de desvios.

Diferentes propostas de correção para os desvios podem ser consideradas em
função da forma de distribuição dos dados considerada. A realização de alterações na
polı́tica de distribuição de dados aos nós é uma possı́vel solução para este problema. Estão
sendo avaliadas também técnicas de particionamento fı́sico de dados porém com alocação
replicada e controle de fragmentos primários por nó de processamento [Sousa 2007].
Neste caso, testes de polı́ticas de distribuição de dados sob demanda e adaptativa tem
obtido resultados promissores. Neste trabalho também se contempla o problema de
tolerância à falta e confiabilidade, de forma análoga ao protocolo WAL (write-ahead log-
ging) utilizado pelos SGBD como mecanismo de recuperação transacional. Utilizando
estratégia semelhante o trabalho [Carvalho et al. 2005] permite que execuções da ferra-
menta BLAST em ambientes distribuı́dos ou mesmo em grade não tenham de ser re-
iniciados em caso de falha em alguma máquina participante da operação.

Integração de Fontes de Dados e Aplicações

As limitações das abordagens de integração mencionadas motivaram a proposta da fer-
ramenta Bio-AXS [Seibel and Lifschitz 2001], que utiliza uma arquitetura baseada em
um framework orientado a objetos, visando prover flexibilidade e extensibilidade. Este
framework inova ao tratar da integração de esquemas baseada em um meta-modelo. A
integração é feita através de um mediador que captura os esquemas e dados das fontes,
faz as conversões necessárias e materializa as informações no repositório.

Bio-AXS (Figura 3) se propõe a integrar dados de qualquer fonte de dados de bi-
ologia molecular. Tanto os esquemas como os dados são armazenados em um repositório
que utiliza o modelo de dados semi-estruturado. Assim, os esquemas são armazenados
em XMLSchema e os dados em XML.

A arquitetura do framework está subdividida em quatro módulos, cuja interde-
pendência está esquematizada na Figura 3. O módulo Administrador realiza a interface
com os usuários, de forma a prover as seguintes funções: permitir gerenciar o modelo da
biologia e esquemas especı́ficos, solicitar a captura de esquemas e/ou de dados, permitir
a formulação de consultas, permitir a execução dos programas instanciados no próprio

2094

Swiss
Prot

GenBankACEDB

Captor

XML Schema
Schemas

Administrator

Converter (Wrappers)

AceDB

XML
Data

Biology Data Sources

Biology
Model

Application
Drivers

Biology
Algorithms Fasta

txt
.Ace

Reg
Swiss
Prot

GenBank
Swiss
Prot

Figura 3. Arquitetura Bio-AXS de integração

framework e a execução de aplicações externas. Este módulo contém um repositório, que
armazena o modelo global da biologia. O módulo Capturador administra o repositório
de dados e de esquemas da arquitetura. Os Wrappers implementam o acesso às fontes
de dados de biologia, efetuando a tradução dos esquemas das fontes de dados para XML
Schema e dos dados para XML. Os Drivers implementam a conversão dos dados do for-
mato interno do framework (XML) para o formato esperado pelas aplicações. Os detalhes
da arquitetura de cada módulo, suas classes e métodos, e seus relacionamentos, são de-
scritos em [Seibel 2002].

Fruto de resultados já disponı́veis, cabe aqui relatar que a arquitetura da ferra-
menta Bio-AXS está na base de uma outra ferramenta de anotação especı́fica chamada
Bio-Notes [Lemos et al. 2003]. Esta vem sendo utilizada anotações do genoma do Try-
panosoma Cruzi (FIOCRUZ) e para o sistema de anotação do genoma da Gluconaceto-
bacter diazotrophicus (UFRJ Bioquı́mica).

Linguagem de Modelagem de Dados

Para que a solução de integração baseada em frameworks possa ser aplicada ao
domı́nio da biologia molecular é necessário dispor de um modelo conceitual de dados
[Seibel et al. 2003]. Este é obtido por meio de um processo de projeto, como descrito an-
teriormente, que enriquece a comunicação entre o projetista e o especialista do domı́nio,
facilitando futuras mudanças na aplicação ou na implementação do banco de dados.

O resultado do processo do projeto conceitual de banco de dados é um esquema
conceitual de dados. São pelo menos dois os objetivos dos modelos conceituais. Primeiro,

2095

os modelos conceituais são usados para descrever a informação a ser manipulada por um
sistema de informação. Segundo, os esquemas conceituais são traduzidos em esquemas
de dados lógicos que serão usados para implementar um banco de dados.

Em [de Macêdo et al. 2007] são listados alguns requisitos para modelagem con-
ceitual de dados, em particular para a biologia molecular. Esses requisitos são baseados
nos problemas encontrados utilizando-se linguagens de modelagem conceitual de dados
tradicionais, como ER e UML.

Assim, é sugerida em [de Macêdo 2005] a construção de uma nova linguagem de
modelagem, chamada BioConceptual, projetada para atender os requisitos da Tabela ??.
O objetivo é oferecer ao projetista do banco de dados uma linguagem mais expressiva
para projetar esquemas de dados para aplicações biológicas facilitando a sua construção.
A BioConceptual tenta trazer o modelo conceitual de dados mais perto do domı́nio da
biologia, sem detalhar aspectos de implementação.

Após analisar diversos paradigmas de modelagem, optou-se por usar um modelo
orientado a objetos como base para a BioConceptual. São dois os maiores benefı́cios no
caso:

• Um modelo orientado a objetos tem bastante expressividade para especificar
representações complexas e permite a unificação do desenvolvimento da aplicação
e do banco de dados em um ambiente sem divisões entre o banco de dados e a lin-
guagem de programação;

• As aplicações requerem menos código, usam mais naturalmente a modelagem de
dados, e os códigos são mais fáceis de manter. Desenvolvedores de sistemas ori-
entados a objeto podem criar aplicações completas de banco de dados sem muito
esforço.

Como conseqüência desta decisão, foi decidido usar e estender a especificação
do padrão ODMG 3.0para incorporar as necessidades da nova linguagem. A adoção do
padrão ODMG facilita a compreensão do modelo e a compatibilidade com outras lingua-
gens de modelagem orientadas a objetos como UML, linguagens de programação usando
objetos (ex. Java), bancos de dados objeto-relacional e bancos de dados puramente ori-
entados a objetos. Mais detalhes da proposta BioConceptual devem ser consultados em
[de Macêdo 2005].

4. Comentários Finais

A eficácia e eficiência no gerenciamento dos dados vem trazendo novos rumos e
aplicações para as pesquisas em sistemas de bancos de dados. Estes envolvem
informações simples (e.g anotações textuais) e complexas (imagens tridimensionais), que
precisam ser bem organizados e estruturados para serem depois acessados pelos usuários
potenciais.

2096

Apesar do rápido crescimento dos dados genômicos, o desempenho associado ao
acesso e interpretação destes dados pelos usuários ainda é insatisfatória, exigindo mecan-
ismos eficientes de armazenamento e análise.

Nesse artigo, procuramos evidenciar a necessidade de pesquisas na área de bancos
de dados que dêem suporte às pesquisas na área de biologia computacional. Particular-
mente, buscamos colocar em discussão se seria apropriado dispor de sistemas de bancos
de dados ad-hoc que atendessem com mais eficácia, e provavelmente também eficiência,
os usuários potenciais dessas áreas biológicas e ciências da vida em geral.

Neste trabalho são relatadas várias iniciativas, a partir de idéias discutidas
nos últimos anos, em eventos nacionais [Seibel and Lifschitz 2002] e internacionais
[Paton and Goble 2001]. As soluções recentes que estendem SGBDs existentes, como
no caso do PostgreSQL [Tata et al. 2006], são interessantes porém não são fáceis de usar
ou instalar. Um SGBD tradicional por si só inclui uma série de módulos componentes que
devem ser configurados mas que por vezes nunca são utilizados. Se não há necessidade
de controlar acesso concorrente aos dados, este gerente de transações torna-se algo inútil
do ponto de vista de um usuário de sistemas de bancos de dados biológicos,

Algumas idéias bem interessantes surgidas nos últimos anos [Howe et al. 2007,
Jagadish and Olken 2004] trazem novos pontos favoráveis a uma solução de SGBD ad-
hoc. Estratégias baseadas em data services ou ainda em linguagens declarativas e oper-
adores especialmente adaptados, como o similar join e outros operadores bio-especı́ficos
[Chen and Carlis 2003], vem ganhando força e podem se tornar soluções e abordagens
práticas no futuro próximo.

Referências
(2003). 14th International Workshop on Database and Expert Systems Applications

(DEXA’03), September 1-5, 2003, Prague, Czech Republic. IEEE Computer Society.

(2007). CIDR 2007, Third Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 7-10, 2007, Online Proceedings. www.crdrdb.org.

Adleman, L. M. (1994). Molecular computation of solutions to combinatorial problems.
Science, 266:1021–1024.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local
alignment search tool. J Molecular Biology, 215(3):403–410.

Bell, G., Gray, J., and Szalay, A. S. (2006). Petascale computational systems. IEEE
Computer, 39(1):110–112.

Buneman, P., Khanna, S., Tajima, K., and Tan, W. C. (2004). Archiving scientific data.
ACM Trans. Database Syst., 29:2–42.

Carvalho, P. C., Glória, R. V., de Miranda, A. B., and Degrave, W. M. (2005). Squid - a
simple bioinformatics grid. BMC Bioinformatics, 6:197.

2097

Chen, J. Y. and Carlis, J. V. (2003). Similar join: Extending dbms with a bio-specific
operator. In SAC, pages 109–114. ACM.

Chen, J. Y., Carlis, J. V., and Gao, N. (2005). A complex biological database querying
method. In SAC, pages 110–114. ACM.

de Carvalho Costa, R. L. (2002). Alocação de dados e distribuição de carga para execução
paralela da estratégia blast de comparação de sequência. Master’s thesis, Departamento
de Informática da PUC-Rio.

de Carvalho Costa, R. L. and Lifschitz, S. (2003). Database allocation strategies for
parallel blast evaluation on clusters. Distributed and Parallel Databases, 13(1):99–
127.

de Macêdo, J. A. F. (2005). Um Modelo Conceitual para Biologia Molecular. PhD thesis,
Departamento de Informática da PUC-Rio.

de Macêdo, J. A. F., Porto, F., Lifschitz, S., and Picouet, P. (2007). Dealing with some
conceptual data model requirements for biological domains. In AINA Workshops. IEEE
Computer Society.

de Noronha, M. F. (2006). Implementação e avaliação de desempenho de um driver para
gerência de e/s em aplicações de bioinformática. Master’s thesis, Departamento de
Informática da PUC-Rio.

Eltabakh, M. Y., Ouzzani, M., and Aref, W. G. (2007). Bdbms - a database management
system for biological data. In [DBL 2007], pages 196–206.

Howe, B., Maier, D., and Bright, L. (2007). Smoothing the roi curve for scientific data
management applications. In [DBL 2007], pages 185–195.

Hsiao, R.-L., Jr., D. S. P., and chih Yang, H. (2005). Support for bioindexing in blastgres.
In DILS, volume 3615 of Lecture Notes in Computer Science, pages 284–287. Springer.

Hunt, E., Atkinson, M. P., and Irving, R. W. (2002). Database indexing for large dna and
protein sequence collections. VLDB Journal, 11(3):256–271.

Jagadish, H. V. and Olken, F. (2004). Database management for life sciences research.
SIGMOD Record, 33(2):15–20.

Lemos, M. (2004). Workflow para Bioinformática. PhD thesis, Departamento de In-
formática da PUC-Rio.

Lemos, M. and Lifschitz, S. (2003). A study of a multi-ring buffer management for blast.
In [DBL 2003], pages 5–9.

Lemos, M., Seibel, L. F. B., and Casanova, M. A. (2003). Bionotes: A system for biose-
quence annotation. In [DBL 2003], pages 16–20.

Lifschitz, S. and Mauro, R. C. (2005). An i/o device driver for bioinformatics tools: the
case for blast. Genetics and Molecular Research (GMR), 4(1):563–570.

2098

Neteler, M. and Mitásová, H. (2002). Open Source GIS: A GRASS GIS Approach. Kluwer.

Paton, N. W. and Goble, C. A. (2001). Information management for genome level bioin-
formatics. In VLDB 2001. Morgan Kaufmann.

Poess, M. and Othayoth, R. (2005). Large scale data warehouses on grid: Oracle database
10g and hp proliant systems. In VLDB 2005, pages 1055–1066. ACM.

Rosa, J. O. M. (2006). Estruturas de armazenamento e persistência de seqüências e dados
biológicos. Master’s thesis, Departamento de Informática da PUC-Rio.

Seibel, L. F. B. (2002). BioAXS: Uma Arquitetura para Integração de Fontes de Dados
e Aplicações da Biologia Molecular. PhD thesis, Departamento de Informática da
PUC-Rio.

Seibel, L. F. B., de Macêdo, J. A. F., Lemos, M., Lifschitz, S., de Miranda, A. B., Alves,
M., and Degrave, W. M. (2003). A conceptual model for molecular biology informa-
tion. In WOB, pages 47–56.

Seibel, L. F. B. and Lifschitz, S. (2001). A genome databases framework. In DEXA,
volume 2113 of Lecture Notes in Computer Science, pages 319–329. Springer.

Seibel, L. F. B. and Lifschitz, S. (2002). An overview of genomic databases research
issues. In SBBD, page 10. UFRGS.

Silberschatz, A., Korth, H. F., and Sudarshan, S. (2005). Database System Concepts, 5th
Edition. McGraw-Hill Book Company.

Sinha, R. R., Termehchy, A., Mitra, S., and Winslett, M. (2007). Maitri demonstration:
Managing large scale scientific data (demo). In [DBL 2007], pages 219–224.

Sousa, D. X. (2007). Balanceamento de carga com bancos de dados de sequências
genômicas com partições replicadas. Master’s thesis, Departamento de Informática
da PUC-Rio. (previsão de defesa).

Tata, S., Patel, J. M., Friedman, J. S., and Swaroop, A. (2006). Declarative querying for
biological sequences. In ICDE, page 87. IEEE Computer Society.

Topaloglou, T., Davidson, S. B., Jagadish, H. V., Markowitz, V. M., Steeg, E. W., and
Tyers, M. (2004). Biological data management: Research, practice and opportunities.
In VLDB, pages 1233–1236. Morgan Kaufmann.

Wong, R. K., Lam, F., Graham, S., and Shui, W. M. (2000). An xml repository for
molecular sequence data. In BIBE, pages 35–42.

2099

