/\;/_,_\ Anaiz do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- T e SEMISH - XX Seminario Integrado de Software e Hardware Rio de Jansiro, R.J

Em busca de solu¢des em nivel de sistema para tecnologias
néo confiaveis

Carlos A. L. Lisboa, Luigi Carro

Instituto de Informatica — Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 — 91.501-970 — Porto Alegre — RS — Brazil

{calisboa, carro}@inf.ufrgs.br

Abstract. New technologies, providing faster and smaller devices, will lead to
embedded devices with billions of components. However, transient pulses
caused by radiation will last longer than the clock cycle of the circuits,
thereby precluding the use of several current mitigation techniques, such as
those based on time redundancy. Traditional hardware level techniques using
space redundancy usually impose heavy area and power penalties,
unacceptable for embedded applications. As an alternative to cope with this
challenging scenario, this paper proposes the use of application specific,
algorithm level mitigation techniques, able to detect errors caused by
transient faults with reduced performance overhead. Examples of such
techniques for two applications widely used in the embedded systems world,
matrix multiplication and sorting, are presented and compared with other
techniques in order to confirm the potentiality of the proposed approach, and
a path towards the generalization of the proposed approach is suggested.

Resumo. Novas tecnologias, que oferecem dispositivos mais rapidos e
menores, viabilizardo a producdo de sistemas embarcados com bilhdes de
componentes. Entretanto, pulsos transitorios provocados por radiacdo irdo
ter duracdo maior do que o ciclo de reldgio dos circuitos, descartando em
decorréncia disto o0 uso de diversas técnicas de mitigacdo de erros atuais, tais
como aquelas baseadas em redundancia temporal. Técnicas tradicionais em
nivel de hardware e que usam redundancia espacial normalmente impdem
pesadas penalidades em termos de d&rea e poténcia, caracteristicas
inaceitaveis para aplicacbes embarcadas. Como uma alternativa para
enfrentar tal cenario desafiador, este trabalho prop6e o uso de técnicas de
mitigacdo em nivel de algoritmo, especificas para cada aplicacdo, capazes de
detectar erros causados por falhas transitrias com sobrecarga de
desempenho reduzida. Exemplos de tais técnicas para duas aplicacdes
amplamente utilizadas em sistemas embarcados, multiplicacdo de matrizes e
classificacdo, sdo apresentadas e comparadas com outras técnicas, para
confirmar a potencialidade da abordagem proposta, e um caminho para
generalizacdo da aplicacao da abordagem proposta € sugerido.

1. Introducéo

Os dispositivos mais rapidos oferecidos por novas tecnologias permitem a construgédo
de circuitos com tempos de ciclo cada vez mais curtos, enquanto a duracdo de pulsos
transitorios devidos a radiacdo ndo varia na mesma proporcdo. Isto vai levar a

2173

/\;/_,_\ Anaiz do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- RN SEMISH - XXXV Seminario Integrado de Software e Hardware

Rio de Janesiro, RJ

ocorréncia de pulsos transientes que durardo mais do que o tempo de ciclo dos circuitos,
impossibilitando o uso de diversas técnicas de mitigacdo de erros temporarios de baixo
custo, principalmente aquelas baseadas em redundancia temporal, tais como [Anghel
2000, Mitra 2005].

O uso de redundancia espacial como a solucdo preferencial para fazer frente a
erros temporarios neste novo cendrio poderia ser uma alternativa possivel. Entre estas, a
redundancia modular tripla (TMR) [Johnson 1994] é uma boa candidata, porque mesmo
se um dos modulos é afetado por um transitério de longa duragdo, os outros dois
modulos estardo trabalhando adequadamente em paralelo, assegurando resultados
corretos. TMR tem um ponto fraco: falhas que afetem o votador podem levar a saidas
com erro, e para evitar este problema o uso de um votador anal6gico foi proposto em
[Schiler 2005, Lisboa 2005]. Entretanto, uma outra fraqueza da técnica TMR é que as
penalidades que ela impde, em termos de area e energia, sdo superiores a 200%, o que
torna invidvel seu uso em sistemas onde energia € um recurso escasso, tais como SoCs
para sistemas embarcados.

Neste trabalho, propomos o uso de abordagens em nivel de sistema para fazer
frente aos desafios impostos pelos pulsos transitorios de longa duragdo (TLDs)
previstos como um dos principais problemas para sistemas fabricados usando
tecnologias futuras. Na Secdo 2 ¢é explicado o raciocinio que nos levou a previsao de
TLDs. Na Secdo 3, técnicas propostas para a mitigacdo de erros causados por falhas
transientes sao revisadas e as razdes pelas quais algumas delas ndo terdo mais eficacia
neste novo cenario sdo discutidas. A Secdo 4 propde o0 uso de técnicas especificas para
cada aplicacdo, implementadas em nivel de algoritmo com possivel intervencdo do
compilador, como uma abordagem possivel para detectar erros causados por TLDs.
Dois estudos de caso nos quais esta abordagem é usada sdo apresentados como
exemplos e um caminho possivel em direcdo a generalizacdo para outros algoritmos da
abordagem adotada é proposto. A Se¢do 5 resume as conclusfes e indica trabalhos
futuros nesta pesquisa.

2. Pulsos transitérios de longa duracéo (TLDs)

A variacdo da duracdo dos pulsos transitérios entre diversas tecnologias foi
correlacionada com o tempo de ciclo dos circuitos em Lisboa 2007, que mostrou que
para as futuras tecnologias, tais como a de 32 nm, pode-se prever que até mesmo
particulas com valores de transferéncia linear de energia (LET) modestos irdo produzir
transitdrios que durardo mais do que o tempo de ciclo previsto para 0s circuitos. Aquele
estudo é resumidamente revisado e entdo complementado aqui, com a inclusdo de dados
mais recentes.

No estudo sobre a producéo e propagacdo de SETs em ldgica de alta velocidade
apresentado em Dodd 2004, a variacdo da largura do pulso transitério de acordo com a
tecnologia foi prevista para quatro diferentes tecnologias (0,25 um, 0,18 um, 0,13 um e
0,1 um) e os resultados obtidos para particulas com LET variando até 70 MeV-cm?/mg,
para processos com substrato (bulk), sdo mostrados na Figura 1(a).

Além do fato j& esperado de que a largura do pulso aumenta com o aumento da
transferéncia de energia linear (LET) da particula, este grafico revela outras
informagBes importantes. Primeiramente, verifica-se que, para particulas de baixa

2174

!I,'"\.L__,._.\ Anaiz do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- T e SEMISH - XX Seminario Integrado de Software e Hardware Rio de Jansiro, R.J

energia, a largura do pulso transitdrio € quase a mesma para todas as quatro tecnologias
incluidas no estudo, ou seja, apesar da maior velocidade dos novos dispositivos, para
particulas com aquele nivel de energia a duracdo dos transitérios ndo varia de forma
significativa de uma tecnologia para outra.

Além disso, analisando o lado direito da Figura 1(a) e extraindo os valores de
largura de pulso do grafico, pode-se verificar que a variacdo maxima na largura dos
pulsos transitérios (para particulas com LET de 70 MeV-cm?/mg) é de 948 ps (para a
tecnologia de 0,25 um) para 694 ps (para a tecnologia de 0,1 um), ou seja, um fator
méaximo de reducéo de 0,73. Para 0 mesmo valor de LET, a varia¢do da largura do pulso
transitorio entre as tecnologias de 0,18 um e 0,13 um é de 902 ps para 769 ps, com um
fator de reducdo de apenas 0,85. Em contraste, para as mesmas tecnologias de 0,18 um
e 0,13 um, o fator de reducdo do atraso de propagacdo de um inversor entre estas
tecnologias, medido através de simulacdo, € de aproximadamente 0,33 (ver Tabela 2).
Estes dados mostram claramente que a reducdo do atraso de propagacdo entre
tecnologias € muito mais agressiva do que a da largura do pulso transitério provocado
por radiacao e, portanto, é muito provavel que uma falha transitéria poderd durar mais
do que um ciclo de relégio, como sera mostrado adiante.

1000.0

2 —=— 250nm -
—@— 0.25 um A . 1000 41 s 180nm f’__./f" &
80001 | —m— 018 um s |2 a— 70nm A
7] —A— 013 um ! / > Bulk .
E §00.0 - —¥— 0.1 um ./ ﬁ - . _a—o*®
g A/' = R £
£ 100 4 AT o ;
T 4000 ‘(’/f; % A7 L ;ﬁd,&_,____&_«s-aa
17} S e
2 /*f;a < | 1~ TS0l —o—250nm
~ 2000 AN Bulk (= &) —o—130nm
‘ﬁﬁ ' —&— T0nm
cavd 10 ;
00— ¥ : 1 10 100
0 20 40 60 &0
LET (MeV-cm’/mg) Effective LET (MeVecm?/mg)
_ @ o (b)
Figura 1. Variacdo da largura de pulsos transitérios entre diferentes
tecnologias

Mais recentemente, em Ferlet-Cavrois 2006, a largura do pulso transitorio que
se propaga, para dispositivos fabricados usando processos com substrato e com silicio
sobre isolante (SOI), em diferentes tecnologias, foi medida através de simulacdo usando
uma cadeia de inversores em série, com resultados semelhantes, mostrados na Figura
1(b). Este trabalho analisou somente trés tecnologias (250 nm, 180 nm e 70 nm) e
também ndo fez correlagdo com a variacdo do tempo de ciclo nem explorou as
consequiéncias desta descoberta.

Tabela 1. Larguras de transitérios prevista (ps)

Tecnologia (hm) 180 130" 100" 70?

10 MeV-cm?’/mg 140 210 168 170

20 MeV-cm’/mg 277 369 300 240
(1) dados de Dodd 2004 (2) dados de Ferlet-Cavrois 2006

2175

f N Anaiz do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH - XX Seminario Integrado de Software e Hardware Rio de Janeiro, R

Alguns valores de largura de transitorios foram extraidos manualmente das
Figuras 1(a) e 1(b) e reunidos na Tabela 1, que mostra as larguras de transitorios
previstas para as tecnologias de 180 nm, 130 nm e 100 nm estudadas em Dodd 2004 e
para a tecnologia de 70 nm estudada em Ferlet-Cavrois 2006, para particulas com LET
de 10 e 20 MeV-cm?/mg, respectivamente.

Para comparar a variacdo das larguras de transientes mostradas na Tabela 1 com
aquela do tempo de ciclo dos circuitos através de diferentes tecnologias, medimos o
atraso de propagacdo para diversas cadeias de inversores em série, em quatro
tecnologias distintas. As medi¢des foram feitas usando a ferramenta HSPICE [Synopsis
URL] e os parametros para todas as tecnologias foram obtidos do sitio na Web de
Predictive Technology Model [PTM URL]. O nimero de inversores em cada cadeia,
bem como os atrasos de propagacdo medidos na simulagcdo para cada tecnologia estdo
mostrados na Tabela 2.

Tabela 2. Variacdo do tempo de propagacédo entre diferentes tecnologias (ps)

Tecnologia (nm) 180 130 90 32

1 inversor 49,85 16,78 13,26 10,14
cadeia de 4 inversores 202,65 63,81 48,93 33,74
cadeia de 6 inversores 304,55 95,14 72,66 49,02
cadeia de 8 inversores 406,45 126,45 96,39 64,30
cadeia de 10 inversores | 508,35 157,75 120,15 79,58

Os resultados na Tabela 2 mostram que o atraso de propagacao é reduzido em
aproximadamente 3,2 vezes da tecnologia 0,18 um para a tecnologia 0,13 um e de 5 a
6,4 vezes, dependendo do nimeros de inversores na cadeia, entre as tecnologias 0,18
um e 32 nm. Estes fatores de redugdo sdo muito maiores do que a reducdo méxima
prevista em [7, 8] para a largura dos pulsos transitorios entre tecnologias diferentes,
analisada acima, que ¢ de apenas 1,37 vezes.

Na Figura 2, as larguras previstas para pulsos transitérios para as quatro
tecnologias mostradas na Tabela 1 foram combinadas com o grafico de linhas que
mostra a reducdo do atraso de propagacdo entre tecnologias. As duas barras verticais
mais a esquerda mostram a largura do pulso transitério prevista para particulas com
LET de 20 MeV-cm?/mg, para as tecnologias 0,18 pm e 0,13 um.

600 4
S00 ‘\
400 :

300 4

Atraso (ps)

200 +

100 +

180nm 130nm 90nm 32nm

Tecnologia

Figura 2. Variagcdo do atraso de propagacdo x largura de pulsos transitorios
entre diferentes tecnologias

2176

/\;/_,_\ Anaiz do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- T e SEMISH - XX Seminario Integrado de Software e Hardware Rio de Jansiro, R.J

A terceira e a quarta barras verticais correspondem as tecnologias 0,1 um e 70
nm, para as quais ndo medimos os atrasos de propagagédo. O posicionamento horizontal
destas duas barras no gréfico foi feito por interpolacdo, considerando que a variagao do
atraso da tecnologia de 0,13 um para a de 32 nm é aproximadamente linear.

A duracéo de transitérios devidos a particulas com LET de até 20 MeV-cm?/mg,
mostrada na Figura 2, é suficiente para demonstrar o que pretendemos — nas tecnologias
futuras os transitorios irdo durar mais do que o ciclo de reldgio esperado; entretanto,
como se pode ver pelas Figuras 1(a) e 1(b), podem ocorrer transitorios de duragdo bem
maior (acima de 1000 ps) para particulas com energia mais elevada.

As conclusdes tiradas da Figura 2 se aplicam somente a dispositivos fabricados
em processos com substrato, e sdo mencionadas somente de forma implicita em Dodd
2004, quando os autores afirmam que, para dispositivos com silicio sobre isolante, “a
variacdo do tamanho dos dispositivos claramente induz um decréscimo das distribuicdes
tanto da carga coletada quanto da largura do transitorio”, enquanto “se considerarmos
dispositivos com substrato, ndo existem uma tendéncia dbvia de variacdo”.

O fato do fator de variacdo da largura do pulso entre tecnologias ser muito
menor do que o fator de aceleracdo da velocidade entre diferentes geraces de
tecnologias aponta para a necessidade um novo paradigma a ser considerado no projeto
de sistemas tolerantes a falhas para tecnologias futuras: pulsos transientes durando mais
de um ciclo de rel6gio dos circuitos. Entretanto, como € mostrado na préxima se¢édo, a
maioria das técnicas existentes para mitigagdo de erros temporarios ndo é capaz de
suportar tais TLDs.

3. Revisdo de técnicas de mitigacéo de erros temporarios

Muitas técnicas diferentes para mitigar erros temporarios foram propostas nos ultimos
anos. Elas podem ser grosseiramente classificadas como segue: técnicas baseadas em
hardware (usando redundancia temporal, redundancia espacial e circuitos verificadores
ou I-IPs), técnicas baseadas em software (usando duplicacdo ou verificacdo de
assinaturas) e técnicas hibridas.

Técnicas baseadas em hardware usando redundancia temporal fazem a
verificacdo das saidas do circuito através da comparacdo de seus valores em instantes
diferentes separados por um intervalo de tempo fixo. Na medida em que a duracdo dos
pulsos transitorios aumenta, a duragdo deste intervalo, que é uma penalidade imposta a
cada ciclo de operacdo, implicara em sobrecargas de desempenho intoleraveis.
Exemplos destas técnicas sdao [Anghel 2000, Mitra 2005]. Também em [Austin 2004] o
mesmo conceito € usado para verificar as saidas de um circuito e calibrar a taxa de erros
temporarios através do ajuste dinamico da voltagem, visando reduzir o consumo. A
aplicacdo desta técnica também serd afetada de forma negativa pela ocorréncia de
TLDs.

O grupo de técnicas baseadas em redundancia espacial € o que mais
provavelmente oferecerd protecdo, mesmo na presenca de TLDs, porque, considerando
0 modelo de falha Unica (que ainda é o modelo dominante [Rossi 2005]), somente uma
das copias do circuito seria afetada pelo TLD, enquanto a(s) outra(s) forneceria(m)
resultados corretos. No caso da duplicacdo com comparacdo [Lima 2003], isto
permitiria a detecgdo do erro causado pelo TLD. No caso da redundéancia modular

2177

/\;/_,_\ Anaiz do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- T e SEMISH - XX Seminario Integrado de Software e Hardware Rio de Jansiro, R.J

tripla, além de detectar o erro o circuito seria capaz de escolher o resultado correto,
descartando o resultado errado causado pelo TLD. Uma outra abordagem que se baseia
no modelo de falhas simples, na qual o caminho critico de circuitos combinacionais €é
robustecido através da duplicacdo de portas logicas e erros temporarios sdo detectados
através da comparacdo das saidas duplicadas, € proposta em [Nieuwland 2006].
Entretanto, as penalidades em acréscimo de area e, principalmente, em aumento de
consumo impostas por estas solu¢des sdo uma grande preocupacéo, principalmente para
sistemas embarcados.

O terceiro grupo de técnicas baseadas em hardware se apoia no uso de circuitos
verificadores ou IPs de infra-estrutura (I-1Ps) para verificar os resultados produzidos
pelo circuito a ser protegido. Caso os resultados calculados pelo circuito verificador ou
pelo I-1P sejam diferentes daqueles produzidos pelo circuito principal, eles ativam um
indicador de erro que dispara um processo de recomputacdo ou, como em [Austin
1999], usam o valor calculado pelo verificador, considerando que este esta sempre
correto (0 que é uma suposicao arriscada). Estas abordagens usualmente implicam em
uma sobrecarga de desempenho elevada, ja que os resultados precisam ser calculados
duas vezes, e também em sobrecarga de area, devido a adicdo do verificador ou I-IP.
Mesmo em solugbes onde parte da verificacdo é feita em paralelo com o circuito
principal, tais como em [Lisboa 2006], a sobrecarga de desempenho ainda é
significativa.

Técnicas baseadas em software que duplicam o codigo e as variaveis e
comparam os resultados para verificar se houve erros sdo muito caras, tanto em
ocupacdo de memoria quanto em tempo de execugdo. As técnicas baseadas em
assinaturas requerem a modificagdo do software para incluir instrugbes para
processamento e verificacdo das assinaturas em todos o blocos bésicos, impondo
penalidades em codificacdo e desempenho.

Técnicas hibridas procuram combinar as melhores caracteristicas das técnicas
baseadas em hardware e software, com o objetivo de obter o melhor balanceamento
entre sobrecargas de area e de desempenho.

Devido as limitagcdes das técnicas de mitigacdo discutidas acima, nosso trabalho
propde o uso de uma abordagem diferente, na qual a verificacdo e a recuperacdo de
erros é feita em nivel de algoritmo, como é discutido na secdo seguinte. Como sera
mostrado, as principais vantagens da técnica aqui proposta sdo a sobrecarga de
desempenho reduzida, com dissipacdo adicional de poténcia minima, e boa adequacéo
ao tamanho do problema.

4. Abordagens especificas para cada aplicacdo para detectar TLDs

A abordagem proposta neste trabalho é baseada nas seguintes consideracdes sobre a
natureza dos erros transitérios provocados por radiacdo e 0s processos de detecgdo e
correcdo associados:

e Se por um lado os efeitos do impacto de uma particula contra um circuito
podem ser muito prejudiciais, e portanto ndo podem ser ignorados, a
freqliéncia de tais eventos é muito baixa, e nem todos os impactos de
particulas provocam um erro; por exemplo, até bem pouco tempo
(tecnologias até 100 nm), as taxas de erros temporarios para circuitos l6gicos

2178

/\;/_,_\ Anaiz do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- T e SEMISH - XX Seminario Integrado de Software e Hardware Rio de Jansiro, R.J

costumavam ser despreziveis, em comparacdo com a taxa de falhas em
dispositivos de memoria, € para um sistema em um sO circuito integrado
(SoC) que usasse memdrias com uma taxa de erros de 10.000 FIT/Mbit a taxa
de erros do sistema seria de aproximadamente um erro por semana [Heijmen
2002].

¢ Devido a importancia da detec¢do de erros, 0 mecanismo de deteccéo, seja ele
implementado em software ou hardware, precisa verificar continuamente 0s
resultados gerados pelo circuito a ser protegido. Isto significa que o circuito
de deteccdo serd executado varios milhGes de vezes até que um erro
temporario seja detectado e, portanto, deve ser o mais leve possivel, em
termos de sobrecarga de area, desempenho e consumo de poténcia.

e Em contraste, 0 mecanismo de recuperacdo de erro sera ativado somente
guando um erro for detectado, 0 que acontece muito raramente, e portanto as
sobrecargas de desempenho e de poténcia dindmica introduzidas por este
mecanismo ndo sdo a preocupacado principal. No entanto, ainda é importante
que as sobrecargas de area e poténcia impostas por este mecanismo sejam
minimizadas, j& que estamos voltados para aplicacbes em sistemas
embarcados.

Considerando os fatos acima, nossa proposta € trabalhar em nivel de algoritmo,
usando esquemas de verificacdo especificos para cada aplicacdo, com pequena
sobrecarga, para detectar a ocorréncia de erros temporarios. Embora os mecanismos de
deteccdo de erros propostos nos estudos de caso na se¢do 4 sejam implementados em
software, nossa abordagem ndo exclui o uso de mecanismos de deteccdo baseados em
hardware, como sera comentado mais adiante.

Quanto a sobrecarga aceitavel, em nossa abordagem ela é claramente
dependente da aplicagdo. No entanto, nosso objetivo é definir mecanismos de
verificacdo que permitam a verificacdo da correcdo dos resultados produzidos por um
determinado algoritmo em tempo significativamente menor do que aquele necessario
para executar o algoritmo completamente mais uma vez. Se assim ndo fosse, uma
solugédo direta e mais simples seria executar o algoritmo duas vezes e comparar 0S
resultados, uma tarefa que pode inclusive ser automatizada, como mostrado em
[Cheynet 2000]. Como se pode ver nas proximas secdes, para os dois estudos de caso
apresentados como exemplos este objetivo foi atingido com uma folga razoavel para as
aplicacOes propostas, e acreditamos que o caminho indicado na subsecdo 4.3 ira levar a
resultados semelhantes para outras aplicaces.

4.1. Verificacdo de um algoritmo de classificacéo: o uso de invariantes de lago

Como um primeiro exemplo de aplicacdo da abordagem aqui proposta, usaremos uma
aplicacdo de classificacdo para destacar os conceitos basicos de nossa técnica. Entre 0s
muitos algoritmos de classificacdo diferentes disponiveis na literatura, usaremos o
quicksort [Knuth 1973], que faz a classificacdo através do particionamento do conjunto
de registros e troca de posi¢des. Este algoritmo é mais adequado para grandes conjuntos
de registros e usualmente é capaz de ordenar um conjunto de n registros em tempo
proporcional a O(n log n); no entanto, em algumas situacGes especificas, tal como

2179

30 de junho a 06 de julho de 2007
Rio de Janesiro, RJ

/\;',_/—\ Anais do XXVII Congresso da SBC
- T e SEMISH - XX Seminario Integrado de Software e Hardware

quando o conjunto ja esta previamente ordenado quando o algoritmo inicia, pode levar
um tempo de até O(n?) [Knuth 1973].

De acordo com o objetivo por nés definido, o esquema de deteccdo de erro
precisa ser tal que o tempo necessario para verificar os resultados seja
significativamente menor do que aquele necessario para uma recomputacdo completa
dos resultados. Neste caso especifico, existe um esquema de detec¢do muito direto, que
demanda apenas um tempo O(n): comparar as chaves dos registros ordenados, na ordem
final fornecida pelo algoritmo de classificagdo, para verificar se eles estdo efetivamente
ordenados.

De forma a confirmar que o mecanismo de deteccdo é realmente mais rapido do
que o algoritmo de classificagdo, executamos o algoritmo quicksort proposto em [Knuth
1973] e também o mecanismo de deteccdo sugerido aqui e comparamos os resultados,
em termos do numero de comparacdes e trocas necessarias para ordenar conjuntos com
diferentes quantidades de registros com chaves geradas aleatoriamente, como mostrado
na Tabela 3. O algoritmo de verificagdo usa somente n-1 comparacgdes para verificar o
vetor ordenado.

Tabela 3. Custo de execucdo dos algoritmos: classificagcéo vs. verificacdo

n Comparacoes Trocas Tp_tal T(_)tal Sobrecarga
Classificacdo Verificacdo (%)
100 653 340 993 99 9,97
200 2.154 968 3.122 199 6,37
500 7.104 2.924 10.028 499 4,98
1.000 17.546 8.051 25.597 999 3,90

Embora o custo total de execugdo do quicksort varie, para a mesma quantidade
de registros a ordenar, de acordo com a posicdo inicial dos registros no conjunto,
analisando os numeros obtidos pode-se confirmar que a sobrecarga imposta pelo
mecanismo de verificacdo € muito menor do que o custo de execugdo do processo de
classificacdo completo, e também que a percentagem desta sobrecarga diminui a medida
em que o namero de registros a ordenar cresce, 0 que também € uma caracteristica do
custo de execucdo do algoritmo quicksort.

A generalizacdo do procedimento mostrado aqui para outros exemplos serd
discutida na sec¢éo 4.3.

4.2. Verificagdo de um algoritmo para multiplicagdo de matrizes: otimizando a
técnica de Freivalds

Nosso segundo estudo de caso se aplica a verificacdo de multiplicacdo de matrizes, um
algoritmo que é frequentemente utilizado como parte de aplicacbes embarcadas, tais
como filtros de uso geral, mecanismos de controle, compressdo de imagens, filtros de
imagens e compressdo de voz, entre outras. O nimero de opera¢Bes necessarias para
multiplicar duas matrizes quadradas nxn é O(n®). De acordo com a regra fundamental
de nossa abordagem aqui proposta, precisamos agora encontrar um processo de
verificacdo que precise de menos operagdes para ser executado. Infelizmente, para
algoritmos de multiplicacdo de matrizes e outros o processo de verificacdo nao é téo
intuitivo como para o estudo de caso de classificacao.

2180

/\;/_,_\ Anaiz do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- T e SEMISH - XX Seminario Integrado de Software e Hardware Rio de Jansiro, R.J

Uma técnica para verificacdo rapida da correcdo de algoritmos para
multiplicacdo de matrizes € apresentada em [Motwani 1995]. Ela é creditada a RUsinS
Freivalds, que provou que maquinas probabilisticas sdo capazes de executar algumas
computacBes especificas mais rapidamente que as deterministicas e que elas podem
computar aproximacdes de uma funcdo em uma fracdo do tempo necessario para
computar a mesma funcdo de forma deterministica [Freivalds 1977].

Em suma, a técnica de Freivalds propde o uso de multiplicacdo de matrizes por
vetores a fim de reduzir o tempo de computacdo quando se esta verificando o0s
resultados produzidos por um determinado algoritmo de multiplicacdo de matrizes, da
seguinte maneira: dadas duas matrizes, A e B, de dimensdes n x n e a matriz C, de
mesmas dimensdes, que é o produto de A por B que foi calculado usando o algoritmo a
ser testado, sdo executados 0s seguintes calculos:

1. Cria-se aleatoriamente um vetor r no qual os valores dos elementos sdo
unicamente O ou 1.

2. Calcula-se Cr=C xr
3. Calcula-se ABr=A x (B xr)

Freivalds provou que, sempre que A x B = C, a probabilidade de Cr ser igual a
ABr é menor ou igual a 2. A demonstracdo € apresentada em [Motwani 1995]. Além
disso, se o0s passos 1 a 3, acima, sdo executados independentemente k vezes (com
diferentes valores do vetor r), a probabilidade se torna < %4*. Usando essa técnica, a
verificacdo do resultado pode ser feita em menos tempo do que a multiplicacao original,
ja& que a multiplicacdo de uma matriz por um vetor é executada com O(n?) operagdes, 0
gue poderia torna-la uma boa candidata para ser usada como o mecanismo de
verificacdo para multiplicacdo de matrizes, de acordo com abordagem aqui proposta.
Entretanto, como a técnica de Freivalds ¢ estatistica, ndo ha garantia de que 0s erros
sempre serdo detectados.

Em um trabalho anterior Lisboa 2007, mostramos que a probabilidade de
detectar um elemento errado na matriz C usando a técnica de Freivalds é
aproximadamente % porque os elementos do vetor r gerados aleatoriamente tém a
mesma probabilidade ¥ de ser 0 ou 1, e supondo que o elemento de C que tem um valor
incorreto é Cj;, no calculo de Cr (passo 2 acima) este elemento é multiplicado por um
unico elemento ry do vetor, sendo assim cancelado durante a geracéo de Cr (se ry é igual
a zero) ou ndo (quando ri € igual a 1) com probabilidades iguais de %.

Considerando que os elementos do vetor r podem ser escolhidos aleatoriamente,
propusemos entdo executar a computacdo com um segundo vetor, r, no qual cada
elemento é o complemento binério dos valores em r. De acordo com a técnica original
de Freivalds, isto levaria a deteccdo de um erro em C com uma probabilidade de %. os
elementos de C que fossem cancelados na primeira computacdo ndo seriam cancelados
na segunda e vice versa. Por isso, se Cj tivesse um valor incorreto, teriamos
necessariamente A x (B xr)# C xrou A x (B xry) # C x r; e a probabilidade de
detectar um erro em um Unico elemento de C seria igual a 1, isto é, se o valor incorreto
fosse mascarado no célculo de ABr/Cr, ele ndo seria mascarado quando ABr./Cr
fossem calculados e vice versa. Com esta extensdo, produzimos um algoritmo capaz de

2181

/\;'/_,_\ Anaiz do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- T e SEMISH - XX Seminario Integrado de Software e Hardware

Rio de Janesiro, RJ

detectar todos os erros nos quais um unico elemento de C esta errado, com apenas duas
execucOes da técnica de Freivalds.

Indo mais a fundo na exploracdo da extensdo da técnica de Freivalds proposta
em Lisboa 2007, argumentamos que, como a técnica é valida para qualquer vetor r
selecionado aleatoriamente, também é valida para um vetor especificor, = {1, 1, ..., 1}
e seu vetor complementar ro = {0, 0, ..., 0}, e neste caso temos:

erl = {an:l Cj_j, ey Z”j=1 an} (1)
Ax(Bxr) = {Z"=1 (Z"k=1 Atk Byj), -y 21 (221 Ak B} (2)

Cxrp=0 (3)
Ax(Bxrp) =0 4)

A partir das expressdes (3) e (4) acima, concluimos que, para o vetor ro dado, a
condicdo Cxry = Ax(Bxrg) é sempre falsa (pois os dois produtos sao sempre iguais a
zero) e, portanto, o teste da condicdo composta Ax(Bxr;) # Cxry ou Ax(Bxrg) # Cxry
pode ser simplificado para Ax(Bxry) # Cxry, reduzindo significativamente o custo do
processo de verificagdo, pois o célculo das expressdes (3) e (4) ndo é mais necessario.
Além disso, no calculo de (1) e (2) ndo ha mais necessidade de multiplicar pelos
elementos de ry, ja que estes sdo todos iguais a 1.

A partir de (1) e (2), também concluimos que, como no processo de
multiplicagdo calculamos o valor de cada elemento da matriz C como sendo Cjj = X'
Aik . By, se um dos elementos Cjj tem um valor incorreto, a condi¢do Ax(Bxri) # Cxry
sera verdadeira e 0 erro sempre sera detectado.

As conclusfes acima foram confirmadas através da execucdo de diversas séries
de insercao de falhas com o uso de simulagdes em Matlab [Matlab URL] e concluimos
que esta técnica otimizada oferece um método capaz de detectar todos erros em um
unico elemento ocorridos na operagdo de multiplicacdo de matrizes, com pequena
sobrecarga, razdo pela qual foi escolhida como nosso algoritmo de verificacdo para a
multiplicacdo de matrizes no espirito da abordagem aqui proposta. A Tabela 4 mostra o
namero de operacdes (adicBes e multiplicacdes) necessarias para multiplicar e verificar
matrizes com diferentes dimensdes, conforme descrito em Lisboa 2007, e tais nimeros
confirmam que a sobrecarga de desempenho fica bem abaixo do limite de 100% que nés
mesmos impusemaos para a abordagem proposta.

Tabela 4. Comparacao de tempos de execucdo (nimero de operacdes)

Tamanho da matriz (n) 3 8 16 32
Multiplicag&o 45 960 7.936 64.512
Verificagdo 27 232 976 4.000
Sobrecarga 60% 24% 12% 6%

4.3. Generalizagdo formal da abordagem: uso de invariantes de programa para
detectar TLDs

Como mostrado nos estudos de caso anteriores, a selecdo de um método de verificacdo
para um determinado algoritmo nem sempre & uma tarefa facil. Além disso, uma vez

2182

/\;/_,_\ Anaiz do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- T e SEMISH - XX Seminario Integrado de Software e Hardware Rio de Jansiro, R.J

encontrado um mecanismo de verificacdo adequado, ainda que seja significativamente
mais rapido do gque o algoritmo a ser verificado, como pode-se ter certeza de que este é
0 mecanismo mais eficiente? Idealmente, seria melhor dispor de uma ferramenta
automatizada que, dado o algoritmo a ser protegido, pudesse fornecer o melhor
mecanismo de verificacdo para a aplicacdo dada. Entretanto, tanto quanto saibamos, ndo
existe nenhuma ferramenta como esta disponivel atualmente.

Também é importante destacar que os dois esquemas de verificacdo propostos
em nossos estudos de caso verificam os resultados produzidos pelo algoritmo somente
depois deles terem sido executados completamente. Isto significa que, no caso de um
erro ser detectado durante o processo de verificacdo, o estado do programa precisa ser
restaurado para 0 mesmo estado em que ele se encontrava no inicio da execugdo do
algoritmo e este precisa ser executado por completo novamente, de forma a obter um
novo resultado. Com isto em mente, uma outra caracteristica desejavel do mecanismo
de verificacdo seria a capacidade de detectar um erro assim que ele ocorre, reduzindo
desta forma o tempo de recomputagdo no caso de erros. No entanto, como ja
mencionado, apesar desta caracteristica ser desejavel ela ndo é obrigatéria, jaA que a
freqliéncia de recomputacdo em virtude de erros temporarios provocados por radiacao é
muito baixa.

Na busca por uma solugéo para o problema da determinacdo de um algoritmo de
verificagdo adequado, e tomando emprestados alguns conhecimentos da éarea de
computacdo formal, acreditamos que a identificacdo de invariantes de programas ou
invariantes de lacos pode ser uma boa alternativa para encontrar 0 melhor mecanismo
de verificacdo a ser usado para uma determinada aplicacéo.

Uma invariante de lago expressa uma relacdo entre os valores das varidveis
manipuladas no corpo do lago que é preservada pela execugédo correta do mesmo. Em
outras palavras, se a relacdo expressa pela invariante do lago é verdadeira antes que
corpo do laco seja executado e o laco termina, ela também serd verdadeira ap6s o lago
ter sido terminado, ndo importando quantas vezes o corpo do lago seja repetido.
Existem diversas invariantes para um determinado laco, mas uma invariante util é
aquela que expressa uma relacao entre as variaveis que € preservada pelo laco, mesmo
que os valores das variaveis propriamente ditas possam mudar [Huth 2001].
Analogamente, uma invariante de um programa em uma determinada posicdo ¢ uma
assercao que é verdadeira para qualquer estado do programa em que ele atinge aquela
posicdo, e a assercdo € dita indutiva em uma determinada posicdo de um programa se
ela é verdadeira na primeira vez em que aquela posicdo é atingida pelo fluxo de
execucao do programa e é preservada todas as vezes em que o fluxo de controle retorna
para aquela posicdo. Assercdes indutivas tradicionalmente tém sido usadas para provar
gue os programas estdo corretos [Sankaranarayanan 2004].

Dadas as definigdes acima, pode-se ver que o que fizemos de maneira intuitiva
em nosso estudo de caso de classificagcdo foi verificar a seguinte invariante, na posi¢éo
do programa na qual o algoritmo termina, depois de classificar 0s n registros em ordem
ascendente de suas chaves:

chave; < chavejr, 1 <i<n-1

De maneira similar, no estudo de caso de multiplicacdo de matrizes, a relagédo

2183

/\;'/_,_\ Anaiz do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- T e SEMISH - XX Seminario Integrado de Software e Hardware Rio de Janeiro, R

Ax(Bxry) = Cxry

€ uma invariante do algoritmo na posi¢cdo em que a multiplicagdo esta terminada. Nos
dois casos, quando a relagdo ndo se mantém, isto é, as invariantes sao falsas, é uma
indicacdo de que o algoritmo néo foi executado corretamente.

Como ja mencionado, em uma determinada posi¢cdo de um programa pode-se ter
mais de uma invariante, mas nem todas elas sdo Uteis para fins de verifica¢do. Portanto,
além da capacidade de identificar as invariantes possiveis em um determinado ponto do
programa, também é preciso saber quais dentre elas sdo Uteis. Um outro aspecto
fundamental na selecdo da melhor invariante é a existéncia de um mecanismo de baixo
custo para verifica-la. Por exemplo, o programa Matlab mostrado a seguir, adaptado de
[Huth 2001], calcula o fatorial de um valor armazenado na variavel x:

Considerando que 0! = 1 e que, quando a execugéo do laco termina temos z = x
e y contém o fatorial de x calculado, a invariante do lago neste exemplo pode facilmente
ser identificada como:

y=12!
Entretanto, esta invariante ndo é adequada para uso na verificacdo de acordo

com a abordagem aqui proposta, porque seria necessario calcular novamente o valor de
z! para poder compara-lo comy e confirmar a correcao do resultado.

Como se pode ver, a generalizacdo de um método para determinar o melhor
mecanismo de verificagcdo para um dado algoritmo ndo é uma tarefa simples. Embora
existam ferramentas para inferir de forma automatica invariantes de lagco [Ernst 2001,
Daikon URL], o uso de uma ferramenta nem sempre assegura 0 Sucesso e, mesmo ap0os
descobrir a invariante, a obtencdo do verificador ndo é uma tarefa simples. Esta questao,
portanto, demandard investigacdes adicionais e € um dos principais passos futuros em
nosso trabalho de pesquisa.

4.4. Consideragdes sobre a implementacdo em hardware de mecanismos de
verificacao

O uso de hardware para implementar mecanismos de verificacdo de algoritmos tais
como aqueles propostos neste trabalho é uma alternativa a ser mais explorada.

Entretanto, é preciso ter em mente que, enquanto a implementacdo em software
requer somente a adicdo de uma porcao extra de codigo ao software de aplicacdo, a
implementacdo em hardware requer acesso ao projeto do hardware, o qual, mesmo em
aplicacdes embarcadas, pode nem sempre estar disponivel. Como um exemplo, em
sistemas que usam processadores disponiveis comercialmente (COTs) ndo é possivel
incorporar em hardware 0s recursos de controle e processamento necessarios para
implementar um esquema de verificacdo tal como aquele proposto para o algoritmo de
classificacdo na subsecdo 4.1. Por outro lado, para um SoC no qual é utilizado hardware

2184

/\;'/_,_\ Anaiz do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- T e SEMISH - XX Seminario Integrado de Software e Hardware Rio de Janeiro, R

dedicado para uma determinada operacdo e o projetista tem acesso a descricdo do
hardware dos circuitos, é relativamente facil adicionar os circuitos necessarios para
implementar esquemas de verificagdo tais como aquele proposto para a operagdo de
multiplicacdo de matrizes.

Portanto, a escolha entre mecanismos de verificacdo implementados em
hardware ou software é uma decisdo que muito provavelmente sera tomada pelo
projetista caso a caso, e também sera objeto de pesquisa adicional em nossos trabalhos
futuros.

5. Conclusoes e trabalhos futuros

Atraves da andlise da evolucdo entre diferentes tecnologias da largura de pulsos
transitorios causados por radiacdo e do atraso de propagacao dos circuitos, este trabalho
mostrou que futuras tecnologias estardo sujeitas a pulsos transitorios que durardo mais
do que o ciclo de relégio dos circuitos, aqui denominados TLDs, e que isto vai
impossibilitar a aplicacdo de diversas técnicas de mitigacdo de erros temporarios
tradicionais.

O uso de mecanismos de verificagdo em nivel de algoritmo, especificos para
cada aplicacdo, foi proposto como uma forma de enfrentar este novo desafio e dois
estudos de caso, com 0s mecanismos de deteccdo de erros correspondentes, foram
apresentados e discutidos, como exemplos de aplicagcéo da abordagem proposta.

Foi proposta a generalizacdo formal da técnica, através do uso de invariantes de
programas para verificar os resultados produzidos por algoritmos, e foram indicadas
diretrizes para pesquisa futura como sendo:

e Estudo de invariantes de programas e invariantes de lacos, com o objetivo de
definir uma metodologia genérica a ser usada na selecdo do melhor
mecanismo de verificacdo a ser adotado para uma determinada aplicacéo.

e Estudo dos beneficios e desvantagens de implementar mecanismos que
permitam a verificacdo parcial dos resultados durante a execucdo dos
algoritmos, considerando que, se por um lado o custo de executar novamente
todo o algoritmo quando for detectado um erro € alto, por outro a freqiiéncia
de detec¢do de erros temporarios é muito baixa.

e Definicdo de um conjunto de regras a serem seguidas durante o processo de
escolha entre implementacdo em hardware ou em software dos mecanismos
de verificagéo.

Referéncias

Anghel, L. and Nicolaidis, M., “Cost Reduction and Evaluation of a Temporary Faults
Detecting Technique”, in Proceedings of the Design, Automation and Test in Europe
Conference and Exhibits — DATE 2000, IEEE Computer Society, Paris, France,
March 27-30, 2000, pp 591-598.

Austin, T., “DIVA: A Reliable Substrate for Deep Submicron Microarchitecture
Design”. In MICRO32 - Proceedings of the 32" ACM/IEEE International

2185

/\;/_,_\ Anaiz do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- RN SEMISH - XXXV Seminario Integrado de Software e Hardware

Rio de Janesiro, RJ

Symposium on Microarchitecture, pages 196-207, Los Alamitos, CA, November,
1999.

Austin, T., Blaauw, D., Mudge, T., and Flautner, K., "Making typical silicon matter
with Razor”, IEEE Computer, Vol. 37, No. 3, IEEE Computer Society, Los
Alamitos, March 2004, pp 57-65.

Cheynet, P., Nicolescu, B., Velazco, R., Rebaudengo, M., Sonza Reorda, M., and
Violante, M., “Experimentally evaluating an automatic approach for generating
safety-critical software with respect to transient errors”, IEEE Transactions on
Nuclear Science, Vol. 47, No. 6 (part 3), December 2000, pp. 2231-2236.

Daikon: invariant detector tool, available at http://pag.csail.mit.edu/daikon, last
accessed April 15, 2007.

Dodd, P. E. et al., “Production and propagation of Single-Event Transients in High-
Speed Digital Logic ICs”, IEEE Transactions on Nuclear Science, Vol 51, No 6, Part
2, IEEE Computer Society, Los Alamitos, CA, December 2004, pp 3278-3284.

Ernst, M. D., Cockrell, J., and Griswold, W. G., “Dynamically Discovering Likely
Program Invariants to Support Program Evolution”, IEEE Transactions on Software
Engineering, Vol. 27, No. 2, IEEE Computer Society, New York, NY, February
2001, pp 99-123.

Ferlet-Cavrois, V. et all., “Statistical Analysis of the Charge Collected in SOI and Bulk
Devices Under Heavy lon and Proton Irradiation—Implications for Digital SETs”,
IEEE Transactions on Nuclear Science, Vol 53, No 6, Part 1, IEEE Computer
Society, Los Alamitos, CA, December 2006, pp 3242-3252.

Freivalds, R. “Probabilistic machines can use less running time”, in Proceedings of
IFIP Congress 77, B. Gilchrist, editor, North-Holland, Toronto, August 1977, pp
839-842.

Heijmen, T., “Radiation Induced Soft Errors in Digital Circuits: A Literature survey”.
Philips Electronics National Laboratory, Netherlands, Report 2002/828, August,
2002.

Huth, M. R. A. and Ryan, M. D., Logic in Computer Science: Modelling and reasoning
about systems, Cambridge University Press, Cambridge, UK, 2001.

Johnson, B. W., Design and Analysis of Fault Tolerant Digital Systems: Solutions
Manual, Addison-Wesley Publishing Company, Reading, MA, October 1994,

Knuth, D. E., The Art of Computer Programming: Volume 3 / Sorting and Searching,
Addison-Wesley Publishing Company, Reading, MA, 1973.

Lima, F., Carro, L. and Reis, R., “Techniques for Reconfigurable Logic Applications:
Designing Fault Tolerant Systems into SRAM-based FPGAs”, in Proceedings of the
International Design Automation Conference, DAC 2003, pp. 650-655, ACM, New
York, 2003.

Lisboa, C. A. and Carro, L., “System Level Approaches for Mitigation of Long
Duration Transient Faults in Future Technologies”, to be published in Proceedings of
the 18™ Symposium on Integrated Circuits and Systems Design — ETS 2007, May
20- 24, 2007.

2186

/\;'/_,_\ Anaiz do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- T e SEMISH - XX Seminario Integrado de Software e Hardware Rio de Janeiro, R

Lisboa, C. A. L., Carro, L., Sonza Reorda, M., and Violante, M. “Online Hardening of
Programs against SEUs and SETs”, in Proceedings of the 21st IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems - DFT 2006, IEEE
Computer Society, Los Alamitos, CA, October 2006, pp. 280-288.

Lisboa, C. A., Schiler, E., and Carro, L., “Going Beyond TMR for Protection Against
Multiple Faults”, in Proceedings of the 18" Symposium on Integrated Circuits and
Systems Design — SBCCI 2005, Sociedade Brasileira de Computagdo, Florianopolis,
September 4-7 2005, pp. 80-85.

Matlab web page: http://www.mathworks.com/products/matlab. Last visited April 15,
2007.

Mitra, S., Seifert, N., Zhang, M., Shi, Q., and Kim, K. S., “Robust system design with
built-in soft-error resilience”, in Computer, VVol. 38, No. 2, February 2005, pp. 43-52.

Motwani, R., and Raghavan, P., Randomized Algorithms, Cambridge University Press,
New York, 1995.

Nieuwland, A. Jasarevic, S. and Jerin, G., “Combinational Logic Soft Error Analysis
and Protection”, in Proceedings of the 12th IEEE International On-Line Test
Symposium — IOLTS 2006, IEEE Computer Society, Los Alamitos, CA, July 2006,
pp. 99-104.

Predictive Technology Model web site, last visited in April, 15 2007:
http://www.eas.asu.edu/~ptm

Rossi, D., Omaiia, M., Toma, F. and Metra, C., “Multiple Transient Faults in Logic: An
Issue for Next Generation ICs ?”, in Proceedings of the 20" IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT 2005), IEEE
Computer Society, Los Alamitos, CA, October 2005, pp. 352-360.

Sankaranarayanan, S., Sipma, H. B., and Manna, Z. “Non-linear Loop Invariant
Generation using Grobner Bases”, in Proceedings of the 31st ACM SIGPLAN-
SIGACT Annual Symposium on Principles of Programming Languages, ACM Press,
New York, NY, January 2004, pp 318-329.

Schiiler, E., and Carro, L., “Reliable Circuits Design Using Analog Components”, in
Proceedings of the 11™ Annual IEEE International Mixed-Signals Testing Workshop
— IMSTW 2005, Volume 1, IEEE Computer Society, Cannes, June 27-29, 2005, pp
166-170.

Synopsis web site: http://www.synopsys.com/products/mixedsignal/hspice/hspice.html.
Last visited in November 2006.

Agradecimento

Os autores agradecem a Lorenzo Petroli, Bolsista IC e aluno do curso de Engenharia de
Computacdo da UFRGS, pela colaboracdo no preparo deste manuscrito.

2187

