
Em busca de soluções em nível de sistema para tecnologias
não confiáveis

Carlos A. L. Lisboa, Luigi Carro

Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{calisboa, carro}@inf.ufrgs.br

Abstract. New technologies, providing faster and smaller devices, will lead to
embedded devices with billions of components. However, transient pulses
caused by radiation will last longer than the clock cycle of the circuits,
thereby precluding the use of several current mitigation techniques, such as
those based on time redundancy. Traditional hardware level techniques using
space redundancy usually impose heavy area and power penalties,
unacceptable for embedded applications. As an alternative to cope with this
challenging scenario, this paper proposes the use of application specific,
algorithm level mitigation techniques, able to detect errors caused by
transient faults with reduced performance overhead. Examples of such
techniques for two applications widely used in the embedded systems world,
matrix multiplication and sorting, are presented and compared with other
techniques in order to confirm the potentiality of the proposed approach, and
a path towards the generalization of the proposed approach is suggested.

Resumo. Novas tecnologias, que oferecem dispositivos mais rápidos e
menores, viabilizarão a produção de sistemas embarcados com bilhões de
componentes. Entretanto, pulsos transitórios provocados por radiação irão
ter duração maior do que o ciclo de relógio dos circuitos, descartando em
decorrência disto o uso de diversas técnicas de mitigação de erros atuais, tais
como aquelas baseadas em redundância temporal. Técnicas tradicionais em
nível de hardware e que usam redundância espacial normalmente impõem
pesadas penalidades em termos de área e potência, características
inaceitáveis para aplicações embarcadas. Como uma alternativa para
enfrentar tal cenário desafiador, este trabalho propõe o uso de técnicas de
mitigação em nível de algoritmo, específicas para cada aplicação, capazes de
detectar erros causados por falhas transitórias com sobrecarga de
desempenho reduzida. Exemplos de tais técnicas para duas aplicações
amplamente utilizadas em sistemas embarcados, multiplicação de matrizes e
classificação, são apresentadas e comparadas com outras técnicas, para
confirmar a potencialidade da abordagem proposta, e um caminho para
generalização da aplicação da abordagem proposta é sugerido.

1. Introdução
Os dispositivos mais rápidos oferecidos por novas tecnologias permitem a construção
de circuitos com tempos de ciclo cada vez mais curtos, enquanto a duração de pulsos
transitórios devidos à radiação não varia na mesma proporção. Isto vai levar à

2173

ocorrência de pulsos transientes que durarão mais do que o tempo de ciclo dos circuitos,
impossibilitando o uso de diversas técnicas de mitigação de erros temporários de baixo
custo, principalmente aquelas baseadas em redundância temporal, tais como [Anghel
2000, Mitra 2005].

O uso de redundância espacial como a solução preferencial para fazer frente a
erros temporários neste novo cenário poderia ser uma alternativa possível. Entre estas, a
redundância modular tripla (TMR) [Johnson 1994] é uma boa candidata, porque mesmo
se um dos módulos é afetado por um transitório de longa duração, os outros dois
módulos estarão trabalhando adequadamente em paralelo, assegurando resultados
corretos. TMR tem um ponto fraco: falhas que afetem o votador podem levar a saídas
com erro, e para evitar este problema o uso de um votador analógico foi proposto em
[Schüler 2005, Lisboa 2005]. Entretanto, uma outra fraqueza da técnica TMR é que as
penalidades que ela impõe, em termos de área e energia, são superiores a 200%, o que
torna inviável seu uso em sistemas onde energia é um recurso escasso, tais como SoCs
para sistemas embarcados.

Neste trabalho, propomos o uso de abordagens em nível de sistema para fazer
frente aos desafios impostos pelos pulsos transitórios de longa duração (TLDs)
previstos como um dos principais problemas para sistemas fabricados usando
tecnologias futuras. Na Seção 2 é explicado o raciocínio que nos levou à previsão de
TLDs. Na Seção 3, técnicas propostas para a mitigação de erros causados por falhas
transientes são revisadas e as razões pelas quais algumas delas não terão mais eficácia
neste novo cenário são discutidas. A Seção 4 propõe o uso de técnicas específicas para
cada aplicação, implementadas em nível de algoritmo com possível intervenção do
compilador, como uma abordagem possível para detectar erros causados por TLDs.
Dois estudos de caso nos quais esta abordagem é usada são apresentados como
exemplos e um caminho possível em direção à generalização para outros algoritmos da
abordagem adotada é proposto. A Seção 5 resume as conclusões e indica trabalhos
futuros nesta pesquisa.

2. Pulsos transitórios de longa duração (TLDs)
A variação da duração dos pulsos transitórios entre diversas tecnologias foi
correlacionada com o tempo de ciclo dos circuitos em Lisboa 2007, que mostrou que
para as futuras tecnologias, tais como a de 32 nm, pode-se prever que até mesmo
partículas com valores de transferência linear de energia (LET) modestos irão produzir
transitórios que durarão mais do que o tempo de ciclo previsto para os circuitos. Aquele
estudo é resumidamente revisado e então complementado aqui, com a inclusão de dados
mais recentes.

No estudo sobre a produção e propagação de SETs em lógica de alta velocidade
apresentado em Dodd 2004, a variação da largura do pulso transitório de acordo com a
tecnologia foi prevista para quatro diferentes tecnologias (0,25 µm, 0,18 µm, 0,13 µm e
0,1 µm) e os resultados obtidos para partículas com LET variando até 70 MeV-cm2/mg,
para processos com substrato (bulk), são mostrados na Figura 1(a).

Além do fato já esperado de que a largura do pulso aumenta com o aumento da
transferência de energia linear (LET) da partícula, este gráfico revela outras
informações importantes. Primeiramente, verifica-se que, para partículas de baixa

2174

energia, a largura do pulso transitório é quase a mesma para todas as quatro tecnologias
incluídas no estudo, ou seja, apesar da maior velocidade dos novos dispositivos, para
partículas com aquele nível de energia a duração dos transitórios não varia de forma
significativa de uma tecnologia para outra.

Além disso, analisando o lado direito da Figura 1(a) e extraindo os valores de
largura de pulso do gráfico, pode-se verificar que a variação máxima na largura dos
pulsos transitórios (para partículas com LET de 70 MeV-cm2/mg) é de 948 ps (para a
tecnologia de 0,25 µm) para 694 ps (para a tecnologia de 0,1 µm), ou seja, um fator
máximo de redução de 0,73. Para o mesmo valor de LET, a variação da largura do pulso
transitório entre as tecnologias de 0,18 µm e 0,13 µm é de 902 ps para 769 ps, com um
fator de redução de apenas 0,85. Em contraste, para as mesmas tecnologias de 0,18 µm
e 0,13 µm, o fator de redução do atraso de propagação de um inversor entre estas
tecnologias, medido através de simulação, é de aproximadamente 0,33 (ver Tabela 2).
Estes dados mostram claramente que a redução do atraso de propagação entre
tecnologias é muito mais agressiva do que a da largura do pulso transitório provocado
por radiação e, portanto, é muito provável que uma falha transitória poderá durar mais
do que um ciclo de relógio, como será mostrado adiante.

(a) (b)
Figura 1. Variação da largura de pulsos transitórios entre diferentes

tecnologias

Mais recentemente, em Ferlet-Cavrois 2006, a largura do pulso transitório que
se propaga, para dispositivos fabricados usando processos com substrato e com silício
sobre isolante (SOI), em diferentes tecnologias, foi medida através de simulação usando
uma cadeia de inversores em série, com resultados semelhantes, mostrados na Figura
1(b). Este trabalho analisou somente três tecnologias (250 nm, 180 nm e 70 nm) e
também não fez correlação com a variação do tempo de ciclo nem explorou as
conseqüências desta descoberta.

Tabela 1. Larguras de transitórios prevista (ps)

Tecnologia (nm) 180(1) 130(1) 100(1) 70(2)

10 MeV-cm2/mg 140 210 168 170
20 MeV-cm2/mg 277 369 300 240

(1) dados de Dodd 2004 (2) dados de Ferlet-Cavrois 2006

2175

Alguns valores de largura de transitórios foram extraídos manualmente das
Figuras 1(a) e 1(b) e reunidos na Tabela 1, que mostra as larguras de transitórios
previstas para as tecnologias de 180 nm, 130 nm e 100 nm estudadas em Dodd 2004 e
para a tecnologia de 70 nm estudada em Ferlet-Cavrois 2006, para partículas com LET
de 10 e 20 MeV-cm2/mg, respectivamente.

Para comparar a variação das larguras de transientes mostradas na Tabela 1 com
aquela do tempo de ciclo dos circuitos através de diferentes tecnologias, medimos o
atraso de propagação para diversas cadeias de inversores em série, em quatro
tecnologias distintas. As medições foram feitas usando a ferramenta HSPICE [Synopsis
URL] e os parâmetros para todas as tecnologias foram obtidos do sítio na Web de
Predictive Technology Model [PTM URL]. O número de inversores em cada cadeia,
bem como os atrasos de propagação medidos na simulação para cada tecnologia estão
mostrados na Tabela 2.

Tabela 2. Variação do tempo de propagação entre diferentes tecnologias (ps)

Tecnologia (nm) 180 130 90 32
1 inversor 49,85 16,78 13,26 10,14
cadeia de 4 inversores 202,65 63,81 48,93 33,74
cadeia de 6 inversores 304,55 95,14 72,66 49,02
cadeia de 8 inversores 406,45 126,45 96,39 64,30
cadeia de 10 inversores 508,35 157,75 120,15 79,58

Os resultados na Tabela 2 mostram que o atraso de propagação é reduzido em
aproximadamente 3,2 vezes da tecnologia 0,18 µm para a tecnologia 0,13 µm e de 5 a
6,4 vezes, dependendo do números de inversores na cadeia, entre as tecnologias 0,18
µm e 32 nm. Estes fatores de redução são muito maiores do que a redução máxima
prevista em [7, 8] para a largura dos pulsos transitórios entre tecnologias diferentes,
analisada acima, que é de apenas 1,37 vezes.

Na Figura 2, as larguras previstas para pulsos transitórios para as quatro
tecnologias mostradas na Tabela 1 foram combinadas com o gráfico de linhas que
mostra a redução do atraso de propagação entre tecnologias. As duas barras verticais
mais à esquerda mostram a largura do pulso transitório prevista para partículas com
LET de 20 MeV-cm2/mg, para as tecnologias 0,18 µm e 0,13 µm.

Figura 2. Variação do atraso de propagação x largura de pulsos transitórios
entre diferentes tecnologias

2176

A terceira e a quarta barras verticais correspondem às tecnologias 0,1 µm e 70
nm, para as quais não medimos os atrasos de propagação. O posicionamento horizontal
destas duas barras no gráfico foi feito por interpolação, considerando que a variação do
atraso da tecnologia de 0,13 µm para a de 32 nm é aproximadamente linear.

A duração de transitórios devidos a partículas com LET de até 20 MeV-cm2/mg,
mostrada na Figura 2, é suficiente para demonstrar o que pretendemos – nas tecnologias
futuras os transitórios irão durar mais do que o ciclo de relógio esperado; entretanto,
como se pode ver pelas Figuras 1(a) e 1(b), podem ocorrer transitórios de duração bem
maior (acima de 1000 ps) para partículas com energia mais elevada.

As conclusões tiradas da Figura 2 se aplicam somente a dispositivos fabricados
em processos com substrato, e são mencionadas somente de forma implícita em Dodd
2004, quando os autores afirmam que, para dispositivos com silício sobre isolante, “a
variação do tamanho dos dispositivos claramente induz um decréscimo das distribuições
tanto da carga coletada quanto da largura do transitório”, enquanto “se considerarmos
dispositivos com substrato, não existem uma tendência óbvia de variação”.

O fato do fator de variação da largura do pulso entre tecnologias ser muito
menor do que o fator de aceleração da velocidade entre diferentes gerações de
tecnologias aponta para a necessidade um novo paradigma a ser considerado no projeto
de sistemas tolerantes a falhas para tecnologias futuras: pulsos transientes durando mais
de um ciclo de relógio dos circuitos. Entretanto, como é mostrado na próxima seção, a
maioria das técnicas existentes para mitigação de erros temporários não é capaz de
suportar tais TLDs.

3. Revisão de técnicas de mitigação de erros temporários
Muitas técnicas diferentes para mitigar erros temporários foram propostas nos últimos
anos. Elas podem ser grosseiramente classificadas como segue: técnicas baseadas em
hardware (usando redundância temporal, redundância espacial e circuitos verificadores
ou I-IPs), técnicas baseadas em software (usando duplicação ou verificação de
assinaturas) e técnicas híbridas.

Técnicas baseadas em hardware usando redundância temporal fazem a
verificação das saídas do circuito através da comparação de seus valores em instantes
diferentes separados por um intervalo de tempo fixo. Na medida em que a duração dos
pulsos transitórios aumenta, a duração deste intervalo, que é uma penalidade imposta a
cada ciclo de operação, implicará em sobrecargas de desempenho intoleráveis.
Exemplos destas técnicas são [Anghel 2000, Mitra 2005]. Também em [Austin 2004] o
mesmo conceito é usado para verificar as saídas de um circuito e calibrar a taxa de erros
temporários através do ajuste dinâmico da voltagem, visando reduzir o consumo. A
aplicação desta técnica também será afetada de forma negativa pela ocorrência de
TLDs.

O grupo de técnicas baseadas em redundância espacial é o que mais
provavelmente oferecerá proteção, mesmo na presença de TLDs, porque, considerando
o modelo de falha única (que ainda é o modelo dominante [Rossi 2005]), somente uma
das cópias do circuito seria afetada pelo TLD, enquanto a(s) outra(s) forneceria(m)
resultados corretos. No caso da duplicação com comparação [Lima 2003], isto
permitiria a detecção do erro causado pelo TLD. No caso da redundância modular

2177

tripla, além de detectar o erro o circuito seria capaz de escolher o resultado correto,
descartando o resultado errado causado pelo TLD. Uma outra abordagem que se baseia
no modelo de falhas simples, na qual o caminho crítico de circuitos combinacionais é
robustecido através da duplicação de portas lógicas e erros temporários são detectados
através da comparação das saídas duplicadas, é proposta em [Nieuwland 2006].
Entretanto, as penalidades em acréscimo de área e, principalmente, em aumento de
consumo impostas por estas soluções são uma grande preocupação, principalmente para
sistemas embarcados.

O terceiro grupo de técnicas baseadas em hardware se apoia no uso de circuitos
verificadores ou IPs de infra-estrutura (I-IPs) para verificar os resultados produzidos
pelo circuito a ser protegido. Caso os resultados calculados pelo circuito verificador ou
pelo I-IP sejam diferentes daqueles produzidos pelo circuito principal, eles ativam um
indicador de erro que dispara um processo de recomputação ou, como em [Austin
1999], usam o valor calculado pelo verificador, considerando que este está sempre
correto (o que é uma suposição arriscada). Estas abordagens usualmente implicam em
uma sobrecarga de desempenho elevada, já que os resultados precisam ser calculados
duas vezes, e também em sobrecarga de área, devido à adição do verificador ou I-IP.
Mesmo em soluções onde parte da verificação é feita em paralelo com o circuito
principal, tais como em [Lisboa 2006], a sobrecarga de desempenho ainda é
significativa.

Técnicas baseadas em software que duplicam o código e as variáveis e
comparam os resultados para verificar se houve erros são muito caras, tanto em
ocupação de memória quanto em tempo de execução. As técnicas baseadas em
assinaturas requerem a modificação do software para incluir instruções para
processamento e verificação das assinaturas em todos o blocos básicos, impondo
penalidades em codificação e desempenho.

Técnicas híbridas procuram combinar as melhores características das técnicas
baseadas em hardware e software, com o objetivo de obter o melhor balanceamento
entre sobrecargas de área e de desempenho.

Devido às limitações das técnicas de mitigação discutidas acima, nosso trabalho
propõe o uso de uma abordagem diferente, na qual a verificação e a recuperação de
erros é feita em nível de algoritmo, como é discutido na seção seguinte. Como será
mostrado, as principais vantagens da técnica aqui proposta são a sobrecarga de
desempenho reduzida, com dissipação adicional de potência mínima, e boa adequação
ao tamanho do problema.

4. Abordagens específicas para cada aplicação para detectar TLDs
A abordagem proposta neste trabalho é baseada nas seguintes considerações sobre a
natureza dos erros transitórios provocados por radiação e os processos de detecção e
correção associados:

• Se por um lado os efeitos do impacto de uma partícula contra um circuito
podem ser muito prejudiciais, e portanto não podem ser ignorados, a
freqüência de tais eventos é muito baixa, e nem todos os impactos de
partículas provocam um erro; por exemplo, até bem pouco tempo
(tecnologias até 100 nm), as taxas de erros temporários para circuitos lógicos

2178

costumavam ser desprezíveis, em comparação com a taxa de falhas em
dispositivos de memória, e para um sistema em um só circuito integrado
(SoC) que usasse memórias com uma taxa de erros de 10.000 FIT/Mbit a taxa
de erros do sistema seria de aproximadamente um erro por semana [Heijmen
2002].

• Devido à importância da detecção de erros, o mecanismo de detecção, seja ele
implementado em software ou hardware, precisa verificar continuamente os
resultados gerados pelo circuito a ser protegido. Isto significa que o circuito
de detecção será executado vários milhões de vezes até que um erro
temporário seja detectado e, portanto, deve ser o mais leve possível, em
termos de sobrecarga de área, desempenho e consumo de potência.

• Em contraste, o mecanismo de recuperação de erro será ativado somente
quando um erro for detectado, o que acontece muito raramente, e portanto as
sobrecargas de desempenho e de potência dinâmica introduzidas por este
mecanismo não são a preocupação principal. No entanto, ainda é importante
que as sobrecargas de área e potência impostas por este mecanismo sejam
minimizadas, já que estamos voltados para aplicações em sistemas
embarcados.

Considerando os fatos acima, nossa proposta é trabalhar em nível de algoritmo,
usando esquemas de verificação específicos para cada aplicação, com pequena
sobrecarga, para detectar a ocorrência de erros temporários. Embora os mecanismos de
detecção de erros propostos nos estudos de caso na seção 4 sejam implementados em
software, nossa abordagem não exclui o uso de mecanismos de detecção baseados em
hardware, como será comentado mais adiante.

Quanto à sobrecarga aceitável, em nossa abordagem ela é claramente
dependente da aplicação. No entanto, nosso objetivo é definir mecanismos de
verificação que permitam a verificação da correção dos resultados produzidos por um
determinado algoritmo em tempo significativamente menor do que aquele necessário
para executar o algoritmo completamente mais uma vez. Se assim não fosse, uma
solução direta e mais simples seria executar o algoritmo duas vezes e comparar os
resultados, uma tarefa que pode inclusive ser automatizada, como mostrado em
[Cheynet 2000]. Como se pode ver nas próximas seções, para os dois estudos de caso
apresentados como exemplos este objetivo foi atingido com uma folga razoável para as
aplicações propostas, e acreditamos que o caminho indicado na subseção 4.3 irá levar a
resultados semelhantes para outras aplicações.

4.1. Verificação de um algoritmo de classificação: o uso de invariantes de laço

Como um primeiro exemplo de aplicação da abordagem aqui proposta, usaremos uma
aplicação de classificação para destacar os conceitos básicos de nossa técnica. Entre os
muitos algoritmos de classificação diferentes disponíveis na literatura, usaremos o
quicksort [Knuth 1973], que faz a classificação através do particionamento do conjunto
de registros e troca de posições. Este algoritmo é mais adequado para grandes conjuntos
de registros e usualmente é capaz de ordenar um conjunto de n registros em tempo
proporcional a O(n log n); no entanto, em algumas situações específicas, tal como

2179

quando o conjunto já está previamente ordenado quando o algoritmo inicia, pode levar
um tempo de até O(n2) [Knuth 1973].

De acordo com o objetivo por nós definido, o esquema de detecção de erro
precisa ser tal que o tempo necessário para verificar os resultados seja
significativamente menor do que aquele necessário para uma recomputação completa
dos resultados. Neste caso específico, existe um esquema de detecção muito direto, que
demanda apenas um tempo O(n): comparar as chaves dos registros ordenados, na ordem
final fornecida pelo algoritmo de classificação, para verificar se eles estão efetivamente
ordenados.

De forma a confirmar que o mecanismo de detecção é realmente mais rápido do
que o algoritmo de classificação, executamos o algoritmo quicksort proposto em [Knuth
1973] e também o mecanismo de detecção sugerido aqui e comparamos os resultados,
em termos do número de comparações e trocas necessárias para ordenar conjuntos com
diferentes quantidades de registros com chaves geradas aleatoriamente, como mostrado
na Tabela 3. O algoritmo de verificação usa somente n-1 comparações para verificar o
vetor ordenado.

Tabela 3. Custo de execução dos algoritmos: classificação vs. verificação

n Comparações Trocas Total
Classificação

Total
Verificação

Sobrecarga
(%)

100 653 340 993 99 9,97
200 2.154 968 3.122 199 6,37
500 7.104 2.924 10.028 499 4,98

1.000 17.546 8.051 25.597 999 3,90

Embora o custo total de execução do quicksort varie, para a mesma quantidade
de registros a ordenar, de acordo com a posição inicial dos registros no conjunto,
analisando os números obtidos pode-se confirmar que a sobrecarga imposta pelo
mecanismo de verificação é muito menor do que o custo de execução do processo de
classificação completo, e também que a percentagem desta sobrecarga diminui à medida
em que o número de registros a ordenar cresce, o que também é uma característica do
custo de execução do algoritmo quicksort.

A generalização do procedimento mostrado aqui para outros exemplos será
discutida na seção 4.3.

4.2. Verificação de um algoritmo para multiplicação de matrizes: otimizando a
técnica de Freivalds

Nosso segundo estudo de caso se aplica à verificação de multiplicação de matrizes, um
algoritmo que é freqüentemente utilizado como parte de aplicações embarcadas, tais
como filtros de uso geral, mecanismos de controle, compressão de imagens, filtros de
imagens e compressão de voz, entre outras. O número de operações necessárias para
multiplicar duas matrizes quadradas n×n é O(n3). De acordo com a regra fundamental
de nossa abordagem aqui proposta, precisamos agora encontrar um processo de
verificação que precise de menos operações para ser executado. Infelizmente, para
algoritmos de multiplicação de matrizes e outros o processo de verificação não é tão
intuitivo como para o estudo de caso de classificação.

2180

Uma técnica para verificação rápida da correção de algoritmos para
multiplicação de matrizes é apresentada em [Motwani 1995]. Ela é creditada a Rúsiņš
Freivalds, que provou que máquinas probabilísticas são capazes de executar algumas
computações específicas mais rapidamente que as determinísticas e que elas podem
computar aproximações de uma função em uma fração do tempo necessário para
computar a mesma função de forma determinística [Freivalds 1977].

Em suma, a técnica de Freivalds propõe o uso de multiplicação de matrizes por
vetores a fim de reduzir o tempo de computação quando se está verificando os
resultados produzidos por um determinado algoritmo de multiplicação de matrizes, da
seguinte maneira: dadas duas matrizes, A e B, de dimensões n x n e a matriz C, de
mesmas dimensões, que é o produto de A por B que foi calculado usando o algoritmo a
ser testado, são executados os seguintes cálculos:

1. Cria-se aleatoriamente um vetor r no qual os valores dos elementos são
unicamente 0 ou 1.

2. Calcula-se Cr = C × r

3. Calcula-se ABr = A × (B x r)

Freivalds provou que, sempre que A × B ≠ C, a probabilidade de Cr ser igual a
ABr é menor ou igual a ½. A demonstração é apresentada em [Motwani 1995]. Além
disso, se os passos 1 a 3, acima, são executados independentemente k vezes (com
diferentes valores do vetor r), a probabilidade se torna ≤ ½k. Usando essa técnica, a
verificação do resultado pode ser feita em menos tempo do que a multiplicação original,
já que a multiplicação de uma matriz por um vetor é executada com O(n2) operações, o
que poderia torná-la uma boa candidata para ser usada como o mecanismo de
verificação para multiplicação de matrizes, de acordo com abordagem aqui proposta.
Entretanto, como a técnica de Freivalds é estatística, não há garantia de que os erros
sempre serão detectados.

Em um trabalho anterior Lisboa 2007, mostramos que a probabilidade de
detectar um elemento errado na matriz C usando a técnica de Freivalds é
aproximadamente ½ porque os elementos do vetor r gerados aleatoriamente têm a
mesma probabilidade ½ de ser 0 ou 1, e supondo que o elemento de C que tem um valor
incorreto é Cij, no cálculo de Cr (passo 2 acima) este elemento é multiplicado por um
único elemento rk do vetor, sendo assim cancelado durante a geração de Cr (se rk é igual
a zero) ou não (quando rk é igual a 1) com probabilidades iguais de ½.

Considerando que os elementos do vetor r podem ser escolhidos aleatoriamente,
propusemos então executar a computação com um segundo vetor, rc, no qual cada
elemento é o complemento binário dos valores em r. De acordo com a técnica original
de Freivalds, isto levaria à detecção de um erro em C com uma probabilidade de ¼. os
elementos de C que fossem cancelados na primeira computação não seriam cancelados
na segunda e vice versa. Por isso, se Cij tivesse um valor incorreto, teríamos
necessariamente A × (B × r) ≠ C × r ou A × (B × rc) ≠ C × rc e a probabilidade de
detectar um erro em um único elemento de C seria igual a 1, isto é, se o valor incorreto
fosse mascarado no cálculo de ABr/Cr, ele não seria mascarado quando ABrc/Crc
fossem calculados e vice versa. Com esta extensão, produzimos um algoritmo capaz de

2181

detectar todos os erros nos quais um único elemento de C está errado, com apenas duas
execuções da técnica de Freivalds.

Indo mais a fundo na exploração da extensão da técnica de Freivalds proposta
em Lisboa 2007, argumentamos que, como a técnica é válida para qualquer vetor r
selecionado aleatoriamente, também é válida para um vetor específico r1 = {1, 1, ..., 1}
e seu vetor complementar r0 = {0, 0, ..., 0}, e neste caso temos:

C×r1 = {Σn
j=1 C1j, ..., Σn

j=1 Cnj} (1)

A×(B×r1) = {Σn
j=1 (Σn

k=1 A1k . Bkj), ..., Σn
j=1 (Σn

k=1 Ank . Bkj)} (2)

e

C×r0 = 0 (3)

A×(B×r0) = 0 (4)

A partir das expressões (3) e (4) acima, concluímos que, para o vetor r0 dado, a
condição C×r0 ≠ A×(B×r0) é sempre falsa (pois os dois produtos são sempre iguais a
zero) e, portanto, o teste da condição composta A×(B×r1) ≠ C×r1 ou A×(B×r0) ≠ C×r0

pode ser simplificado para A×(B×r1) ≠ C×r1, reduzindo significativamente o custo do
processo de verificação, pois o cálculo das expressões (3) e (4) não é mais necessário.
Além disso, no cálculo de (1) e (2) não há mais necessidade de multiplicar pelos
elementos de r1, já que estes são todos iguais a 1.

A partir de (1) e (2), também concluímos que, como no processo de
multiplicação calculamos o valor de cada elemento da matriz C como sendo Cij = Σn

k=1

Aik . Bkj, se um dos elementos Cij tem um valor incorreto, a condição A×(B×r1) ≠ C×r1
será verdadeira e o erro sempre será detectado.

As conclusões acima foram confirmadas através da execução de diversas séries
de inserção de falhas com o uso de simulações em Matlab [Matlab URL] e concluímos
que esta técnica otimizada oferece um método capaz de detectar todos erros em um
único elemento ocorridos na operação de multiplicação de matrizes, com pequena
sobrecarga, razão pela qual foi escolhida como nosso algoritmo de verificação para a
multiplicação de matrizes no espírito da abordagem aqui proposta. A Tabela 4 mostra o
número de operações (adições e multiplicações) necessárias para multiplicar e verificar
matrizes com diferentes dimensões, conforme descrito em Lisboa 2007, e tais números
confirmam que a sobrecarga de desempenho fica bem abaixo do limite de 100% que nós
mesmos impusemos para a abordagem proposta.

Tabela 4. Comparação de tempos de execução (número de operações)

Tamanho da matriz (n) 3 8 16 32

Multiplicação 45 960 7.936 64.512
Verificação 27 232 976 4.000
Sobrecarga 60% 24% 12% 6%

4.3. Generalização formal da abordagem: uso de invariantes de programa para
detectar TLDs

Como mostrado nos estudos de caso anteriores, a seleção de um método de verificação
para um determinado algoritmo nem sempre á uma tarefa fácil. Além disso, uma vez

2182

encontrado um mecanismo de verificação adequado, ainda que seja significativamente
mais rápido do que o algoritmo a ser verificado, como pode-se ter certeza de que este é
o mecanismo mais eficiente? Idealmente, seria melhor dispor de uma ferramenta
automatizada que, dado o algoritmo a ser protegido, pudesse fornecer o melhor
mecanismo de verificação para a aplicação dada. Entretanto, tanto quanto saibamos, não
existe nenhuma ferramenta como esta disponível atualmente.

Também é importante destacar que os dois esquemas de verificação propostos
em nossos estudos de caso verificam os resultados produzidos pelo algoritmo somente
depois deles terem sido executados completamente. Isto significa que, no caso de um
erro ser detectado durante o processo de verificação, o estado do programa precisa ser
restaurado para o mesmo estado em que ele se encontrava no início da execução do
algoritmo e este precisa ser executado por completo novamente, de forma a obter um
novo resultado. Com isto em mente, uma outra característica desejável do mecanismo
de verificação seria a capacidade de detectar um erro assim que ele ocorre, reduzindo
desta forma o tempo de recomputação no caso de erros. No entanto, como já
mencionado, apesar desta característica ser desejável ela não é obrigatória, já que a
freqüência de recomputação em virtude de erros temporários provocados por radiação é
muito baixa.

Na busca por uma solução para o problema da determinação de um algoritmo de
verificação adequado, e tomando emprestados alguns conhecimentos da área de
computação formal, acreditamos que a identificação de invariantes de programas ou
invariantes de laços pode ser uma boa alternativa para encontrar o melhor mecanismo
de verificação a ser usado para uma determinada aplicação.

Uma invariante de laço expressa uma relação entre os valores das variáveis
manipuladas no corpo do laço que é preservada pela execução correta do mesmo. Em
outras palavras, se a relação expressa pela invariante do laço é verdadeira antes que
corpo do laço seja executado e o laço termina, ela também será verdadeira após o laço
ter sido terminado, não importando quantas vezes o corpo do laço seja repetido.
Existem diversas invariantes para um determinado laço, mas uma invariante útil é
aquela que expressa uma relação entre as variáveis que é preservada pelo laço, mesmo
que os valores das variáveis propriamente ditas possam mudar [Huth 2001].
Analogamente, uma invariante de um programa em uma determinada posição é uma
asserção que é verdadeira para qualquer estado do programa em que ele atinge aquela
posição, e a asserção é dita indutiva em uma determinada posição de um programa se
ela é verdadeira na primeira vez em que aquela posição é atingida pelo fluxo de
execução do programa e é preservada todas as vezes em que o fluxo de controle retorna
para aquela posição. Asserções indutivas tradicionalmente têm sido usadas para provar
que os programas estão corretos [Sankaranarayanan 2004].

Dadas as definições acima, pode-se ver que o que fizemos de maneira intuitiva
em nosso estudo de caso de classificação foi verificar a seguinte invariante, na posição
do programa na qual o algoritmo termina, depois de classificar os n registros em ordem
ascendente de suas chaves:

chavei ≤ chavei+1, 1 ≤ i ≤ n-1

De maneira similar, no estudo de caso de multiplicação de matrizes, a relação

2183

A×(B×r1) = C×r1

é uma invariante do algoritmo na posição em que a multiplicação está terminada. Nos
dois casos, quando a relação não se mantém, isto é, as invariantes são falsas, é uma
indicação de que o algoritmo não foi executado corretamente.

Como já mencionado, em uma determinada posição de um programa pode-se ter
mais de uma invariante, mas nem todas elas são úteis para fins de verificação. Portanto,
além da capacidade de identificar as invariantes possíveis em um determinado ponto do
programa, também é preciso saber quais dentre elas são úteis. Um outro aspecto
fundamental na seleção da melhor invariante é a existência de um mecanismo de baixo
custo para verificá-la. Por exemplo, o programa Matlab mostrado a seguir, adaptado de
[Huth 2001], calcula o fatorial de um valor armazenado na variável x:

y=1;
z=0;
while z ~= x,
 z = z + 1;
 y = y * z;
end

Considerando que 0! = 1 e que, quando a execução do laço termina temos z = x
e y contém o fatorial de x calculado, a invariante do laço neste exemplo pode facilmente
ser identificada como:

y = z!

Entretanto, esta invariante não é adequada para uso na verificação de acordo
com a abordagem aqui proposta, porque seria necessário calcular novamente o valor de
z! para poder compará-lo com y e confirmar a correção do resultado.

Como se pode ver, a generalização de um método para determinar o melhor
mecanismo de verificação para um dado algoritmo não é uma tarefa simples. Embora
existam ferramentas para inferir de forma automática invariantes de laço [Ernst 2001,
Daikon URL], o uso de uma ferramenta nem sempre assegura o sucesso e, mesmo após
descobrir a invariante, a obtenção do verificador não é uma tarefa simples. Esta questão,
portanto, demandará investigações adicionais e é um dos principais passos futuros em
nosso trabalho de pesquisa.

4.4. Considerações sobre a implementação em hardware de mecanismos de
verificação

O uso de hardware para implementar mecanismos de verificação de algoritmos tais
como aqueles propostos neste trabalho é uma alternativa a ser mais explorada.

Entretanto, é preciso ter em mente que, enquanto a implementação em software
requer somente a adição de uma porção extra de código ao software de aplicação, a
implementação em hardware requer acesso ao projeto do hardware, o qual, mesmo em
aplicações embarcadas, pode nem sempre estar disponível. Como um exemplo, em
sistemas que usam processadores disponíveis comercialmente (COTs) não é possível
incorporar em hardware os recursos de controle e processamento necessários para
implementar um esquema de verificação tal como aquele proposto para o algoritmo de
classificação na subseção 4.1. Por outro lado, para um SoC no qual é utilizado hardware

2184

dedicado para uma determinada operação e o projetista tem acesso à descrição do
hardware dos circuitos, é relativamente fácil adicionar os circuitos necessários para
implementar esquemas de verificação tais como aquele proposto para a operação de
multiplicação de matrizes.

Portanto, a escolha entre mecanismos de verificação implementados em
hardware ou software é uma decisão que muito provavelmente será tomada pelo
projetista caso a caso, e também será objeto de pesquisa adicional em nossos trabalhos
futuros.

5. Conclusões e trabalhos futuros
Através da análise da evolução entre diferentes tecnologias da largura de pulsos
transitórios causados por radiação e do atraso de propagação dos circuitos, este trabalho
mostrou que futuras tecnologias estarão sujeitas a pulsos transitórios que durarão mais
do que o ciclo de relógio dos circuitos, aqui denominados TLDs, e que isto vai
impossibilitar a aplicação de diversas técnicas de mitigação de erros temporários
tradicionais.

O uso de mecanismos de verificação em nível de algoritmo, específicos para
cada aplicação, foi proposto como uma forma de enfrentar este novo desafio e dois
estudos de caso, com os mecanismos de detecção de erros correspondentes, foram
apresentados e discutidos, como exemplos de aplicação da abordagem proposta.

Foi proposta a generalização formal da técnica, através do uso de invariantes de
programas para verificar os resultados produzidos por algoritmos, e foram indicadas
diretrizes para pesquisa futura como sendo:

• Estudo de invariantes de programas e invariantes de laços, com o objetivo de
definir uma metodologia genérica a ser usada na seleção do melhor
mecanismo de verificação a ser adotado para uma determinada aplicação.

• Estudo dos benefícios e desvantagens de implementar mecanismos que
permitam a verificação parcial dos resultados durante a execução dos
algoritmos, considerando que, se por um lado o custo de executar novamente
todo o algoritmo quando for detectado um erro é alto, por outro a freqüência
de detecção de erros temporários é muito baixa.

• Definição de um conjunto de regras a serem seguidas durante o processo de
escolha entre implementação em hardware ou em software dos mecanismos
de verificação.

Referências
Anghel, L. and Nicolaidis, M., “Cost Reduction and Evaluation of a Temporary Faults

Detecting Technique”, in Proceedings of the Design, Automation and Test in Europe
Conference and Exhibits – DATE 2000, IEEE Computer Society, Paris, France,
March 27-30, 2000, pp 591-598.

Austin, T., “DIVA: A Reliable Substrate for Deep Submicron Microarchitecture
Design”. In MICRO32 - Proceedings of the 32nd ACM/IEEE International

2185

Symposium on Microarchitecture, pages 196-207, Los Alamitos, CA, November,
1999.

Austin, T., Blaauw, D., Mudge, T., and Flautner, K., ”Making typical silicon matter
with Razor”, IEEE Computer, Vol. 37, No. 3, IEEE Computer Society, Los
Alamitos, March 2004, pp 57-65.

Cheynet, P., Nicolescu, B., Velazco, R., Rebaudengo, M., Sonza Reorda, M., and
Violante, M., “Experimentally evaluating an automatic approach for generating
safety-critical software with respect to transient errors”, IEEE Transactions on
Nuclear Science, Vol. 47, No. 6 (part 3), December 2000, pp. 2231-2236.

Daikon: invariant detector tool, available at http://pag.csail.mit.edu/daikon, last
accessed April 15, 2007.

Dodd, P. E. et al., “Production and propagation of Single-Event Transients in High-
Speed Digital Logic ICs”, IEEE Transactions on Nuclear Science, Vol 51, No 6, Part
2, IEEE Computer Society, Los Alamitos, CA, December 2004, pp 3278-3284.

Ernst, M. D., Cockrell, J., and Griswold, W. G., “Dynamically Discovering Likely
Program Invariants to Support Program Evolution”, IEEE Transactions on Software
Engineering, Vol. 27, No. 2, IEEE Computer Society, New York, NY, February
2001, pp 99-123.

Ferlet-Cavrois, V. et all., “Statistical Analysis of the Charge Collected in SOI and Bulk
Devices Under Heavy Ion and Proton Irradiation—Implications for Digital SETs”,
IEEE Transactions on Nuclear Science, Vol 53, No 6, Part 1, IEEE Computer
Society, Los Alamitos, CA, December 2006, pp 3242-3252.

Freivalds, R. “Probabilistic machines can use less running time”, in Proceedings of
IFIP Congress 77, B. Gilchrist, editor, North-Holland, Toronto, August 1977, pp
839-842.

Heijmen, T., “Radiation Induced Soft Errors in Digital Circuits: A Literature survey”.
Philips Electronics National Laboratory, Netherlands, Report 2002/828, August,
2002.

Huth, M. R. A. and Ryan, M. D., Logic in Computer Science: Modelling and reasoning
about systems, Cambridge University Press, Cambridge, UK, 2001.

Johnson, B. W., Design and Analysis of Fault Tolerant Digital Systems: Solutions
Manual, Addison-Wesley Publishing Company, Reading, MA, October 1994.

Knuth, D. E., The Art of Computer Programming: Volume 3 / Sorting and Searching,
Addison-Wesley Publishing Company, Reading, MA, 1973.

Lima, F., Carro, L. and Reis, R., “Techniques for Reconfigurable Logic Applications:
Designing Fault Tolerant Systems into SRAM-based FPGAs”, in Proceedings of the
International Design Automation Conference, DAC 2003, pp. 650-655, ACM, New
York, 2003.

Lisboa, C. A. and Carro, L., “System Level Approaches for Mitigation of Long
Duration Transient Faults in Future Technologies”, to be published in Proceedings of
the 18th Symposium on Integrated Circuits and Systems Design – ETS 2007, May
20- 24, 2007.

2186

Lisboa, C. A. L., Carro, L., Sonza Reorda, M., and Violante, M. “Online Hardening of
Programs against SEUs and SETs”, in Proceedings of the 21st IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems - DFT 2006, IEEE
Computer Society, Los Alamitos, CA, October 2006, pp. 280-288.

Lisboa, C. A., Schüler, E., and Carro, L., “Going Beyond TMR for Protection Against
Multiple Faults”, in Proceedings of the 18th Symposium on Integrated Circuits and
Systems Design – SBCCI 2005, Sociedade Brasileira de Computação, Florianópolis,
September 4-7 2005, pp. 80-85.

Matlab web page: http://www.mathworks.com/products/matlab. Last visited April 15,
2007.

Mitra, S., Seifert, N., Zhang, M., Shi, Q., and Kim, K. S., “Robust system design with
built-in soft-error resilience”, in Computer, Vol. 38, No. 2, February 2005, pp. 43-52.

Motwani, R., and Raghavan, P., Randomized Algorithms, Cambridge University Press,
New York, 1995.

Nieuwland, A. Jasarevic, S. and Jerin, G., “Combinational Logic Soft Error Analysis
and Protection”, in Proceedings of the 12th IEEE International On-Line Test
Symposium – IOLTS 2006, IEEE Computer Society, Los Alamitos, CA, July 2006,
pp. 99-104.

Predictive Technology Model web site, last visited in April, 15 2007:
http://www.eas.asu.edu/~ptm

Rossi, D., Omaña, M., Toma, F. and Metra, C., “Multiple Transient Faults in Logic: An
Issue for Next Generation ICs ?”, in Proceedings of the 20th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT 2005), IEEE
Computer Society, Los Alamitos, CA, October 2005, pp. 352-360.

Sankaranarayanan, S., Sipma, H. B., and Manna, Z. “Non-linear Loop Invariant
Generation using Gröbner Bases”, in Proceedings of the 31st ACM SIGPLAN-
SIGACT Annual Symposium on Principles of Programming Languages, ACM Press,
New York, NY, January 2004, pp 318-329.

Schüler, E., and Carro, L., “Reliable Circuits Design Using Analog Components”, in
Proceedings of the 11th Annual IEEE International Mixed-Signals Testing Workshop
– IMSTW 2005, Volume 1, IEEE Computer Society, Cannes, June 27-29, 2005, pp
166-170.

Synopsis web site: http://www.synopsys.com/products/mixedsignal/hspice/hspice.html.
Last visited in November 2006.

Agradecimento
Os autores agradecem a Lorenzo Petroli, Bolsista IC e aluno do curso de Engenharia de
Computação da UFRGS, pela colaboração no preparo deste manuscrito.

2187

