f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

Em Direcao a um Modelo para Desenvolvimento de Sistemas
Computacionais de Qualidade para Aplicacoes Onivalentes

Alvaro Moreira, Erika Cota, Leila Ribeiro, Luciano Gaspary,
Luigi Carro, Marcus Ritt, Taisy Weber

"nstituto de Informética
Universidade Federal do Rio Grande do Sul (UFRGS)

{afmoreira,erika,leila,paschoal, carro, mrpritt,taisy}@inf.ufrgs.br

Resumo. Aplicacoes computationais atuais e do futuro sdo marcadas, com uma
freqiiencia crescente, por caracteristicas como distribuicdo, dinamicidade e
ubigiiidade. O desenvolvimento de sistemas computacionais de qualidade para
aplicagcoes com essas caracteristicas, chamadas aqui de aplicagcdes onivalentes,
demanda uma combinagdo de requisitos muitas vezes conflitantes ou depen-
dentes entre si. Requisitos de dependabilidade, correcdo, seguranca, escalabili-
dade e evolutividade fazem parte das necessidades das aplicagées onivalentes.
Neste artigo discutimos os conflitos gerados pela integracdo desses diferentes
requisitos em um mesmo sistema, e esbocamos as necessidades de um modelo
de desenvolvimento de software de qualidade para aplicacées onivalentes.

Abstract. Distribution, Dynamicity and Ubiquity are becoming prevalent char-
acteristics in computing applications. The development of high quality compu-
tational system for applications that have these characteristics, called omniva-
lent applications here, demands a combination of requirements, that are often
conflicting or interdependent. For example, dependability, correctness, security,
scalability, and evolutionability are extremely relevant requirements of omniva-
lent applications. In this paper, we discuss the conflicts generated by the inte-
gration of these requirements in a single computational system and sketch the
needs of a software development method suitable for developing high quality
omnivalent applications.

1. Introducao

Sistemas computacionais estdo cada vez mais intrusivos nas nossas vidas. Inicialmente
restritos a grandes instituicoes, as pessoas tinham contato somente com as listagens decor-
rentes das execugdes dos programas em grandes maquinas. Na medida que seus compo-
nentes foram se tornando mais baratos € com maior velocidade, novos sistemas com-
putacionais foram surgindo e nossa dependéncia a eles foi aumentando acentuadamente
(computadores de mesa, controladores programaveis para varias aplicagcdes industriais,
computadores embarcados nos carros, nos celulares e em inimeros outros dispositivos
cotidianos). Para o futuro, prevé-se uma realidade onde processadores estardo ainda mais
integrados ao cotidiano de maneira quase transparente, idealmente nos informando, nos
apoiando e nos protegendo ou, no pior cendrio, nos enganando e prejudicando.

Em algumas aplicacgdes, essa dependéncia ndo € critica, apesar de potencialmente
perturbadora. Por exemplo, se um sistema de correio eletronico nao funcionar durante

2262



f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

um dia, haverd muito incobmodo, mas como o sistema € assincrono por natureza, espera-
se que algumas horas de atraso ndo sejam mais que apenas um incomodo. Em outras
aplicacdes, como controle de trafego aéreo, um alto grau de confianga nos sistemas com-
putacionais € essencial. Essas aplicacdes criticas sdo cada vez mais freqiientes, € mesmo
para aplicacdes nao consideradas criticas um grau minimo de qualidade é necessario, pois
os usudrios estdo se mostrando cada vez mais exigentes. Em uma imagem futuristica
muito provavel, todos os carros serdo equipados com sistemas de piloto automético, que
evitardo colisoes através de sensores € comunicacao com outros veiculos enquanto os pas-
sageiros léem as ultimas noticias e compram agdes. Falha de um controlador autbnomo
pode levar a desastres em cascata, mesmo em aplica¢des nao criticas ndo correlacionadas.

Os sistemas computacionais estdo se tornando altamente distribuidos, compos-
tos de inimeros componentes autdbnomos que se comunicam através de sinais e protoco-
los. Neste cendrio, hd diversos problemas relativos a falhas tanto de software quanto de
hardware, seguranga, confiabilidade do sistema como um todo, configura¢do dinamica e
nao conhecida a priori, componentes heterogéneos de inimeros fabricantes (muitos sem
especificagdo conhecida ou comportamento previsivel).

A questdo que abordaremos neste artigo é: quais os desafios que a comunidade de
computacao deve enfrentar para construir sistemas distribuidos, heterogéneos, escaléveis,
construidos a partir de componentes imperfeitos, mas robustos o suficiente para que pos-
samos realmente confiar no servigo provido por esses sistemas?

Cada sistema computacional tem um conjunto diferente de requisitos que devem
ser satisfeitos, dependente da aplicacdo ao qual esse sistema se destina. Os requisitos nor-
malmente sdo classificados em funcionais (relativos ao comportamento esperado do sis-
tema - do tipo “dadas entradas, o sistema deve gerar as saidas esperadas”) e ndo-funcionais
(usabilidade, disponibilidade, escalabilidade, tempo de resposta, preco, seguranca, etc).

Alguns requisitos sdo essenciais para as aplicacdes distribuidas, dinamicas e
ubiquas: dependabilidade, correcdo, seguranga, escalabilidade e evolutividade. Os
métodos existentes para desenvolvimento de sistemas computacionais complexos nao
atingem o objetivo de garantir qualidade na pratica, geralmente em nenhum desses re-
quisitos. Ha abordagens tedricas, mas estas normalmente impdem tantas restricdes que
acabam ndo sendo vidveis. Um grave problema da maioria dos métodos que garantem,
por exemplo, corre¢do ou confiabilidade, € a escalabilidade: eles s6 sdo aplicédveis a sis-
temas extremamente pequenos, o que obviamente estd em grave conflito com o tamanho
e as demandas dos sistemas reais ja atualmente em operagcao e com potencial de con-
tinuar seu crescimento acelerado nas proximas décadas. A integracdo desses requisitos
em um mesmo sistema € um problema ainda maior, pois quase nunca € possivel trata-los
separadamente pelo alto grau de interdependéncia entre eles, como seré visto a seguir.

Para que se possam tratar requisitos diferentes, dependentes e/ou conflitantes, o
primeiro passo é conhecer a fundo as implicagdes da inclusdo de cada caracteristica em
um sistema, e, principalmente, as interdependéncias existentes entre as caracteristicas
que se deseja que um sistema possua. Cada uma dessas caracteristicas apresenta desafios,
problemas em abertos e empecilhos para sua plena utilizagdo em sistemas atuais, nao
totalmente solucionados e, algumas, vezes sequer totalmente identificados.

Neste artigo pretende-se analisar e identificar interdependéncias entre os requisi-

2263



f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

tos de dependabilidade, correcdo, seguranca, escalabilidade e evolutividade para garantir
a qualidade dos sistemas computacionais do futuro, que estardo presentes no cotidiano.
Pretende-se também esbocar idéias de como tratar essas relacdes e conflitos de forma in-
tegrada ja nas fases iniciais do projeto do sistema e apresentar os desafios que precisam
ser vencidos para a constru¢do de sistemas distribuidos autonomos escaldveis. Segura-
mente a solucdo para o tratamento adequado desses requisitos passa por um esforco de
reunificacdo das varias especialidades da computacao, aproveitando de cada drea sua ex-
periéncia, suas tentativas mal sucedidas e suas solu¢cdes promissoras.

2. Caracteristicas de Aplicacoes Onivalentes

O termo onivalente foi cunhado pelos pesquisadores que definiram os desafios da
computacdo para a Sociedade Brasileira de Computacdo. Sistemas onivalentes, na visao
de futuro da comunidade de Informatica, estardo presentes em todos os ambientes e
atividades humanas prestando servicos essenciais para a saude, educacdo, informacao,
comunicacao, produgdo e entretenimento preservando a integridade do ambiente social,
tecnolégico e natural. Tais sistemas tém por caracteristicas distribui¢ao, dinamicidade
e ubiqliidade. Para atender as expectativas de qualidade de seus indmeros usudrios,
precisam garantir da melhor forma possivel requisitos de corre¢do, dependabilidade,
seguranca, escalabilidade e evolutividade.

Um sistema distribuido € formado por multiplos nés computacionais, sejam com-
putadores, dispositivos mdveis ou embutidos com capacidade de interagir por troca de
mensagens. Pode ser caracterizado por ndo possuir uma memoria global e nem um relégio
global. Em um sistema distribuido dindmico, os n6s ndo sao conhecidos a priori, mas po-
dem entrar e sair da computacao a qualquer momento seja pela demanda de outros nds, por
desejo proprio ou por apresentarem defeito. Se o sistema for autdnomo, os nds interagem
para estabelecer a configuracio necessdria para prover um dado servigco. Casos contrario,
os nds necessitam ser pré-configurados ou inseridos manualmente na configuragao.

Um sistema ubiquo ou pervasivo € um sistema que se estende em qualquer am-
biente da vida humana [Weiser 1993]. Um exemplo pode ser uma colecao de sistemas
embarcados, conectados por uma rede sem fio, que controla todo ambiente dentro uma
casa [Davidoff et al. 2006]. Um sistema ubiquo € um sistema distribuido cujo numero de
componentes ultrapassa o nimero de pessoas interagindo com ele. De um sistema ubiquo
se espera transparéncia e passividade: idealmente seria invisivel, consciente do ambiente
e reagindo de forma inteligente as necessidades do usuério. Além dos problemas usuais
a sistemas distribuidos dinamicos, incorporar ubiqiiidade impde componentes miniaturi-
zados capazes de se comunicar sem fio e com baixo consumo de energia. Tais sistemas
precisam de protocolos de comunicagao que apdiem redes transientes com topologias ar-
bitrarias (com agentes mdveis e conexdes ad hoc).

3. Requisitos de Sistemas Computacionais para Aplicacoes Onivalentes

Para que se possa fazer uma discussdo sobre as dependéncias e conflitos entre requisitos,
¢ preciso entender profundamente cada requisito. Por isso, definiremos a seguir o que
entendemos pelos termos corregdo, dependabilidade, seguranga, escalabilidade e evolu-
tividade no contexto de requisitos de sistemas computacionais.

2264



f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

3.1. Correcao

Grande parte das pesquisas realizadas até hoje na area de correcdo referem-se a aspec-
tos funcionais, ou seja, em responder a questdo: “Como garantir que o sistema faz
o que deveria fazer, ou seja, atende a sua especificacdo?” E claro que este € um
ponto fundamental, pois se um sistema ndo se comporta como o esperado nem nas
condi¢Oes ideais (sem considerar falhas, tempo de resposta, escalabilidade, aspectos
de seguranca, ...), ele € inttil. Existem vdrias abordagens para provar correcio (fun-
cional) de sistemas, por exemplo l6gica de Hoare [Hoare 1969], verificacio de modelos
[Clarke et al. 2000, Burch et al. 1992], refinamentos sucessivos [Jones 1990]. Todas es-
sas abordagens baseiam-se na constru¢do de analise de um modelo matematico que re-
presenta o comportamento do sistema (semantica formal). As grandes limita¢des no uso
desses métodos formais de maneira mais ampla sdo o tamanho dos modelos gerados e a
impossibilidade de automatizar totalmente a analise.

Apesar dessas limitacdes, métodos para garantir a corre¢do funcional de sistemas
computacionais vém sendo utilizados cada vez mais na pratica, pois a medida em que
os sistemas ficam mais complexos, argumentacdes informais sobre a corre¢ao do soft-
ware tornam-se impossiveis. E importante salientar, também, que, nos ultimos anos,
os métodos usados para garantir a correcdo tém evoluido muito (incluindo técnicas de
reducdo de espaco de estados, interpretacdo abstrata, automatizacdo de novas técnicas
de prova, verificacdo composicional, entre outras) no sentido de minimizar as limitacdes
listadas acima.

E possivel integrar requisitos nio-funcionais em modelos computacionais formais.
Os requisitos que podem ser integrados sao aqueles que podem ser objetivamente medidos
ou verificados (por exemplo, tempo de resposta). Requisitos como usabilidade sao dificeis
de incluir em modelos formais, pois sdo conceitos bastante subjetivos. Apesar de se poder
considerar o termo “corregdo” com um sentido mais amplo, no restante deste artigo,
quando se falar em correcdo estar-se a referindo a correcdo funcional.

3.2. Dependabilidade

Dependabilidade (do inglé€s dependability), esta relacionada a confianga justificada que
se pode colocar no servi¢o oferecido por um dado sistema. Dependabilidade envolve
atributos como confiabilidade, disponibilidade, seguranga funcional critica (safety), in-
tegridade, facilidade de manutengdo e garantias de desempenho adequado mesmo na
ocorréncia de falhas aleatdrias e imprevisiveis [Avizienis et al. 2004]. Disponibilidade
e confiabilidade sdo os atributos principais. Disponibilidade refere-se a probabilidade do
sistema estar operacional no instante em que for solicitado, enquanto que a confiabilidade
refere-se a probabilidade de que um sistema funcione corretamente durante um dado in-
tervalo de tempo correspondente ao tempo de missao.

Aplicagoes distribuidas executando sobre uma rede de comunicagdo estdo sujeitas
a inameros problemas devido a baixa disponibilidade, baixa confiabilidade, dominios ad-
ministrativos multiplos, politicas de controle de recursos conflitantes, grande ocorréncia
de falhas com efeitos catastréficos sobre as aplicacdes distribuidas e equipamentos. Uma
falha pode provocar perda de estado de uma aplicacao e desconexdo do resto do sistema
impedindo avango na computagdo e levando o sistema a um estado inconsistente. Fa-
lhas podem ter diversas causas, como fadiga de componentes de hardware, interferéncias

2265



f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

ambientais, erros de projeto ou programacgao [Avizienis et al. 2004].

A darea de sistemas distribuidos é permeada de desafios. Se o ambiente distribuido
fosse totalmente livre da ocorréncia de falhas, os algoritmos distribuidos seriam simples,
diretos e eficientes. As dificuldades de executar programas em um ambiente sujeito a fa-
lhas mesmo em sistemas de pequena escala sdo conhecidas: impossibilidade de consenso
em ambientes assincronos, auséncia de reldgio global, algoritmos ineficientes em termos
de rodadas de trocas de mensagens [Girtner 1999]. Os modelos usuais de sistemas dis-
tribuidos, o modelo sincrono e o modelo assincrono, parecem cada vez mais distantes de
prover o arcabouco tedrico necessario para solucionar de forma eficiente problemas vi-
tais como consenso distribuido, eleicao de lider, geréncia de grupos de processo, visao de
estado global, consisténcia de dados replicados e vérios outros relacionados.

Para tratar desses problemas, técnicas para tornar os sistemas mais robus-
tos como multicast confidvel [Défago et al. 2004], recuperacdo a um estado anterior
[Elnozahy et al. 2002] e replicac@o [Saito and Shapiro 2005] podem ser aplicadas. Mas
as redes de comunicag@o mantém-se lentas e ndo confiaveis. Sua laténcia de comunicagdo
e sua disponibilidade nido parecem estar melhorando. Adicionalmente, dispositivos
moéveis com conectividade intermitente estao se tornando populares num ritmo acelerado
[Saito and Shapiro 2005]. Algoritmos distribuidos tolerantes a falhas criados para redes
convencionais de pequena escala, baseados em propriedades fortes e premissas pessimis-
tas, ndo escalam adequadamente [Eugster et al. 2004]. E dificil, sendo impossivel, cons-
truir ambientes para replicagdo com consisténcia forte ou sistemas de comunicacdo de
grupo com visao global e ordenacao total de mensagens em sistemas dinamicos escaldveis
porque o desempenho e a disponibilidade sdo demasiadamente penalizados quando o
nimero de nds computacionais explode.

3.3. Seguranca

Sistema dito seguro é aquele capaz de resistir a agdes maliciosas com o objetivo de
comprometer a satisfacdo de um ou mais requisitos de segurancga essenciais para o seu
funcionamento. Acdes maliciosas bem sucedidas podem (a) representar risco a Vvi-
das humanas, (b) provocar prejuizos financeiros, (c) afetar a privacidade de individuos
[Anderson 2001]. Os requisitos a serem satisfeitos sdo dependentes do tipo de aplicagdo e
do grau de seguranca exigido [Stallings 2002]. Alguns dos principais sdo: disponibilidade
(garante que o sistema estd pronto para uso quando necessario); autenticidade (determina
se a entidade é quem afirma ser); confidencialidade (protege dados contra observacao por
entidades ndo autorizadas); integridade (protege dados contra modificacdo, seja ela ma-
liciosa ou acidental); autorizacdo (restringe, com base em direitos, 0 acesso a recursos €
dados no sistema); ndo-repiidio (evita que uma entidade negue responsabilidade por a¢des
executadas no sistema).

Satisfazer requisitos como os supracitados implica incorporar ao sistema uma
combinacdo de mecanismos como autenticacdo, controle de acesso, auditoria e crip-
tografia. Uma vez “protegido”, € muito dificil, se ndo impossivel, demonstrar formal-
mente que o sistema ndo apresenta vulnerabilidades.

Pesquisas t€ém procurado propor formas sistemadticas para o tratamento de requisi-
tos de seguranca em todo o ciclo de vida de sistemas [Devanbu and Stubblebine 2000b].
Uma abordagem atrativa consiste em estender padroes como UML para permitir a

2266



f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

modelagem de aspectos como privacidade e integridade ja desde o inicio do processo
[Lodderstedt et al. 2002].

O desenvolvimento de sistemas, sobretudo os de larga escala, tem sido marcado
pela integracdo de componentes de diversas naturezas e procedéncias. Ao mesmo tempo
em que este modelo € atrativo, ele expde os sistemas resultantes a uma nova dimensao de
riscos. As vulnerabilidades sdao decorrentes da nao divulgacido — para ndo comprometer a
propriedade intelectual do fornecedor — de detalhes suficientes que permitam caracterizar
como os componentes operam para satisfazer determinados requisitos de segurancga. Entre
as alternativas para contornar essa limitacao, destaca-se a investigacdo de técnicas gray-
box [Devanbu and Stubblebine 2000a] que permitem aos fornecedores de componentes
informar detalhes suficientes sobre o processo de verificacdo de seus componentes e, ao
mesmo tempo, proteger sua propriedade intelectual.

Sobre a aplicacdo de métodos formais na drea de segurancga, ressalta-se que
0os mesmos nao permitem afirmar que um sistema é 100% seguro [Wing 1998]. A
especificacdo formal de um sistema requer que sejam definidas as premissas sobre o am-
biente onde o sistema serd executado. Uma prova de corretude s6 € vélida se todas as
premissas forem satisfeitas. O atacante, neste contexto, procura violar essas premissas.
Caso seja bem sucedido em comprometer pelo menos uma, a prova deixa de ser vélida.
Diante de tal problematica, a comunidade tem optado por investigar métodos especificos,
cuja aplicacdo se restringe a verificacdo de requisitos pontuais de seguranca (resultando
em grande variedade de formalismos). Ainda, as verificacdes sao realizadas sobre mode-
los que, em geral, exigem um conjunto de simplificacdes para serem computdveis, além de
ndo capturarem vulnerabilidades a que a implementagdo dos modelos esta sujeita. Para
minimizar este problema, duas abordagens vém sendo investigadas: emprego de veri-
ficadores sobre abstracOes derivadas automaticamente do cddigo fonte do sistema sob
andlise e “injecao” coordenada de ataques ao sistema com o objetivo de expor problemas
de seguranca.

3.4. Escalabilidade

Formalmente a nogdo de ser escaldvel ndo é facil de definir e freqlientemente
precisa considerar a aplicacdo concreta que precisa que ser escalavel [Hill 1990,
Rana and Stout 2000]. No contexto desse artigo consideramos um sistema escaldvel se
ele € capaz de satisfazer maior demanda ou prestar um volume maior de servicos com
um aumento adequado de recursos. Para um sistema distribuido, uma das caracteristicas
mais importantes € ser escaldvel no nimero de componentes envolvidos: o sistema deve
manter, por exemplo, o mesmo nivel de disponibilidade (ou ao menos garantir que a
disponibilidade degrada pouco) a medida em que o niimero de componentes aumenta.

Um outro aspecto da escalabilidade sdo técnicas para mitigar ou esconder efeitos
de caracteristicas que nao escalam devido a restricdes fundamentais. A laténcia de
comunicacao, por exemplo, € limitada pela velocidade de transmissao de sinais. Portanto,
técnicas como “overlapping communication and computation” para esconder laténcias
em tarefas computacionais [Sancho et al. 2006], redudancia e “caching” tornam-se im-
portantes no desenvolvimento de algoritmos.

A maioria dos sistemas atuais sdo pouco escalaveis. Entre os mais escaldveis sdo a
World Wide Web (approx. 4 x 10° nés) e o computador paralelo Blue Gene L (approx. 13 x

2267



f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

10* processadores) [ISC 2007, TOP 500 2006]. Para implementar os sistemas pervasivos
do futuro, sistemas locais ja vao atingir esse numero de componentes: por exemplo um
edificio com 100 apartamentos € com componentes distribuidos em todo edificio (em
eletrodomésticos, vestidos, canetas, etc.) facilmente pode conter ~ 10° componentes.

3.5. Evolutividade

O requisito de evolutividade de software [Duchien et al. 2006, Cazzola et al. 2006] tem
por objetivo diminuir esforcos e custos na manutencdo e na reestruturacdo de soft-
ware visando corrigir erros ou visando atender mudancas de requisitos funcionais e nao
funcionais. Estas técnicas envolvem, nos casos mais simples, modificacao de codigo,
recompilagdo e nova distribui¢do. As técnicas existentes hoje para tratar a evolugdo de
software t€m varias limitagdes: sdo dependentes das linguagens de programagdo, ndo
escalam, sdo dificeis de integrar e ndo possuem embasamento tedrico.

Num contexto em que sistemas computacionais se tornardo cada vez mais
onipresentes, exercendo funcdes essenciais, essa manutengdo e reestruturagdo tera um
custo cada vez maior, uma vez que especificacdes e ambientes estardo em constante
modificacdo. Serd, portanto, necessdrio o desenvolvimento de técnicas que permitam
a evolucgdo do software ao longo do tempo, com minima interferéncia de programadores.

4. Interdependéncias entre Requisitos

Correcdo, disponibilidade, seguranga, escalabilidade e evolutividade sido requisitos de
quase todos os sistemas computacionais do presente e de um futuro préximo. Como
visto na Secdo 3, sistemas computacionais tradicionais ja apresentam desafios impor-
tantes para o atendimento a estes requisitos de forma isolada. Quando sistemas ubiquos
sdo considerados, o atendimento simultaneo a todos estes requisitos sera essencial e pode
se tornar impraticavel. De fato, estes sistemas terdo dimensdes bem maiores (em nimero
e complexidade) as atuais, com caracteristicas de interdependéncia e cooperagdo entre um
grande nimero de componentes em diferentes niveis de abstragdo. Além disso, os com-
ponentes destes sistemas serdo projetados isoladamente (provavelmente em momentos
distintos) e, em varios casos, sem uma ligacdo explicita (fisica ou l6gica) ou mesmo pre-
visivel. Como serd visto adiante, nestas condi¢des o atendimento de um requisito implica
ou exige o relaxamento de outro, e mecanismos para auxilio a tomada de decisdo precisam
ser cuidadosamente definidos. Por outro lado, esta divisdo do sistema como um todo em
partes operacionais autbnomas pode permitir a definicdo de compromissos e espacos fini-
tos (ou limitados) para exploragdo das alternativas de projeto que levem ao atendimento
de determinadas condi¢des ou grupos de condi¢des de acordo com as demandas de cada
aplicacdo. Neste caso, alguns requisitos impdem um alto nivel de dependéncia em relagao
a outros para que o sistema como um todo responda a um conjunto de requisitos.

Alguns conflitos e dependéncias entre os requisitos dos sistemas onivalentes sao
discutidos abaixo.

4.1. Correcao e demais requisitos

Conforme explicado na Secdo 3, para se garantir o requisito de corre¢do de um sistema
€ preciso se definir um modelo matemadtico que representa seu comportamento. A partir
deste modelo, pode-se elaborar um conjunto de asser¢des que provem sua cOrre¢ao ou
apontem eventuais problemas.

2268



f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

A medida em que a complexidade do sistema computacional aumenta, torna-se
mais dificil modelar suas funcionalidades ou comportamento esperado de uma forma
clara e ndo ambigua. Dependabilidade e segurancga sdo transversais aos requisitos fun-
cionais, mas eles podem afetar significativamente o comportamento de um sistema. Para
se garantir a corre¢do em sistemas com requisitos de dependabilidade e seguranca, ndo
basta apenas analisar cada requisito separadamente. Normalmente, o tratamento desses
requisitos ocorre espalhado por todos os médulos que compdem um sistema (incluindo
hardware e software), modificando o comportamento do sistema caso uma situacdo de
excecdo (falha ou violagdo de seguranca) seja detectada. Existem abordagens de de-
senvolvimento de software (por exemplo, programacao orientada a aspectos) que tentam
construir modelos onde estes dois requisitos convivam de forma integrada, mas ainda nao
ha uma base formal s6lida para essas novas abordagens.

A previsdo de que um nimero cada vez maior de componentes funcionais partic-
ipardo de um mesmo sistema (escalabilidade) s6 confirma que o nimero de modelos e
assercOes possiveis crescerd a um passo provavelmente bem maior que os avangos feitos
nos métodos tradicionais de verificacdo. Apesar das limitagOes de se analisar a correcao
de sistemas muito grandes, nao necessariamente essas provas nao escalam. Por exemplo,
se € mostrado que para uma determinada solucdo do problema dos filésofos jantando ndo
ha postergacdo indefinida (ou seja, nenhum filésofo morre de fome), esta prova valeria
para sistemas com 5, 10, 1000 filosofos, desde que os “novos” filosofos se comportem
exatamente como os que j4 existem, e a configuracao inicial da mesa seja andloga (um
palito entre cada dois filésofos). Porém, sistemas distribuidos sdo naturalmente passiveis
de modificacdo (evolutividade). A funcionalidade do sistema pode ser definida dinami-
camente, de acordo com os nodos que participam de uma comunicacdo em um dado
momento, por exemplo. Além disso, a quantidade de componentes que interagem em
uma computacdo pode ser nao apenas variavel, mas bastante numerosa. A convivéncia de
componentes construidos em diferentes momentos e sob premissas e condi¢des distintas
traz um grau de variabilidade de funcionalidades e cooperacdes possiveis que dificilmente
podem ser previstas. Continuando com a analogia com o problema dos fildsofos, con-
sidere por exemplo a inclusdao do tempo de resposta como um novo requisito. Neste caso,
obviamente provas para sistemas pequenos dificilmente escalam para instancias maiores
(por exemplo, se o requisito de tempo for que o filésofo ndo pode passar mais que 12
horas sem comer, um sistema que tem 5 fildsofos pode satisfazer esse requisito, mas se
colocarmos 1000 filésofos, o sistema pode ndo conseguir atender essa restricdo). Se mais
filésofos forem incorporados ao longo do jantar, o sistema pode mudar totalmente sua
configuracdo original.

Especificar propriedades funcionais e verificd-las € praticamente invidvel para sis-
temas com capacidade de evolugcdo. A complexidade de sistemas evolutivos se justifica
na medida em que estdo inseridos em situacdes de constantes modificagdes tanto de am-
biente como de requisitos. Outras no¢des de correcdo serdo necessarias: como em uma
sociedade, agentes deverdo ter a capacidade de se adequar a normas pré-definidas, de-
verdo respeitar nogdes de hierarquia e, ao longo do tempo adquirir ou perder confiancga
dos demais agentes de acordo com o seu comportamento social. Dado que estabelecer
correcdo funcional serd extremamente dificil, sendo impossivel, as garantias de qualidade
dos sistemas computacionais virdo, em boa parte, da verificacao de aspectos do seu com-
portamento social.

2269



f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

Pode-se observar, entdo, que o atendimento aos requisitos de escalabilidade e evo-
lutividade estdo em conflito com o requisito de corre¢do. Quanto mais escaldvel e evo-
lutivo o sistema, mais dificil se torna a verificagdo de sua correcdo. Requisitos de de-
pendabilidade e seguranca, por outro lado, devem ser considerados de forma integrada ao
requisito de corre¢dao. Caso contrario, a correcao do sistema sob determinadas condi¢des
nao podera ser assegurada.

4.2. Dependabilidade e demais requisitos

A experiéncia com o atendimento dos requisitos de dependabilidade em sistemas es-
caldveis € relativamente recente e estd longe de ser estdvel. Muitos dos atributos de
dependabilidade necessarios a sistemas distribuidos correspondem a propriedades fortes
e, portanto, nao escalam adequadamente, ou seja, com custo administravel. Sem esque-
cer que sistemas que escalam de centenas a milhdes de nés dinamicamente poderiam
ser enquadrados no modelo de computagdo distribuida assincrona. Neste modelo ndo é
possivel distinguir um computador atrasado de outro em colapso ou particionado. Nao
¢ possivel usar time-out para deteccdo de falhas. Nao é possivel chegar a consenso em
sistemas assincronos sujeitos a falhas. Em sistemas distribuidos, consenso € uma necessi-
dade recorrente: para eleicdo de lider, cada compor grupos de participantes, para diagnos-
ticar sub-sistemas com defeito, para ordenacao total de mensagens, para consisténcia de
dados replicados e varias outras atividades essenciais. Se tentdssemos tornar sistemas es-
caldveis, impondo sincroniza¢do de reldgios através de onerosos protocolos baseados em
troca de mensagens, ainda assim, consenso € uma propriedade forte e o custo relacionado
seria demasiado para sistemas dindmicos escalaveis.

Apesar da possibilidade de evolugdo do sistema onivalente tanto em quantidade
quanto em qualidade (funcionalidades disponiveis) de nodos computacionais, a garantia
de desempenho e confiabilidade destes sistemas dindmicos serd um grande desafio. Dis-
positivos méveis com conectividade intermitente e com diferentes niveis de garantias de
dependabilidade podem comprometer a confiabilidade de todo o sistema.

Por fim, associando-se dependabilidade com seguranca computacional pode-se
obter um ambiente robusto para execugdo de aplicacdes distribuidas. E sabido que di-
versas brechas na seguranca de sistemas ocorrem devido a modelos de protocolos de
comunicacao, politicas de controle de recursos, etc, que afetam da mesma forma a depen-

dabilidade do sistema.

Portanto, pode-se observar um conflito importante entre os requisitos de dependa-
bilidade e escalabilidade e evolutividade dos sistemas onivalentes. Por outro lado, o re-
quisito de seguranca afeta e € afetado pela dependabilidade. Falhas de seguranca podem
comprometer a dependabilidade do sistema, mas decisdes que garantam a dependabili-
dade também podem afetar os niveis de seguranca que podem ser assegurados.

4.3. Seguranca e demais requisitos

Seguranca e escalabilidade s@o aspectos que, dificilmente, convivem harmoniosamente no
projeto e desenvolvimento de sistemas de qualidade [Barcellos and Gaspary 2006]. Por
exemplo, para gerenciar identidades e evitar que um nodo malicioso assuma multiplas
identificagdes em um sistema de larga escala, como os sistemas peer-to-peer (P2P), é pre-
ciso langar mdo de uma autoridade certificadora de confianga [Douceur 2002]. Tal abor-
dagem, contudo, € pouco indicada para sistemas distribuidos com potencial para lidar com

2270



f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

milhdes de nodos por representar um “gargalo”. Mesmo que se relaxe o aspecto escalabili-
dade, o emprego de autoridade certificadora dificulta a satisfacdo do aspecto de tolerancia
a falhas, posto que tal autoridade configura ponto central de falhas. Por outro lado, caso
se admita como premissa a possibilidade de um usudrio assumir multiplas identificacoes,
entdo outros mecanismos como replicagdo (comumente utilizados para conferir confia-
bilidade e disponibilidade ao sistema) acabam comprometidos. No caso de um sistema
de armazenamento de arquivos em rede, por exemplo, as multiplas réplicas de um objeto
podem ficar sob controle de um tunico nodo malicioso.

Em relacdo ao requisito de evolutividade, pode-se observar nao um conflito, mas
uma relacdo de interdependéncia. Em um sistema dindmico, a definicdo de novas fun-
cionalidades ou mudancas sobre um sistema que ja se encontra em funcionamento pode
acarretar em inconsisténcias ou alteracdoes de determinadas politicas que garantiam a
seguranca do sistema original. A dificuldade, neste caso, estd na previsibilidade de como
uma nova funcionalidade (ou a modificacdo de uma funcionalidade ou implementacao
existente) impactard o sistema em seus diversos niveis. Por exemplo, ao se trocar a
implementa¢do de um algoritmo de criptografia de software para hardware, deve-se pre-
ver que a garantia de seguranca dada pelo primeiro nao serd a mesma quando implemen-
tada por outro componente. Dessa forma, se se deseja um sistema evolutivo e seguro, 0s
mecanismos que garantem a evolutividade ndo podem deixar de considerar as eventuais
mudancas nas garantias de seguranca.

4.4. Escalabilidade e Evolutividade

Estes dois requisitos apresentam uma relacao de interdependéncia no caso dos sistemas
onivalentes definidos no contexto deste artigo. Sistemas onivalentes pressupdem, de
acordo com o que foi dito na Secdo 2, a possibilidade de inser¢do de nodos computa-
cionais heterogéneos dinamicamente e o uso do sistema computacional em um conjunto
cada vez maior e mais diverso de aplicacdes. A construcio deste tipo de sistema s6
serd vidvel economicamente se o paradigma do reuso for intensamente utilizado. Reuso
de hardware se dd pela constru¢ao de plataformas de processamento, dispositivos com
um conjunto basico de componentes de hardware que sejam facilmente programéveis
(processadores, 16gicas reconfiguraveis, etc). Reuso de software se da pela definicdo de
programas também parametrizaveis ou de ficil reprogramacgdo, ou ainda pela possibili-
dade de se integrar novos programas a uma unidade funcional sem tird-la de operagao
(reprogramacdo em funcionamento). Dessa forma, o requisito de escalabilidade s serd
atendido se o requisito de evolutividade também o for.

5. Em Busca de um Modelo para Construcao de Aplicacoes Onivalentes

Na se¢Oes anteriores descrevemos as aplicagdes onivalentes, os requisitos de qualidade
que consideramos essenciais para este tipo de sistemas, bem como as interdependéncias
entre esses requisitos. Resumindo, podemos chegar as seguintes conclusoes:

e Ossistemas distribuidos, dindmicos e ubiquos sdo cada vez mais freqiientes e ten-
dem a controlar vérias atividades potencialmente criticas. Portanto, precisamos
poder depositar um grau de confianca neles, que depende do qudo critico o sis-
tema €.

e Os problemas relacionados a falhas nos componentes fisicos (tanto no sentido de
componentes deixarem de funcionar como gerarem resultados incorretos) serao

2271



f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

cada vez mais freqiientes, e a ponto de ndo poderem ser desconsiderados no pro-
jeto de sistemas de software que executam nesses componentes.

e Usualmente os sistemas distribuidos, dinamicos e ubiquos sdo compostos por um
nimero imenso de componentes (de software e hardware). Portanto, o desenvolvi-
mento de sistemas deve ser guiado pelas praticas de “dividir para conquistar”
(desenvolvimento baseado em componentes) e niveis de abstragao.

e Determinados requisitos de qualidade devem ser tratados de forma conjunta, pois
existem fortes dependéncias entre eles. E o caso da correcio, dependabilidade e
seguranca, da seguranca e evolutividade e da escalabilidade e evolutividade, por
exemplo.

e Alguns requisitos sdo conflitantes e também precisam ser considerados de forma
conjunta (dependabilidade e evolutividade, correcdo e evolutividade).

e O requisito da escalabilidade pode dificultar enormemente o atendimento si-
multineo de outros requisitos (correcao, dependabilidade e seguranca).

A partir desta andlise, pode-se inferir que ndo € possivel atender a todos os re-
quisitos de qualidade simultaneamente para sistemas distribuidos, dindmicos e ubiquos.
Nao ha como garantir, por exemplo, que o hardware nao vai falhar (deixar de fun-
cionar ou gerar resultados imprecisos) ou que o software esteja livre de erros ou imune
a ataques a qualquer momento. Devido as dimensoes e complexidade do sistema oni-
valente, qualquer método que vise protecdo total terd um custo impraticivel. Dessa
forma, novos métodos de projeto, verificacdo e teste devem ser definidos para sistemas
distribuidos, dinamicos e ubiquos. Devem estar previstas etapas de exploracao do espaco
de projeto, com o auxilio de ferramentas de apoio a tomada de decisdes, para que um
conjunto de compromissos entre custos e niveis de qualidade sejam definidos e imple-
mentados de acordo com as demandas de cada aplicagdo alvo. Portanto, a questdo que se
coloca agora é:

Como podemos desenvolver sistemas distribuidos, dindmicos e ubiquos de maneira a po-
dermos associar um “grau ou funcdo de confiabilidade” ao produto final?

Para responder essa questdo, uma série de modificagdes no processo de desen-
volvimento de sistemas é necessaria. Dentre elas, trés sdo consideradas fundamentais:
(i) trabalhar com modelos probabilisticos, pois 0 que queremos saber na realidade €
qual a probabilidade do sistema funcionar sem defeitos; (ii) modificar o desenvolvi-
mento baseado em componentes, em contratos, etc, para incluir, nas interfaces/contratos,
informacdes sobre o nivel de garantia que o componente oferece com relacdo as varias
caracteristicas consideradas no sistema (dependabilidade, seguranga, escalabilidade, ...);
(iii) verificar corre¢do levando em consideracdo as outras caracteristicas do sistema, ou
seja, deve haver uma integracdo dos requisitos impostos por algumas caracteristicas (pois
vimos, por exemplo, que corre¢do depende da seguranca ou da disponibilidade de um
sistema).

A seguir, citaremos as pesquisas que estdo sendo realizadas no Instituto de
Informatica da UFRGS que contribuem para a solu¢do do problema de desenvolver
aplicagdes onivalentes confidveis.

A nog¢do de probabilidade para a execugdo de determinadas tarefas deve ser in-
cluida ja na fase de especificacdo de software, pois a no¢do de correcao depende da

2272



f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

especificacdo. Sendo assim, métodos de especificacdo de sistemas distribuidos que in-
cluem nog¢des de probabilidades sdo necessarios, como por exemplo, gramdticas de grafos
estocasticas [Mendizabal et al. 2005]. Usando este tipo de modelos, pode-se analisar pro-
priedades do tipo: “Qual a probabilidade do sistema atingir um determinado estado?”,
que sdo bastantes relevantes em aplicacdes onivalentes.

Os comportamentos de componentes de aplicagdes distribuidas raramente podem
ser descritos por fungdes. Eles sdo melhor descritos como interacdes entre 0 componente
e seu ambiente. Portanto, a interface que descreve de maneira abstrata a funcionalidade
de um desses componentes deve conter os padrdes de interacao nos quais 0 componente
espera de engajar [Ribeiro et al. 2006]. Além disso, essas interfaces devem expressar,
também de maneira probabilistica, e provavelmente através de funcdes dependendo do
custo/desempenho esperados e dos graus de confiabilidade dos componentes utilizados,
o grau de satisfacdo do componente em relagdao a cada requisito (corre¢do, seguranga,
dependabilidade, ...). Do ponto de vista da arquitetura do sistema, precisamos prover
técnicas de composi¢do que permitam nao somente gerar um modelo comportamental do
sistema, mas também permitam calcular a qualidade do sistema com base nas qualidades
oferecidas por seus componentes. [sso permitiria, por exemplo, desenvolver técnicas de
integracdo e otimizacdo para, dados um conjunto de componentes alternativos, gerar o
melhor sistema (ou seja, o que melhor se adequa aos graus de confiabilidade dos requisi-
tos, levando em consideracao o custo e desempenho esperados).

No aspecto de evolutividade de sistemas computacionais, técnicas de Inteligéncia
Artificial, mas precisamente de Sistemas Multiagentes, serdo de extrema utilidade. Sis-
temas tipicamente serdo compostos de vdrios agentes, provavelmente desenvolvidos de
forma independente. Estes agentes deverdo cooperar, negociar € competir entre si
por recursos € servicos de forma mais sofisticada e complexa do que verificado atual-
mente. Um sistema computacional poderd ser visto como uma sociedade com toda a
sua complexidade onde fatores tais como papéis, relacdes de hierarquia e confianca,
e crengas serdao determinantes. Propostas iniciais de modelos tedricos incluindo al-
gumas caracteristicas relevantes para evolugdo de software podem ser encontradas em
[Vieira et al. 2007, Bordini and Moreira 2004] .

Diversos itens abordados neste texto sdo cobertos, até certo ponto, pelo conceito
de computacdo autondmica onde um sistema autondmico € capaz, por exemplo, de se
recuperar de falhas, se auto-otimizar, e ser consciente do seu proprio estado interno. Os
principios da computagdo autondmica estao sendo investigados na UFRGS na perspectiva
do gerenciamento de sistemas altamente distribuidos e de alcance mundial, mais particu-
larmente em relacdo aos sistemas peer-to-peer (P2P). Acredita-se que sistemas de soft-
ware desenvolvidos sob esta perspectiva terdo uma chance maior de estarem alinhados
com os desafios anteriormente considerados.

No que se refere a seguranca, sobretudo em sistemas de larga escala, tem-se bus-
cado investigar técnicas que permitam satisfazer requisitos cruciais de seguranga — como
autenticidade e autorizacdo — sem comprometer outros requisitos ndo funcionais e ou-
tros aspectos importantes, tais como escalabilidade e tolerancia a falhas. Nesse contexto
particular, um dos focos de investigacao tem sido seguranca em aplicacdes peer-to-peer
[Barcellos and Gaspary 2006], que constituem uma alternativa promissora para o desen-
volvimento de aplicagdes de grande porte, potencialmente compostas por milhares de

2273



ff\;-"'f-\ Anais do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

usuarios.

Injecao de falhas ¢ um método experimental de teste que complementa testes fun-
cionais e visa especificamente validar o sistema sob condicdes de falha. Para sistemas
distribuidos de larga escala, em que os participantes interagem unicamente por troca de
mensagens, injetam-se falhas nos subsistemas de comunicacdo e observa-se como o sis-
tema reage a essas falhas [Jacques-Silva et al. 2006] . Desta forma a disponibilidade e
confiabilidade do sistema podem ser aferidas. Emular tdo proximo quanto possivel falhas
reais de comunicac¢do em sistemas de larga escala, permitir o controle do experimento
de forma eficiente diminuindo a interferéncia e intrusividade das ferramentas de injecao
de falhas e monitoramento e extrair medidas apropriadas para a validacdo de sistemas
onivalentes sujeitos a falhas sdo os desafios enfrentados na pesquisa nesta area.

Técnicas de teste integrado de hardware e software serdo essenciais para avaliar
o funcionamento do sistema em presenca de falhas nos dois niveis de abstracdo. Es-
tas técnicas devem garantir um teste de qualidade e de baixo custo. Teste baseado em
software para processadores e estruturas de interconexdo foram desenvolvidos recente-
mente no grupo e estdo sendo expandidos atualmente. Da mesma forma, o grupo possui
experiéncia com o planejamento do teste a partir do inicio do projeto e a exploracao
do espaco de projeto e teste de uma sistema desde as fases iniciais de desenvolvi-
mento [Cota and Liu 2006]. Por fim, técnicas para garantir a confiabilidade de um sis-
tema de hardware durante seu funcionamento sao também alvo de pesquisas deste grupo
[Frantz et al. 2006].

6. Conclusoes

Sistemas computacionais onipresentes de qualidade possuem caracteristicas de dificil es-
calabilidade, que imporao severas dificuldades ao desenvolvimento destes futuros sis-
temas. Pesquisas feitas por grupos multidisciplinares que levem em conta interde-
pendéncia entre os diferentes requisitos serdo a chave para a constru¢cdo das aplicagdes
que dominardo a sociedade futura. Os modelos e abstracdes hoje utilizados deverdo ser
substituidos por outros onde a integracdo de solugdes prevaleca sobre a otimizacao de um
unico parametro.

Neste artigo foi dado um primeiro passo na dire¢cdo de um método para desen-
volvimento de sistemas computacionais onivalentes: identificar conflitos e dependéncias
entre os requisitos considerados fundamentais para este tipo de sistemas: corre¢do, depen-
dabilidade, seguranca, escalabilidade e evolutividade. Além disso, foram sugeridas linhas
de pesquisa que podem levar ao desenvolvimento de aplicacdes onivalentes de qualidade.

Referéncias
Anderson, R. J. (2001). Security Engineering: A Guide to Building Dependable Dis-
tributed Systems. Wiley.

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. E. (2004). Basic concepts
and taxonomy of dependable and secure computing. IEEE Trans. Dependable Sec.
Comput., 1(1):11-33.

Barcellos, M. P. and Gaspary, L. P. (2006). Fundamentos, Tecnologias e Tendéncias rumo
a Redes P2P Seguras, pages 187-244. Atualizacdes em Informatica. PUC-Rio, Rio de
Janeiro.

2274



f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

Bordini, R. H. and Moreira, A. F. (2004). Proving BDI properties of agent-oriented pro-
gramming languages: The asymmetry thesis principles in AgentSpeak(L). Annals of
Mathematics and Artificial Intelligence, 42(1-3):197-226. Special Issue on Computa-
tional Logic in Multi-Agent Systems.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. J. (1992).
Symbolic model checking: 10?° states and beyond. Information and Computation,
98(2):142-170.

Cazzola, W., Chiba, S., Coady, Y., and Saake, G., editors (2006). Proceedings of RAM-
SE’06, 3rd ECOOP Workshop on Reflection, AOP and Meta-Data for Software Evolu-
tion Nantes, France, 4th of July.

Clarke, E., Grunberg, O., and Peled, D. (2000). Model Checking. MIT Press.

Cota, E. and Liu, C. (2006). Constraint-driven test scheduling for NoC-based systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
25:2465-2478.

Davidoff, S., Lee, M. K., Yiu, C., Zimmerman, J., and Dey, A. K. (2006). Principles of
smart home control. In Ubicomp 2006, LNCS 4206, pages 19-34.

Défago, X., Schiper, A., and Urban, P. (2004). Total order broadcast and multicast algo-
rithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372—-421.

Devanbu, P. T. and Stubblebine, S. (2000a). Cryptographic verification of test coverage
claims. IEEE Transactions on Software Engineering, 26(2):178—192.

Devanbu, P. T. and Stubblebine, S. (2000b). Software engineering for security: a roadmap.
In International Conference on Software Engineering, Proceedings of the Conference
on the Future of Software Engineering, pages 227-239. ACM Press.

Douceur, J. R. (2002). The sybil attack. In Peer-to-Peer Systems: First Internation-
alWorkshop, IPTPS 2002 Cambridge, MA, USA, March 7-8, 2002. Revised Papers,
pages 251-260. Springer Berlin / Heidelberg.

Duchien, L., D’Hondt, M., and Mens, T., editors (2006). Proceedings of the International
ERCIM Workshop on Software Evolution, Lille, France, 6-7th of April.

Elnozahy, E. N., Alvisi, L., Wang, Y.-M., and Johnson, D. B. (2002). A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375-408.

Eugster, P. T., Guerraoui, R., Kermarrec, A.-M., and Massoulié, L. (2004). Epidemic
information dissemination in distributed systems. IEEE Computer, 37(5):60-67.

Frantz, A. P., Kastensmidt, F. L., Carro, L., and Cota, E. (2006). Dependable network-on-
chip router able to simultaneously tolerate soft errors and crosstalk. In Proceedings of
the IEEE International Test Conference.

Girtner, F. C. (1999). Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Comput. Surv., 31(1):1-26.

Hill, M. D. (1990). What is scalability? SIGARCH Comput. Archit. News, 18(4):18-21.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun. ACM,
12(10):576-580.

2275



f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
T e SEMISH o X0V Seminario Integrado de Software e Hardware Rio de Janeiro, R

ISC (2007). Internet domain survey. Internet system consortium. http://www.isc.
org.

Jacques-Silva, G., Drebes, R. J., Gerchman, J., da Trindade, J. M. E., Weber, T. S., and
Jansch-Porto, 1. (2006). A network-level distributed fault injector for experimental
validation of dependable distributed systems. In COMPSAC (1), pages 421-428.

Jones, C. (1990). Systematic Software Development using VDM. Prentice Hall, 2nd
edition.

Lodderstedt, T., Basin, D., and Doser, J. (2002). SecureUML: A UML-based modeling
language for model-driven security. In UML 2002 - The Unified Modeling Language:
Sth International Conference, Dresden, Germany, September 30 - October 4, 2002.
Proceedings, pages 426—441. Springer Berlin / Heidelberg.

Mendizabal, O., Dotti, F., and Ribeiro, L. (2005). Stochastic object based graph gram-
mars. In 8th Brazilian Symposium on Formal Methods (SBMF), pages 128—143.

Rana, O. F. and Stout, K. (2000). What is scalability in multi-agent systems? In AGENTS
"00: Proceedings of the fourth international conference on Autonomous agents, pages
56-63, New York, NY, USA. ACM Press.

Ribeiro, L., Dotti, F. L., Santos, O., and Pasini, F. (2006). Verifying object-based graph
grammars: An assume-guarantee approach. Software and Systems Modeling, 5:289—
312.

Saito, Y. and Shapiro, M. (2005). Optimistic replication. ACM Comput. Surv., 37(1):42—
81.

Sancho, J. C., Barker, K. J., Kerbyson, D. J., and Davis, K. (2006). Quantifying the po-
tential benefit of overlapping communication and computation in large-scale scientific
applications. In SC 2006.

Stallings, W. (2002). Network Security Essentials. Prentice Hall, 2nd edition.
TOP 500 (2006). TOP500 Supercomputer Sites. http://www.top500.org.

Vieira, R., , Moreira, A. ., Wooldridge, M., and Bordini, R. (2007). On the formal seman-
tics of speech-act based communication in an agent-oriented programming language
(aceito para publicacdo). Journal of Artificial Intelligence Research.

Weiser, M. (1993). Some computer science issues in ubiquitous computing. Commun.
ACM, 36(7):74-84.

Wing, J. M. (1998). A symbiotic relationship between formal methods and security. In
Computer Security, Dependability and Assurance: From Needs to Solutions. Proceed-
ings, pages 26-38. IEEE Computer Society Press.

2276





