
On the Notion of Developmental Computing Machine

Antônio Carlos da Rocha Costa 1,2 and Graçaliz Pereira Dimuro 1

1Programa de Pós-graduação em Informática – Escola de Informática
Universidade Católica de Pelotas, 96.010-000 Pelotas, RS, Brazil

2Programa de Pós-graduação em Computação – Instituto de Informática,
Universidade Federal do Rio Grande do Sul, 91.501-970 Porto Alegre, RS, Brazil.

{rocha,liz}@atlas.ucpel.tche.br

Abstract. A developmental machine is a machine that is able to increase its
structure and functionality as it operates in interaction with its environment.
This paper initially explains the importance that the notion of machine devel-
opment may have for Computer Science. Next, it attempts to identify the main
reasons why the research community that is keen to the foundational issues lacks
a serious concern with such issue. Then, it presents some fundamental problems
that apparently have to be tackled by any approach to the notion of developmen-
tal computing machine. Finally, the paper introduces the initial elements of the
domain-theoretic model of machine development that we are constructing.

1. Introduction
SBC (Sociedade Brasileira de Computação), the Brazilian Computer Society, organized in
May 2006 a workshop to establish the Grand Research Challenges of Computer Science in
Brazil. The text that summarizes the results of the workshop is available from the society’s
website. The 4th of those grand challenges concerns the “Impacts on Computing of the
Transition from Silicon to New Technologies”, which rightly states that recent progress in
the area of Molecular Biology may inspire new technological developments in Computer
Science (CS).

This paper attempts to address the foundational issues raised by the 4th challenge,
specially by the particular statement that “biological” technologies may impact CS. We
focus mainly on the notion of development, which such “biological” technologies may
bring to the domain of computing machines. We first point out that a clear notion of
machine development is lacking in the epistemological framework of CS, and we identify
in the limited conceptual horizon adopted by the classical Theory of Computation the
reasons for such fault. Then, we summarize the current stage of development of our
formal model of developmental computing machine. Finally, we remark that the impact
of the introduction of a notion of developmental machine will not restrict itself just to the
technical or methodological levels of computing: it will undermine the very conceptual
foundations of CS.

2. On the Need of a Development Model for Computing Machines
This section explains why the notion of development is essential for computing machines,
and why it is important that CS produces as soon as possible a formal model for develop-
mental machines.

2158

2.1. On the Notions of Development and Evolution of Complex Systems

Living beings, social organizations, and complex functional artifacts (e.g., complex com-
puting systems) are similar in the difficulty of articulating adequate notions for their con-
ceptual explications, and for formalizing them by mathematical means.

We take the viewpoint that two notions that can’t be dismissed when consider-
ing such systems are the notions of development and evolution. Development is usually
thought of as concerning modifications in individuals, leading them from states of lesser
individual structural, functional and behavioral features to states of greater individual
structural, functional and behavioral features, while evolution is thought of as concern-
ing modifications in populations of individuals, similarly leading such populations from
states of lesser collective structural, functional and behavioral features to states of greater
collective structural, functional and behavioral features. Clearly, development and evo-
lution should be seen as inter-related, so that the evolution of a population impacts the
development of its individuals, and vice-versa.

We aim at applying Jean Piaget’s explication of the notions of development and
evolution of complex systems to the development and evolution of computing machines1,
i.e., we aim at connecting the concepts of machine development and machine evolution
with concepts such as autonomy, adaptation and operatory equilibration. Such concepts
refer to processes and structures that are still widely unexplored in Computer Science,
so our work should be seen as placed in an epistemological space were a wide open
theoretical scope still exists for any attempt at introducing formal models for such ideas.

We note that we are mainly concerned with the formal explication of the notion
of machine development, the explication of machine evolution being left for future work.
Also, we note that the machines with which we are concerned are computing machines,
that is, machines whose main structural, functional and behavioral features refer to the
processing of symbolic information, although we stress that we conceive them in tight in-
teraction with environments characterized by both informational and material (i.e., phys-
ical) features. We also note that we do not aim, in the present paper, to present any
foundational advances besides: (1) summarizing our view that the concepts elaborated
by Piaget for the explication of the notion of (biological and psychological) development
can support the establishment of a sensible notion of development for computing ma-
chines; and (2) showing that such notion of machine development can be given a suitable
expression in the language of Domain Theory [Gierz et al. 2003].

Development is, in any of its possible conceptualization, a growing process, where
the system increases (and reorganizes) its structure and functionality, thus requiring an
increasing number of elements and capabilities. Computing models, such as the classical
version of the Turing machine, have fixed structure and functionality, and lack adequate
forms of interaction with the environment, and are thus unable to develop (see Sec. 2.2).

Computing systems that are able to go through developmental processes, which
we call developmental machines [Costa and Dimuro 2005, Dimuro and Costa 2007], are
systems required to exchange material items with the environment where they operate,

1See [Piaget 1971] for an account of Piaget’s approach to general biological processes and structures,
including an account of the notions of biological development and evolution, and [Piaget 1985] for an
account of his approach to the psychological processes and structures involved in cognitive development.

2159

besides exchanging informational items, so that they are able to increase the number and
size of their components, thus becoming able to develop themselves, while working.

After the stages of the logical-mathematical computing models of information
processing, like Turing’s [Turing 1936], of psychological [Newell and Simon 1972] and
sociological [Demazeau and Müller 1990] models of information processing, and after
the population-based biological models of information processing [Eberhart et al. 2001],
the case should be now very clear to CS that the notion of individual development has not
yet been incorporated into the current repertoire of models of computing, and that provid-
ing for this incorporation can open an interesting array of possibilities [Costa 1993].

2.2. On the Limitations of the Classical Models of Computing Machines
This section briefly attempts to make clear that development is a notion that is not em-
bedded in the classical models of information processing machines, which underlie the
classical Theory of Computation, and that this fact impacted the intellectual tradition that
derived from that theory, keeping it far away from the problem of machine development.

Take, for instance, the classical model of the Turing machine, in any of its forms,
for example, the original form stated by Alan Turing [Turing 1936], or the form it acquired
in the 1940’s, as exposed by Kleene [Kleene 1952] or Rogers [Rogers 1967], which is
essentially the one used until now, e.g., as in [Lewis and Papadimitriou 1997].

A Turing machine is a tuple (Q, Σ, Γ, q0, F,D, ∆) where Q is a finite set of states,
Σ is a finite set of input symbols, Γ is a finite set of internal memory (tape) symbols, q0 is
the initial state in which the machine starts its operation, F is the set of final states, D is
the set of possible directions of movements of the access point of the internal memory of
the machine, ∆ is the configuration transition relation of the machine. The most important
features of such structure, which forbid the support of any kind developmental process, is
the fixed nature of its constituent sets (Q, Σ, Γ) and transition relation (∆).

Moreover, a complementary feature reinforces the structural and functional fixity
of the model, namely, that Turing machines operate as closed systems, while computing.
This is so because Turing machines, as any other classical model of computing machines,
operate by computing mathematical functions and, thus, cannot support interaction. And
in turn, this is so, due to the simple fact that a mathematical function cannot be applied
to an argument that is not well defined (and cannot even be defined if the elements of its
domain are not known).2 Lack of interaction means lack of possibility of exchange of
informational and material items with the environment and, thus, lack of possibility of
development while functioning.

2.3. An Aside: The Essential Advancement Provided by John von Neumann
(or, Why the Theory of Computation is not the Theory of the Real Computers)

Part of the condition mentioned above, that the classical model of computing machine
is a non-interactive one, was overcome by John von Neumann’s proposal of a computer

2A usual misunderstanding often arises, as a counter-argument, at this point of the exposition, namely,
that any sequence of inputs could be completely encoded in the Turing machine tape and thus the com-
putation could happen by simulating the interaction with the user/environment by using that pre-encoded
sequence of inputs. But this presumed counter-argument fails essentially because it misses the point that a
pre-encoded sequence of inputs requires that the sequence of inputs be defined before the interaction starts,
precisely the requirement that any true interaction does not impose on its participants!

2160

architecture that besides incorporating all the important features of the Turing machine
model, introduced the possibility of interaction, by allowing input and output operations
to occur interspersed within the computation.

Such possibility of interaction during computation, that is completely lacking in
any of the classical models, is the true foundation of the usability of real computers,
because it allows the computing machine to go beyond the mere computation of math-
ematical functions. In particular, it allows the computation to start and produce initial
results even before any input data or command is defined (or even known) by the person
or environment with which the computing machine is interacting.

In other words, the classical version of the Theory of Computation, developed by
Turing, Church, Kleene, Post and others, is not the theory of the real computers that we
deal with since von Neumann. It is, just, the theory of one particular way in which we are
able to use real computers, namely, for computing mathematical functions.

For the most part, programming real computers means programming a coordina-
tion task, where the actions of the computer and of its users/environment are to be orches-
trated in order that a service be performed, either by the computer to the environment, or
vice-versa. This is far beyond the scope of the intuitive (and even theoretical) goals of the
computing task, as originally understood by those that founded the Theory of Computa-
tion. It clearly goes far beyond any semantics they assigned to the word computation.3

2.4. On the Limitations of the Contemporaneous Models of Computing Machines

All of the contemporaneous models of computing machines also lack adequate support for
the notion of development. For instance, models of reactive systems expressed as calculus
of processes (e.g., [Milner 1989, Hoare 1985]), go far ahead of the classical models by
incorporating the notion of interaction, but still fall short of any developmental model, by
being organized around a fixed transition system, or a fixed set of algebraic axioms.

Development implies the creation of innovation in the rules of behavior, and fixed
sets of rules are not able to represent it adequately. Also, the interactive versions of Turing
machines, like the Persistent Turing Machine [Goldin et al. 2006], and the lazy notions of
computation [Escardo 1993], have precisely that same feature of a fixed structure, deter-
mined by fixed sets of input and output data, control mechanisms or axiomatic basis.

In fact, the mighty slogan created by Peter Wegner, that ”interaction is more pow-
erful than algorithms” [Wegner 1997] goes just half the way towards the end of the story:
only interaction understood as exchange of both informational and material items with the
environment is the full realization of the notion of interaction as it is required by CS, and
witnessed by domains like Biology, Psychology and Sociology (including Economics).

It seems that CS is ready to take this step towards a developmental model of com-
puting machines, diminishing the gap between computational models and the other mod-
els of complex systems, but to do so it must put aside the tenets that the classical version

3With the obviously possible exceptions of Alan Turing and his concerns about machine intelli-
gence, which were never explicitly incorporated into his computation-theoretic studies [Copeland 2004],
and of John von Neumann and his concerns with complex automata, which however seems to have
not overcome the limitations of his purely informational conception of the internal functioning of au-
tomata [Neumann 1966].

2161

of the Theory of Computation imposed on it, including the tenet that Peter Wegner men-
tioned, that every computation is algorithmic.

2.5. On Importance of the Piagetian Notion of Development

Biology has constructed several models of development along its history. Choosing one
to be the reference for a model of development in CS may take a long time. Such a model
should not be “too biological”, in the sense of depending excessively on the biomolec-
ular properties of the basic components of the living beings, because it may well hap-
pen that the adequate technology for the developmental machines be not “celular” in
nature (although this is one of the best bets one can make, at the moment). The model
should also not be too general, as e.g. the early “cybernetic” models of biological or-
ganisms [Wiener 1948], so as to abstract away elements that are essential to any devel-
opmental system. Nor should it be too oriented towards “information processing”, like
the classical models that served as foundation for the good old fashioned Artificial Intel-
ligence [Newell 1980, Newell 1982], so as to simply ignore the possibility and relevance
of material exchanges of the systems with their environments.

We have chosen as the conceptual basis of our work a development model that
seems to be general enough, so as to be free from commitments to biomolecular mecha-
nism, yet is detailed enough in order to capture some general structures and processes that
seem to be mandatory in any model of development of complex systems. We have chosen
the general development model that Jean Piaget abstracted from his studies of both bio-
logical [Piaget 1971] and psychological systems [Piaget 1985], and that guided his reflec-
tions about the notion of evolution in Biology and Psychology [Piaget 1979, Piaget 1980].

We refrain from summarizing here the Piagetian model of development, for the
sake of space, and content ourselves to address it as we present the results that we have
achieved in the construction of our model of developmental computing machines.

2.6. Another Aside: On the Role of the Objectivistic Notion of Machine Intelligence

Since its inception, Artificial Intelligence has oscillated between aiming at the sim-
ulation of human mind, and a more bold aim of constructing really intelligent arti-
facts [Searle 1980], often oscillating around the simpler idea of using psychological or
sociological metaphors to support the programming of computer systems. In all cases,
however, the stance adopted by the AI researcher is that of the creator of the (real, simu-
lated or metaphorical) mind of the artifact.

From the constructivist point of view [Piaget 2001], intelligence is not something
that can simply be added to a complex system, from outside. Intelligence, wherever
possible, is the result of an internal need of the system, the need for equilibrium (and
stability) in the system’s functional interaction with the environment.

A functional interaction involves more than a material interaction: the latter is
exchange of material substances and components with the environment. Functional inter-
action is exchange of actions and information. An internal need is the need of a structure
or process, that arises in a system through the operation of an internal mechanism that is
activated if and only the system is put into situations where the lack of that process or
structure menaces to jeopardize the continuity of the system’s internal functioning, and
possibly also its adaptation the environment.

2162

Intelligence is a structure that results from an adaptation process to the environ-
ment, that is, a structure that is produced by a combination of an evolution process (at the
population level) and a development process (at the individual level). Its purpose is the
regulation of the system’s functional interaction with the environment, aiming at keeping
it equilibrated and stable [Piaget 2001]. Any complex system that is able to regulate its
functional interaction with its environment, keeping itself equilibrated and stable, is nec-
essarily endowed with a structure responsible for such regulation, called its intelligence.

Computing systems are systems that are able to regulate their functional interac-
tion with the environment, so computing systems are naturally (that is, by virtue of their
constitution and organization) endowed with an intelligence, that is, its very project con-
tains that structure in it, otherwise the regulation of the functional interactions would not
be possible. We call objectivistic, or naturalistic, such point of view about the notion of
machine intelligence [Costa 1993].

It should be clear, then, that from this objectivistic viewpoint, the notion of ma-
chine intelligence is a notion that has to play a central role in any Theory of Computation
that adequately copes with real computing machines. Otherwise, the structures and pro-
cesses that regulate the functional interaction of the computing machine with its environ-
ment will be improperly abstracted away from the theoretical account of that machine.

Thus, the main purpose of Artificial Intelligence should not be cast in terms of
“creating” machine intelligences, simply because machine intelligences are already there
in every computing system, but should be cast in terms of establishing the conditions for
the evolution and development of such machine intelligences.

Moreover, given the current technological constraints that do not contemplate the
possibility of material exchanges becoming part of the functional interaction of computing
machines with their environments, it seems that Artificial Intelligence should also engage
with its specific conceptual frameworks and methodologies in this task of furthering the
underlying technology of computing systems, making it go beyond our current silicon
based one, in order to open the possibility of integrating material exchanges into the
functional interactions that are based purely on informational exchanges.

The possibility of having functional interactions based on material and infor-
mational exchanges will allow computing machines to enormously improve the quality,
strength and scope of their functional exchanges, compared with what they are able to do
presently, because it will allow the furthering of the regulation structures and processes
that constitute their machine intelligence [Costa 1993].

3. Sketch of a Development Model for Computing Machines
In this section, we briefly sketch the main elements of the model of developmental com-
puting machines that we are constructing. Most of the intuitions behind our formal notion
of developmental computing machine can be found in [Costa 1993].

The mathematical structure that we use to build our development model is
based on the so-called domain [Gierz et al. 2003], which was first introduced by
Scott [Scott 1970] to give denotational semantics to programming languages. Domains
are partially ordered sets (D,v) with some additional properties, and where the order v
relates two objects according to the degree of achievement of their construction. That

2163

is, given two objects x, y ∈ D, we say that x v y if and only if the set of features that
characterize y includes all those that characterize x and possibly some additional ones, so
that y is more complete (more developed, as we say in this context) than x.

The domains that we have chosen as the basis of our model are the so-called co-
herence spaces [Girard 1987]. A coherence space is a collection of sets ordered under
the inclusion relation, satisfying some additional requirements. Each object of the do-
main, called coherent set, is a set of tokens that satisfies a certain coherence condition.
An important property of coherence spaces is that the objects that are considered finite
(compact) from the point of view of Domain Theory are also finite from the point of view
of Set Theory, which is not always true for other kinds of domains. This is specially
important when modeling domains of finite machines, as in the case of this paper.

Every domain has a least element ⊥, which is the least developed of all objects,
and a set of total elements, which are completely developed. A chain of partial objects
x1 v x2 v . . . may be understood as a construction (development) process, where each
object is an intermediate stage of the process. Any such chain in a domain has a limit
(least upper bound), which represents the final result of such development process. When
the limit is a total object that means that no further improvement on it can be obtained by
that development process.

We note, however, that in Piaget’s conception, development is a process performed
by two kinds of operations, the so-called equilibration operations [Piaget 1985]. The first
kind of equilibration operation, called minor equilibration, contributes to development by
increasing the quality of the systems’ behavioral, organizational and functional features
without altering the so-called developmental level of the system: it expands the scope of
applications of each of the operations present in the system’s structure, in an incremental
way, without altering the operatory properties of that structure as a whole. The second
kind of equilibration operation, called major equilibration, contributes to development
by modifying substantially the system’s structure, expanding the set of operations and
relations responsible for the systems’ features, leading the system to a new developmental
level.

So, we have to formalize the development model in the following way. We con-
sider domains of possible construction stages of a machine, where each object represents
the machine in a particular possible stage of its development.

Minor equilibrations are modeled as chains of stages of machine development
within domains of stages of machine development. Each such domain represents a de-
velopment level of the overall development of the machine. Formally, we operate with
domains that are isomorphic to coherence spaces, so that stages of machine development
can be seen as coherent sets, and machine developments produced by minor equilibrations
as chains of coherent sets.

Major equilibrations are modeled as chains of domains within the ordered cat-
egory of domains of stages of machine development, where the order relation between
development levels models the relative expansion of a machine’s structure. An essen-
tial feature of a major equilibration is that every object present in the previous level of
development is preserved in the next level of development together with new elements
that may be added on the basis of new combinations of previous elements. Thus, major

2164

()B℘()B ′℘

BPowerset
operation Restriction

operation

Figure 1. An intuitive view of our formal account of the operation of major equili-
bration.

equilibrations involve a “powerset-like” operation that needs to be represented in the for-
mal model. So, coherence spaces [Girard 1987] are also adequate for the purpose of our
work, because their powerset operation, necessary for modeling the major equilibration
operation, is a functor in the category of coherence spaces and continuous functions.

In fact, major equilibrations are modeled here, and in [Dimuro and Costa 2007],
in a tentative way, by the construction process introduced in [Dimuro 1998,
Dimuro et al. 2000], where: (1) a powerset operation is applied to an initial coherence
space B, obtaining a new coherence space ℘(B), ensuring that B is embedded in it; (2)
restriction operations are performed, to guarantee that a subsystem ℘(B)′ is well behaved
with respect to certain criteria.

Figure 1 illustrates intuitively the first few major equilibrations of the domain B.
The chain of restricted domains obtained as the result of a major equilibration process is
the domain-theoretic support for the whole development process of the computing ma-
chine, which is being modeled by that structure. Each of the domains in that support is
a level of development, achieved by a major equilibration operation, and within which
minor equilibration operations occur.

4. On the Formal Presentation of the Basic Development Model
4.1. Coherence Spaces and the Minor Equilibration Process
We take the simplifying view that a computing machine, in any stage of any level of its
development, can be seen as a dynamical system m = (S, δ), where S is a set of states
and δ ⊆ S × S is a (partial) transition relation defined on S. We assume, then, that a
computing machine has a non-deterministic dynamics, in general. In the particular cases
in which δ is a (partial) function, the dynamics is deterministic. The set of all transition
relations is denoted by ∆S , while ∆̃S ⊆ ∆S denotes the set of all transition functions.

The development of a computing machine, given by a succession of minor equili-
bration operations, is a chain in the set M = {S}×∆S of stages of machine development,
partially ordered by a development relation v⊆ M×M, defined as:

∀m1 = (S, δ1), m2 = (S, δ2) ∈ M : m1 v m2 ⇔ δ1 ⊆ δ2. (1)

The structure M = (M,v, m0) is a domain in the general sense of Scott’s the-
ory [Gierz et al. 2003], as explained in Sect. 3, where m0 = (S, δ0) is the least element of

2165

the domain, representing the initial stage in the development process (δ0 = ∅).

Analogously, we obtain the domain M̃ = (M̃,v, m̃0) of stages of development of
deterministic computing machines, where M̃ = {S}×∆̃S and m̃0 = (S, δ̃0), with δ̃0 = ∅.

As discussed in Sect. 3, a coherence space is a special kind of domain:

Definition 4.1 A coherence space is a structure A = (A,⊆), where A is a of family of
(coherent) sets ordered under the inclusion relation, with the following properties: (i)
down-closure: if a ∈ A and a′ ⊆ a, then a′ ∈ A; (ii) binary completeness: if X ⊆ A
and if ∀a, a′ ∈ X : (a ∪ a′) ∈ A, then

⋃
X ∈ A.

From any coherence space A, it is possible to find its web [Girard 1987], the very
basic structure from which A originated, which is given by: | A |= ({α | {α} ∈ A},≈),
where any α is called a token and≈ is a reflexive and symmetric relation, called coherence
relation, defined between tokens by: α ≈ α′ ⇔ {α, α′} ∈ A. A coherent set a ∈ A is
then a set of pairwise coherent tokens.

In the following, we introduce representations of domains of stages of develop-
ment of (deterministic and non-deterministic) machines in terms of coherence spaces.
For that, Prop. 4.2 and Prop. 4.3 establish the isomorphisms between those two kinds of
domains, as proved in [Dimuro and Costa 2007].

Proposition 4.2 Let M̃ = {S}×∆̃S be the set of stages of development of a deterministic
machine, where ∆̃S is the set of (partial) transition functions δ̃ on S. Then: (i) D̃ =
(∆̃S,⊆) is a coherence space, with web | D̃ |= (S × S,≈), and coherence relation
≈⊆ (S×S)×(S×S) given by: (x, y) ≈ (x′, y′) ⇔ ((x, y) = (x′, y′) ∨ x 6= x′); (ii) The
structure M̃ = (M̃,v, m̃0), where v is defined analogously to (1) and m̃0 = (S, δ̃0 = ∅),
is isomorphic to D̃.

Proposition 4.3 Let M = {S} × ∆S be the set of stages of development of a non-
deterministic machine, where ∆S be the set of (partial) transition relations δ on S.
Then: (i) D = (∆S,⊆) is a coherence space, with the trivial coherence relation
≈⊆ (S × S) × (S × S), such that (x, y) ≈ (x′, y′), for all (x, y), (x′, y′) ∈ S × S.
(ii) M = (M,v, m0), with M = {S} ×∆S , m0 = (S, δ0 = ∅) and v as given in (1), is
isomorphic to D.

In the following, we shall abuse the notation and refer to both domains of stages of ma-
chine development M and M̃ as coherence spaces.

However, as detailed in [Piaget 1985], the operations of minor and major equili-
brations should be analyzed in terms of a set of internal and external development factors
(e.g., some condition of behavior enabling, some functional requirement, etc.) that deter-
mine the way they work.

So, in our model, we assume that the universe of M is restricted by a set I of
internal development factors. Determining the family of developmental stages that are
admissible for I , we could define a developmental structure (MI ,vI , m0), where MI

is the subset of stages of machine development that are compatible with I , and vI ⊆
MI ×MI preserves the compatibility character during the development process. I can be
seen as a set of criteria for the internal consistency of the admissible structures of M.

2166

Similarly, the influence of the external environment must be considered through
a set of external development factors E. I and E lead the development process in M
towards a final, total developmental stage, which is the limit of the development chain in
that domain.

A formal structure able to model in a better way the domain of development
stages of a computing machine (at a given development level) would be, thus, a struc-
ture (MI,E,vI,E, m0) , where MI,E is the subset of development stages of M that are
compatible with both I and E, and the development relation vI,E respects both types of
development factors.

At this point, one sees that the domain of development stages presents a double (in-
ternal and external) structure. Then, formally, it is necessary to deal with the bi-structured
coherence spaces [Dimuro 1998] in order to represent those domains:

Definition 4.4 A bi-structured coherence space is a system A = (A; ΣI
A; ΣE

A), with sig-
nature 〈µI ; µE〉, where: (i) A 6= ∅ is the universe of a coherence space; (ii) ΣI

A = (⊆A
, {gAl

: AµI(l) → A}l∈L) is the internal structure of A, determined by the construction
order (the inclusion relation ⊆A defined on A), together with functions gAl

, which repre-
sent the internal factors of the construction process, with arities given by µI : L → N;
(iii) ΣE

A = ({fAk
: AµE(k) → A}k∈K) is the external structure of A, determined by

the functions fAk
, which represent the external factors of the construction process, with

µE : K → N.

The category BSCS has bi-structured coherence spaces as objects and strong
homomorphisms as morphisms [Dimuro 1998].

Given that the development factors may be defined as functions on M = {S}×∆S ,
it is possible to take a domain M = (M,v, m0) of stages of development and make
explicit those factors in its structure.

Let MI,E = (M; ΣI
M; ΣE

M) be the extended domain, where ΣI
M is the internal

structure (the development order ⊆ and the internal development factors I), and ΣE
M is

the external structure (the external development factors E). Then, considering the iso-
morphism between the domain M of stages of machine development and the coherence
space D = (∆S;⊆), stated in Prop. 4.2, it holds that the bi-structured domain MI,E =
(M; ΣI

M; ΣE
M) is isomorphic to the bi-structured coherence space D = (∆S; ΣI

∆S
; ΣE

∆S
).

For our purpose, however, we need to get the bi-structured system M∗
I,E =

(MI,E; ΣI
MI,E

; ΣE
MI,E

), where the subset MI,E ⊆ M has only developmental stages com-
patible with both I and E.

For that, we use the representation of bi-structured domains as bi-structured co-
herence spaces, and define in the following the notion of a sub-system of a bi-structured
coherence space which is well-behaved with respect to the internal and external factors.

Let A = (A; ΣI
A; ΣE

A) and B = (B; ΣI
B; ΣE

B) be bi-structured coherence spaces,
both of the same signature 〈µI ; µE〉, as introduced in Def. 4.4.

Definition 4.5 A is said to be a sub-system (restricted by a function p : B → B) of B,
denoted by A = p(B), if and only if: (i) A = p[B] = {p(b) | b ∈ B}; (ii) ∀l ∈ L : gAl

=
gBl

|AµI (l) , i.e., gAl
is the restriction of gBl

to A; (iii) ∀k ∈ K : fAk
= fBk

|AµE(k) , i.e., fAk

is the restriction of gBk
to A.

2167

We observe that the sub-system A mentioned in Def. 4.5 is not necessarily a bi-
structured coherence space.

The operation of closure, with respect to a given sub-system p(A), of a function
hAi

= Aµ(i) → A that belongs to either the internal or the external structure of the
bi-structured coherence space A completes the graph of the function, ensuring that the
function is well-behaved in that sub-system (the image of every coherent set is a coherent
set) [Dimuro et al. 2000].

The closure of hAi
= Aµ(i) → A, defined on a bi-structured coherence space

A, with respect to a sub-system p(A), itself closed for the intersection operation, is the
function ĥ

p[A]
Ai

: Aµ(i) → A, defined by:

ĥ
p[A]
Ai

(X1, . . . , Xµ(i))=
{ ⋂

{Y ∈ p[A] | hAi(X1, . . . , Xµ(i)) ⊆ Y } if X1, . . . , Xµ(i) ∈ p[A]µ(i),

hAi(X1, . . . , Xµ(i)) otherwise.

Given a domain B and an operation p on its objects, we call regulation of B, with
respect to p, the domain operation Rp that closes every internal and external function of
B with respect to the sub-system p[B].

Definition 4.6 The bi-structured coherence space A is obtained by regulation from the
bi-structured coherence space B, with respect to an operation p : B → B, denoted by
A = Rp(B), if and only if: (i) A = B; (ii) ∀l ∈ L : gAl

= ĝ
p[B]
Bl

; (iii) ∀k ∈ K : fAk
=

f̂
p[B]
Bk

; where ĝ
p[B]
Bl

, f̂
p[B]
Bk

are the closures of gBl
and fBk

with respect to p[B].

Let MI,E = (M; ΣI
M; ΣE

M) be the bi-structured coherence space that represents a
given level of machine development, and M∗

I,E = (MI,E; ΣI
MI,E

; ΣE
MI,E

) be the domain of
the development stages that are admissible for the development factors I and E.

Finally, to make our model fully compatible with Piaget’s notion of development,
we require that the development factors be such that M∗

I,E is a sub-system of MI,E ,
restricted by the operation ∗ : M → M, such that ∗[M] = MI,E (that is, ∗ restricts the
universe M to its part MI,E that is admissible to both I and E). Also, all internal and
external functions of MI,E must be well-behaved in MI,E , that is, MI,E be obtained by
regulation with respect to the operation ∗.

Formally, we state the following requirements for the development factors:
(i) M∗

I,E is a subsystem of MI,E that is itself a coherence space; and
(ii) MI,E = R∗(MI,E), that is, MI,E is a fixpoint of R∗.

4.2. Coherence Space Constructors and the Major Equilibration Process
As explained in Sect. 3, a total stage of machine development, in a given level, represents
a fully developed machine, with respect to the level of development (bi-structured coher-
ence space) that is being considered. Only a major equilibration operation can embed
the developmental machine into a higher-level bi-structured coherence space (the domain
corresponding to a higher level of development) that allow further developments.

Operations of major equilibration can be modeled as coherence space transforma-
tions performed simultaneously on the universe and on the internal and external struc-
tures (called global domain transformations in [Dimuro 1998]). Those transformations
are functors in the category BSCS.

2168

The constructors of Coherence Spaces [Girard 1987] may be extended to bi-
structured coherence spaces. Some of then may have interesting interpretations when
acting on a developmental machine domain.

For example, let D = (∆S; ΣI
∆S

; ΣE
∆S

) and D′ = (∆S′ ; ΣI
∆S′ ; Σ

E
∆S′) be the bi-

structured coherence spaces isomorphic to developmental machines MI,E and M′
I,E . Con-

sidering the tensor operator ⊗ applied to D and D′, one obtains a bi-structured coherence
space D⊗D′ determined by the web ((S × S)× (S ′ × S ′),≈⊗), with

((x1, y1), (x′1, y
′
1)) ≈⊗ ((x2, y2), (x′2, y

′
2)) ⇔ ((x1, y1) ≈S (x2, y2) ∧ (x′1, y

′
1) ≈S′ (x′2, y

′
2)),

where ≈S and ≈S′ are the coherence relations defined on the original webs (S × S,≈S)
and (S ′ × S ′,≈S′), respectively (see Prop. 4.2).

The domain MI,E ⊗ M′
I,E constitutes a kind of “grid” of two developmental ma-

chines (i.e., two machines operating in parallel, with local transition functions).

In the following, let A = (A; ΣI
A; ΣE

A),B = (B; ΣI
B; ΣE

B) ∈ BSCS have both
the same signature 〈µI ; µE〉, as introduced in Def. 4.4. The powerset constructor of bi-
structured coherence spaces is the main constructor of our model, since it supports the
major equilibration operation, as explained in Sect. 3. This operator generates a new
coherence space, whose universe is the powerset of the original one, so that the original
universe is embedded in the new universe, and also extends the inclusion order, as well as
the internal and the external functions to operate over sets of coherent sets.

Definition 4.7 A powerset constructor is a map t ≡ (tu; tΣI
; tΣE

) : BSCS → BSCS,
defined by tA = (tuA; tΣI

ΣI
A; tΣE

ΣE
A), where:

(i) tu is a powerset universe constructor such that tuA = ℘(A);
(ii) tΣI = 〈t⊆, tIF 〉 is the internal structure constructor, determined by the order construc-

tor t⊆ and the internal function constructor tIF , such that 〈t⊆, tIF 〉ΣI
A = (t⊆ ⊆A

, tIF{gAl
: AµI(l) → A}l∈L), where:

(a) t⊆ ⊆A=⊆℘(A), that is, t⊆ transforms the inclusion relation defined on A into
the one defined on tuA = ℘(A), and
(b) ∀l ∈ L, gAl

∈ [Aµin(l) → A] : gAl
7→ (tIF g)(tuA)l

∈ [tuAµin(l) → tuA], where
(tIF g)(tuA)l

is the natural extension of gAl
to tuA: (tIF g)(tuA)l

(X1, . . . , XµI(l) =
{gAl

(x1, . . . , xµI(l)) ∈ A | x1 ∈ X1, . . . , xµI(l) ∈ XµI(l)}, for each x1, . . . , xµI(l) ∈
A and X1, . . . , XµI(l) ∈ tuA;

(iii) tΣE = 〈tEF 〉 is an external structure constructor, determined by the external func-
tion constructor tEF , such that 〈tEF 〉ΣE

A = tEF {fAk
: AµE(k) → A}k∈K , where

∀k ∈ K, fXk
∈ [XµE(k) → X] : fXk

7→ (tEF f)(tuX)k
∈ [tuXµex(k) → tuX], with

(tEF f)(tuX)k
being the natural extension of the function fXk

to tuX, whose defini-
tion is analogous to (ii)(b).

Let D = (∆S; ΣI
∆S

; ΣE
∆S

) be the bi-structured coherence space that is iso-
morphic to a domain MI,E = (M; ΣI

M; ΣE
M) of a developmental machine. Applying

the powerset constructor to D, the resulting bi-structured coherence space ℘(D) =
(℘(∆S); ΣI′

℘(∆S); Σ
E′

℘(∆S)), where ΣI′

℘(∆S) and ΣE′

℘(∆S) are the internal and external func-
tions generated in the construction, has a web given by | ℘(D) |= (∆S,≈), where ≈ is
the trivial coherence relation, that is, δ ≈ δ′, for all δ, δ′ ∈ ∆S . Observe that ℘(D) repre-
sents (is isomorphic to) the powerset-like domain ℘(MI′,E′) = ({S}×℘(∆S); ΣI′

M; ΣE′

M).

2169

The main feature of ℘(MI′,E′) is that its objects are dynamical systems composed
by a family of transition functions behaving as a set of functionally independent machines.
Also, ℘(MI′,E′) incorporates all the stages of development that belong MI,E (the previous
development level), since MI,E is embedded in ℘(MI′,E′).

Definition 4.7 gives a formal basis for the definition of the operation of major equi-
libration. The following definition gives the conditions under which major equilibrations
operate: from a bi-structured coherence space B it is generated the powerset bi-structured
coherence space tB, which is regulated with respect to an operation p

Definition 4.8 Let tB = (tuB; tΣI
ΣI

B; tΣE
ΣE

B) be the bi-structured coherence space ob-
tained from B by the application of the powerset constructor t ≡ (tu; tΣI

; tΣE
), and

consider a function p : tuB → tuB. A bi-structured coherence space A is said to be
obtained from B by a major equilibration regulated by p, denoted by B Vp A, if and only
if A = Rp(tB), that is, A is obtained by the regulation of tB with respect to p.

Observe that from Def. 4.8 it follows that B is embedded in A. Also, A is a
bi-structured coherence space, whose internal and external structures are well defined.
Besides, if B Vp A then p(A) = p(tuB) is closed for the internal and external functions
of ΣI

A and ΣE
A , respectively (see [Dimuro 1998]).

In the case of a major equilibration of computing machines, the relevant p opera-
tion is ∗ : ℘(MI,E) → ℘(MI,E), such that ∗[℘(MI,E)] = ℘(MI,E)I′,E′ (that is, ∗ restricts
the universe ℘(MI,E) to its part ℘(MI,E)I′,E′ that is admissible to both I ′ and E ′, where
I ′ and E ′ are the internal and external factors in the powerset-like domain, generated by
the powerset constructor). Then, given a machine MI,E in the final stage of a certain
level of development, the result of its major equilibration is the machine MI′,E′ such that
MI,E V∗ MI′,E′ .

5. Conclusion: On the Future Developments of the Development Model
Further work on the formalization of the notion of developmental computing machines
is clearly still necessary. We need to internalize the mechanism of machine development
in the developmental machines themselves, by way of some reflection procedure, so that
the machine can control itself its own development by controlling the activation of the
development factors. We need to make clear the connection of the notion of development
to the notion of evolution of populations of computing machines. We need to define the
means (relationships and operations) that will allow the developmental machine to interact
with the environment, in order to acquire the necessary elements for its development.

6. Post Scriptum: On the Grand Challenge No. 4
The presentation of the Grand Research Challenge No. 4 points out (correctly, it seems
to us) that the recent progress in the area of Molecular Biology may inspire new tech-
nological developments in CS. However, following the tenets of the classical Theory of
Computation, the Challenge states that “the theoretical bases of CS are independent of
concrete machines”, thus apparently meaning that even the (presently hypothetical) bio-
molecular computers would fall under the conceptual framework of that theory.

Consistently, thus, the statement of the Grand Challenge No. 4 introduces as issues
relevant for that challenge essentially issues of a technical or methodological nature, that
is, issues like design techniques, new programming languages, etc.

2170

We remark that going from “silicon”, that is, from a technology only able to pro-
duce non-developmental machines, to “molecular biology”, that is, to a technology able
to produce developmental machines, requires much more from CS than mere innovations
at the methodological or technical levels.

A technological transition such as that requires a deep epistemological revision of
the foundational concepts of the area. Developmental machines can only be adequately
coped with at the theoretical level with a conceptual framework where notions of auton-
omy, growth, development, need, drive, organization, evolution, adaptation, cognition,
affect, awareness, will, sociality, values etc., are not thought of ex post, but are put right
at the beginning at the most fundamental level of its theoretical construction.

Biology should not be taken by CS just as a source of technological resources. It
should be taken also as a model of epistemological construction, whose conceptual and
theoretical issues should be brought to the domain of computing machines, and suitably
instantiated there. The initial work on the identification of organizational mechanisms
empowered by the abstract machines of systems biology [Cardelli 2005], for instance,
constitutes a beautiful example of the kind of work that may inspire such instantiation.

Acknowledgments. This work is partially supported by CNPq. The authors are very grateful to
the referees for their valuable comments, which helped us to improve the paper.

References

Cardelli, L. (2005). Abstract machines of systems biology. Transactions on Computa-
tional Systems Biology III, LNBI 3737:145–168.

Copeland, B. J., editor (2004). The Essential Turing – The ideas that gave birth to the
computer age. Oxford University Press.

Costa, A. C. R. (1993). Machine Intelligence: sketch of a constructivist approach. PhD
thesis, CPGCC/UFRGS, Porto Alegre. (in Portuguese).

Costa, A. C. R. and Dimuro, G. P. (2005). Interactive computation: Stepping stone in the
pathway from classical to developmental computation. ENTCS, 141(5):5–31.

Demazeau, Y. and Müller, J.-P., editors (1990). Decentralized Artificial Intelligence. El-
sevier, Amsterdam.

Dimuro, G. P. (1998). A Global Constructive Representation of Second Order Ordered
Systems in Bi-Structured Interval Coherence Spaces, with an application in Interval
Mathematics. PhD thesis, CPGCC/UFRGS, Porto Alegre. (in Portuguese).

Dimuro, G. P., Costa, A. C. R., , and Claudio, D. M. (2000). A coherence space of rational
intervals for a construction of IR. Reliable Computing, 6(2):139–178.

Dimuro, G. P. and Costa, A. C. R. (2007). Toward a domain-theoretic model of develop-
mental machines. In Kent, F., Löwe, B., and Sorbi, A., editors, CiE 2007: Computation
and Logic in the Real World, Quaderni del Dipartimento di Scienze Matematiche e In-
formatiche ’Roberto Magari’ of the University of Siena.

Eberhart, R., Shi, Y., and Kennedy, J. (2001). Swarm Intelligence. Morgan Kaufmann,
Amsterdam.

2171

Escardo, M. H. (1993). On lazy natural numbers with applications to computability theory
and functional programming. SIGACT News, 24(1):60–67.

Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., and Scott, D. S.
(2003). Continuous Lattices and Domains. Cambridge University Press, Cambridge.

Girard, J. Y. (1987). Linear logic. Theoretical Computer Science, 50:1–102.

Goldin, D., Smolka, S., and Wegner, P., editors (2006). Interactive Computation: The
New Paradigm. Springer-Verlag, New York.

Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall.

Kleene, S. C. (1952). Introduction to Metamathematics. D. van Nostrand, New York.

Lewis, L. and Papadimitriou, C. (1997). Elements of the Theory of Computation. Prentice-
Hall, NJ.

Milner, R. (1989). Communication and concurrency. Prentice-Hall, Englewood Cliffs.

Neumann, J. v. (1966). The Theory of Self-Reproducing Automata. University of Illinois
Press, Urbana.

Newell, A. (1980). Physical symbol systems. Cognitive Science, 4:135–183.

Newell, A. (1982). The knowledge level. Artificial Intelligence, 18:87–127.

Newell, A. and Simon, H. (1972). Human Problem-solving. Prentice-Hall, E. Cliffs.

Piaget, J. (1971). Biology and Knowledge. Edinburgh University Press.

Piaget, J. (1979). Behaviour and Evolution. Routledge and Kegan Paul.

Piaget, J. (1980). Adaptation and Intelligence. University of Chicago Press.

Piaget, J. (1985). The Equilibration of Cognitive Structures: The Central Problem of
Intellectual Development. University of Chicago Press.

Piaget, J. (2001). The Psychology of Intelligence. Routledge and Kegan Paul.

Rogers, H. (1967). Theory of Recursive Functions and Effective Computability. McGraw-
Hill, New York.

Scott, D. S. (1970). Outline of a mathematical theory of computation. Tech. Monogr.
PRG-2, Oxford, Oxford Univ. Comp. Lab.

Searle, J. R. (1980). Minds, brains, and programs. The Behavioral and Brain Sciences,
3(3):417–424.

Turing, A. M. (1936). On computable numbers, with an application to the entschei-
dungsproblem. Proc. London Math. Soc., 42:230–265.

Wegner, P. (1997). Why interaction is more powerful than algorithms. Communications
of the ACM, 40(5):80–91.

Wiener, N. (1948). Cybernetics - or, control and communication in the animal and the
machine. MIT Press, Cambridge. (2nd ed.,1961).

2172

