
Em Direção a um Modelo para Desenvolvimento de Sistemas
Computacionais de Qualidade para Aplicações Onivalentes

Álvaro Moreira, Érika Cota, Leila Ribeiro, Luciano Gaspary,
Luigi Carro, Marcus Ritt, Taisy Weber

1Instituto de Informática
Universidade Federal do Rio Grande do Sul (UFRGS)

{afmoreira,erika,leila,paschoal,carro,mrpritt,taisy}@inf.ufrgs.br

Resumo. Aplicações computationais atuais e do futuro são marcadas, com uma
freqüencia crescente, por caracterı́sticas como distribuição, dinamicidade e
ubiqüidade. O desenvolvimento de sistemas computacionais de qualidade para
aplicações com essas caracterı́sticas, chamadas aqui de aplicações onivalentes,
demanda uma combinação de requisitos muitas vezes conflitantes ou depen-
dentes entre si. Requisitos de dependabilidade, correção, segurança, escalabili-
dade e evolutividade fazem parte das necessidades das aplicações onivalentes.
Neste artigo discutimos os conflitos gerados pela integração desses diferentes
requisitos em um mesmo sistema, e esboçamos as necessidades de um modelo
de desenvolvimento de software de qualidade para aplicações onivalentes.

Abstract. Distribution, Dynamicity and Ubiquity are becoming prevalent char-
acteristics in computing applications. The development of high quality compu-
tational system for applications that have these characteristics, called omniva-
lent applications here, demands a combination of requirements, that are often
conflicting or interdependent. For example, dependability, correctness, security,
scalability, and evolutionability are extremely relevant requirements of omniva-
lent applications. In this paper, we discuss the conflicts generated by the inte-
gration of these requirements in a single computational system and sketch the
needs of a software development method suitable for developing high quality
omnivalent applications.

1. Introdução
Sistemas computacionais estão cada vez mais intrusivos nas nossas vidas. Inicialmente
restritos a grandes instituições, as pessoas tinham contato somente com as listagens decor-
rentes das execuções dos programas em grandes máquinas. Na medida que seus compo-
nentes foram se tornando mais baratos e com maior velocidade, novos sistemas com-
putacionais foram surgindo e nossa dependência a eles foi aumentando acentuadamente
(computadores de mesa, controladores programáveis para várias aplicações industriais,
computadores embarcados nos carros, nos celulares e em inúmeros outros dispositivos
cotidianos). Para o futuro, prevê-se uma realidade onde processadores estarão ainda mais
integrados ao cotidiano de maneira quase transparente, idealmente nos informando, nos
apoiando e nos protegendo ou, no pior cenário, nos enganando e prejudicando.

Em algumas aplicações, essa dependência não é crı́tica, apesar de potencialmente
perturbadora. Por exemplo, se um sistema de correio eletrônico não funcionar durante

2262



um dia, haverá muito incômodo, mas como o sistema é assı́ncrono por natureza, espera-
se que algumas horas de atraso não sejam mais que apenas um incômodo. Em outras
aplicações, como controle de tráfego aéreo, um alto grau de confiança nos sistemas com-
putacionais é essencial. Essas aplicações crı́ticas são cada vez mais freqüentes, e mesmo
para aplicações não consideradas crı́ticas um grau mı́nimo de qualidade é necessário, pois
os usuários estão se mostrando cada vez mais exigentes. Em uma imagem futurı́stica
muito provável, todos os carros serão equipados com sistemas de piloto automático, que
evitarão colisões através de sensores e comunicação com outros veı́culos enquanto os pas-
sageiros lêem as últimas notı́cias e compram ações. Falha de um controlador autônomo
pode levar a desastres em cascata, mesmo em aplicações não crı́ticas não correlacionadas.

Os sistemas computacionais estão se tornando altamente distribuı́dos, compos-
tos de inúmeros componentes autônomos que se comunicam através de sinais e protoco-
los. Neste cenário, há diversos problemas relativos a falhas tanto de software quanto de
hardware, segurança, confiabilidade do sistema como um todo, configuração dinâmica e
não conhecida a priori, componentes heterogêneos de inúmeros fabricantes (muitos sem
especificação conhecida ou comportamento previsı́vel).

A questão que abordaremos neste artigo é: quais os desafios que a comunidade de
computação deve enfrentar para construir sistemas distribuı́dos, heterogêneos, escaláveis,
construı́dos a partir de componentes imperfeitos, mas robustos o suficiente para que pos-
samos realmente confiar no serviço provido por esses sistemas?

Cada sistema computacional tem um conjunto diferente de requisitos que devem
ser satisfeitos, dependente da aplicação ao qual esse sistema se destina. Os requisitos nor-
malmente são classificados em funcionais (relativos ao comportamento esperado do sis-
tema - do tipo “dadas entradas, o sistema deve gerar as saı́das esperadas”) e não-funcionais
(usabilidade, disponibilidade, escalabilidade, tempo de resposta, preço, segurança, etc).

Alguns requisitos são essenciais para as aplicações distribuı́das, dinâmicas e
ubı́quas: dependabilidade, correção, segurança, escalabilidade e evolutividade. Os
métodos existentes para desenvolvimento de sistemas computacionais complexos não
atingem o objetivo de garantir qualidade na prática, geralmente em nenhum desses re-
quisitos. Há abordagens teóricas, mas estas normalmente impõem tantas restrições que
acabam não sendo viáveis. Um grave problema da maioria dos métodos que garantem,
por exemplo, correção ou confiabilidade, é a escalabilidade: eles só são aplicáveis a sis-
temas extremamente pequenos, o que obviamente está em grave conflito com o tamanho
e as demandas dos sistemas reais já atualmente em operação e com potencial de con-
tinuar seu crescimento acelerado nas próximas décadas. A integração desses requisitos
em um mesmo sistema é um problema ainda maior, pois quase nunca é possı́vel tratá-los
separadamente pelo alto grau de interdependência entre eles, como será visto a seguir.

Para que se possam tratar requisitos diferentes, dependentes e/ou conflitantes, o
primeiro passo é conhecer a fundo as implicações da inclusão de cada caracterı́stica em
um sistema, e, principalmente, as interdependências existentes entre as caracterı́sticas
que se deseja que um sistema possua. Cada uma dessas caracterı́sticas apresenta desafios,
problemas em abertos e empecilhos para sua plena utilização em sistemas atuais, não
totalmente solucionados e, algumas, vezes sequer totalmente identificados.

Neste artigo pretende-se analisar e identificar interdependências entre os requisi-

2263



tos de dependabilidade, correção, segurança, escalabilidade e evolutividade para garantir
a qualidade dos sistemas computacionais do futuro, que estarão presentes no cotidiano.
Pretende-se também esboçar idéias de como tratar essas relações e conflitos de forma in-
tegrada já nas fases iniciais do projeto do sistema e apresentar os desafios que precisam
ser vencidos para a construção de sistemas distribuı́dos autônomos escaláveis. Segura-
mente a solução para o tratamento adequado desses requisitos passa por um esforço de
reunificação das várias especialidades da computação, aproveitando de cada área sua ex-
periência, suas tentativas mal sucedidas e suas soluções promissoras.

2. Caracterı́sticas de Aplicações Onivalentes

O termo onivalente foi cunhado pelos pesquisadores que definiram os desafios da
computação para a Sociedade Brasileira de Computação. Sistemas onivalentes, na visão
de futuro da comunidade de Informática, estarão presentes em todos os ambientes e
atividades humanas prestando serviços essenciais para a saúde, educação, informação,
comunicação, produção e entretenimento preservando a integridade do ambiente social,
tecnológico e natural. Tais sistemas têm por caracterı́sticas distribuição, dinamicidade
e ubiqüidade. Para atender as expectativas de qualidade de seus inúmeros usuários,
precisam garantir da melhor forma possı́vel requisitos de correção, dependabilidade,
segurança, escalabilidade e evolutividade.

Um sistema distribuı́do é formado por múltiplos nós computacionais, sejam com-
putadores, dispositivos móveis ou embutidos com capacidade de interagir por troca de
mensagens. Pode ser caracterizado por não possuir uma memória global e nem um relógio
global. Em um sistema distribuı́do dinâmico, os nós não são conhecidos a priori, mas po-
dem entrar e sair da computação a qualquer momento seja pela demanda de outros nós, por
desejo próprio ou por apresentarem defeito. Se o sistema for autônomo, os nós interagem
para estabelecer a configuração necessária para prover um dado serviço. Casos contrário,
os nós necessitam ser pré-configurados ou inseridos manualmente na configuração.

Um sistema ubı́quo ou pervasivo é um sistema que se estende em qualquer am-
biente da vida humana [Weiser 1993]. Um exemplo pode ser uma coleção de sistemas
embarcados, conectados por uma rede sem fio, que controla todo ambiente dentro uma
casa [Davidoff et al. 2006]. Um sistema ubı́quo é um sistema distribuı́do cujo número de
componentes ultrapassa o número de pessoas interagindo com ele. De um sistema ubı́quo
se espera transparência e passividade: idealmente seria invisı́vel, consciente do ambiente
e reagindo de forma inteligente às necessidades do usuário. Além dos problemas usuais
a sistemas distribuı́dos dinâmicos, incorporar ubiqüidade impõe componentes miniaturi-
zados capazes de se comunicar sem fio e com baixo consumo de energia. Tais sistemas
precisam de protocolos de comunicação que apóiem redes transientes com topologias ar-
bitrárias (com agentes móveis e conexões ad hoc).

3. Requisitos de Sistemas Computacionais para Aplicações Onivalentes

Para que se possa fazer uma discussão sobre as dependências e conflitos entre requisitos,
é preciso entender profundamente cada requisito. Por isso, definiremos a seguir o que
entendemos pelos termos correção, dependabilidade, segurança, escalabilidade e evolu-
tividade no contexto de requisitos de sistemas computacionais.

2264



3.1. Correção

Grande parte das pesquisas realizadas até hoje na área de correção referem-se a aspec-
tos funcionais, ou seja, em responder a questão: “Como garantir que o sistema faz
o que deveria fazer, ou seja, atende à sua especificação?” É claro que este é um
ponto fundamental, pois se um sistema não se comporta como o esperado nem nas
condições ideais (sem considerar falhas, tempo de resposta, escalabilidade, aspectos
de segurança, ...), ele é inútil. Existem várias abordagens para provar correção (fun-
cional) de sistemas, por exemplo lógica de Hoare [Hoare 1969], verificação de modelos
[Clarke et al. 2000, Burch et al. 1992], refinamentos sucessivos [Jones 1990]. Todas es-
sas abordagens baseiam-se na construção de análise de um modelo matemático que re-
presenta o comportamento do sistema (semântica formal). As grandes limitações no uso
desses métodos formais de maneira mais ampla são o tamanho dos modelos gerados e a
impossibilidade de automatizar totalmente a análise.

Apesar dessas limitações, métodos para garantir a correção funcional de sistemas
computacionais vêm sendo utilizados cada vez mais na prática, pois a medida em que
os sistemas ficam mais complexos, argumentações informais sobre a correção do soft-
ware tornam-se impossı́veis. É importante salientar, também, que, nos últimos anos,
os métodos usados para garantir a correção têm evoluı́do muito (incluindo técnicas de
redução de espaço de estados, interpretação abstrata, automatização de novas técnicas
de prova, verificação composicional, entre outras) no sentido de minimizar as limitações
listadas acima.

É possı́vel integrar requisitos não-funcionais em modelos computacionais formais.
Os requisitos que podem ser integrados são aqueles que podem ser objetivamente medidos
ou verificados (por exemplo, tempo de resposta). Requisitos como usabilidade são difı́ceis
de incluir em modelos formais, pois são conceitos bastante subjetivos. Apesar de se poder
considerar o termo “correção” com um sentido mais amplo, no restante deste artigo,
quando se falar em correção estar-se á referindo à correção funcional.

3.2. Dependabilidade

Dependabilidade (do inglês dependability), está relacionada à confiança justificada que
se pode colocar no serviço oferecido por um dado sistema. Dependabilidade envolve
atributos como confiabilidade, disponibilidade, segurança funcional crı́tica (safety), in-
tegridade, facilidade de manutenção e garantias de desempenho adequado mesmo na
ocorrência de falhas aleatórias e imprevisı́veis [Avizienis et al. 2004]. Disponibilidade
e confiabilidade são os atributos principais. Disponibilidade refere-se à probabilidade do
sistema estar operacional no instante em que for solicitado, enquanto que a confiabilidade
refere-se à probabilidade de que um sistema funcione corretamente durante um dado in-
tervalo de tempo correspondente ao tempo de missão.

Aplicações distribuı́das executando sobre uma rede de comunicação estão sujeitas
a inúmeros problemas devido à baixa disponibilidade, baixa confiabilidade, domı́nios ad-
ministrativos múltiplos, polı́ticas de controle de recursos conflitantes, grande ocorrência
de falhas com efeitos catastróficos sobre as aplicações distribuı́das e equipamentos. Uma
falha pode provocar perda de estado de uma aplicação e desconexão do resto do sistema
impedindo avanço na computação e levando o sistema a um estado inconsistente. Fa-
lhas podem ter diversas causas, como fadiga de componentes de hardware, interferências

2265



ambientais, erros de projeto ou programação [Avizienis et al. 2004].

A área de sistemas distribuı́dos é permeada de desafios. Se o ambiente distribuı́do
fosse totalmente livre da ocorrência de falhas, os algoritmos distribuı́dos seriam simples,
diretos e eficientes. As dificuldades de executar programas em um ambiente sujeito a fa-
lhas mesmo em sistemas de pequena escala são conhecidas: impossibilidade de consenso
em ambientes assı́ncronos, ausência de relógio global, algoritmos ineficientes em termos
de rodadas de trocas de mensagens [Gärtner 1999]. Os modelos usuais de sistemas dis-
tribuı́dos, o modelo sı́ncrono e o modelo assı́ncrono, parecem cada vez mais distantes de
prover o arcabouço teórico necessário para solucionar de forma eficiente problemas vi-
tais como consenso distribuı́do, eleição de lı́der, gerência de grupos de processo, visão de
estado global, consistência de dados replicados e vários outros relacionados.

Para tratar desses problemas, técnicas para tornar os sistemas mais robus-
tos como multicast confiável [Défago et al. 2004], recuperação a um estado anterior
[Elnozahy et al. 2002] e replicação [Saito and Shapiro 2005] podem ser aplicadas. Mas
as redes de comunicação mantém-se lentas e não confiáveis. Sua latência de comunicação
e sua disponibilidade não parecem estar melhorando. Adicionalmente, dispositivos
móveis com conectividade intermitente estão se tornando populares num ritmo acelerado
[Saito and Shapiro 2005]. Algoritmos distribuı́dos tolerantes a falhas criados para redes
convencionais de pequena escala, baseados em propriedades fortes e premissas pessimis-
tas, não escalam adequadamente [Eugster et al. 2004]. É difı́cil, senão impossı́vel, cons-
truir ambientes para replicação com consistência forte ou sistemas de comunicação de
grupo com visão global e ordenação total de mensagens em sistemas dinâmicos escaláveis
porque o desempenho e a disponibilidade são demasiadamente penalizados quando o
número de nós computacionais explode.

3.3. Segurança

Sistema dito seguro é aquele capaz de resistir a ações maliciosas com o objetivo de
comprometer a satisfação de um ou mais requisitos de segurança essenciais para o seu
funcionamento. Ações maliciosas bem sucedidas podem (a) representar risco a vi-
das humanas, (b) provocar prejuı́zos financeiros, (c) afetar a privacidade de indivı́duos
[Anderson 2001]. Os requisitos a serem satisfeitos são dependentes do tipo de aplicação e
do grau de segurança exigido [Stallings 2002]. Alguns dos principais são: disponibilidade
(garante que o sistema está pronto para uso quando necessário); autenticidade (determina
se a entidade é quem afirma ser); confidencialidade (protege dados contra observação por
entidades não autorizadas); integridade (protege dados contra modificação, seja ela ma-
liciosa ou acidental); autorização (restringe, com base em direitos, o acesso a recursos e
dados no sistema); não-repúdio (evita que uma entidade negue responsabilidade por ações
executadas no sistema).

Satisfazer requisitos como os supracitados implica incorporar ao sistema uma
combinação de mecanismos como autenticação, controle de acesso, auditoria e crip-
tografia. Uma vez “protegido”, é muito difı́cil, se não impossı́vel, demonstrar formal-
mente que o sistema não apresenta vulnerabilidades.

Pesquisas têm procurado propor formas sistemáticas para o tratamento de requisi-
tos de segurança em todo o ciclo de vida de sistemas [Devanbu and Stubblebine 2000b].
Uma abordagem atrativa consiste em estender padrões como UML para permitir a

2266



modelagem de aspectos como privacidade e integridade já desde o inı́cio do processo
[Lodderstedt et al. 2002].

O desenvolvimento de sistemas, sobretudo os de larga escala, tem sido marcado
pela integração de componentes de diversas naturezas e procedências. Ao mesmo tempo
em que este modelo é atrativo, ele expõe os sistemas resultantes a uma nova dimensão de
riscos. As vulnerabilidades são decorrentes da não divulgação – para não comprometer a
propriedade intelectual do fornecedor – de detalhes suficientes que permitam caracterizar
como os componentes operam para satisfazer determinados requisitos de segurança. Entre
as alternativas para contornar essa limitação, destaca-se a investigação de técnicas gray-
box [Devanbu and Stubblebine 2000a] que permitem aos fornecedores de componentes
informar detalhes suficientes sobre o processo de verificação de seus componentes e, ao
mesmo tempo, proteger sua propriedade intelectual.

Sobre a aplicação de métodos formais na área de segurança, ressalta-se que
os mesmos não permitem afirmar que um sistema é 100% seguro [Wing 1998]. A
especificação formal de um sistema requer que sejam definidas as premissas sobre o am-
biente onde o sistema será executado. Uma prova de corretude só é válida se todas as
premissas forem satisfeitas. O atacante, neste contexto, procura violar essas premissas.
Caso seja bem sucedido em comprometer pelo menos uma, a prova deixa de ser válida.
Diante de tal problemática, a comunidade tem optado por investigar métodos especı́ficos,
cuja aplicação se restringe à verificação de requisitos pontuais de segurança (resultando
em grande variedade de formalismos). Ainda, as verificações são realizadas sobre mode-
los que, em geral, exigem um conjunto de simplificações para serem computáveis, além de
não capturarem vulnerabilidades a que a implementação dos modelos está sujeita. Para
minimizar este problema, duas abordagens vêm sendo investigadas: emprego de veri-
ficadores sobre abstrações derivadas automaticamente do código fonte do sistema sob
análise e “injeção” coordenada de ataques ao sistema com o objetivo de expor problemas
de segurança.

3.4. Escalabilidade

Formalmente a noção de ser escalável não é fácil de definir e freqüentemente
precisa considerar a aplicação concreta que precisa que ser escalável [Hill 1990,
Rana and Stout 2000]. No contexto desse artigo consideramos um sistema escalável se
ele é capaz de satisfazer maior demanda ou prestar um volume maior de serviços com
um aumento adequado de recursos. Para um sistema distribuı́do, uma das caracterı́sticas
mais importantes é ser escalável no número de componentes envolvidos: o sistema deve
manter, por exemplo, o mesmo nı́vel de disponibilidade (ou ao menos garantir que a
disponibilidade degrada pouco) à medida em que o número de componentes aumenta.

Um outro aspecto da escalabilidade são técnicas para mitigar ou esconder efeitos
de caracterı́sticas que não escalam devido a restrições fundamentais. A latência de
comunicação, por exemplo, é limitada pela velocidade de transmissão de sinais. Portanto,
técnicas como “overlapping communication and computation” para esconder latências
em tarefas computacionais [Sancho et al. 2006], redudância e “caching” tornam-se im-
portantes no desenvolvimento de algoritmos.

A maioria dos sistemas atuais são pouco escaláveis. Entre os mais escaláveis são a
World Wide Web (approx. 4×109 nós) e o computador paralelo Blue Gene L (approx. 13×

2267



104 processadores) [ISC 2007, TOP 500 2006]. Para implementar os sistemas pervasivos
do futuro, sistemas locais já vão atingir esse número de componentes: por exemplo um
edifı́cio com 100 apartamentos e com componentes distribuı́dos em todo edifı́cio (em
eletrodomésticos, vestidos, canetas, etc.) facilmente pode conter ≈ 105 componentes.

3.5. Evolutividade
O requisito de evolutividade de software [Duchien et al. 2006, Cazzola et al. 2006] tem
por objetivo diminuir esforços e custos na manutenção e na reestruturação de soft-
ware visando corrigir erros ou visando atender mudanças de requisitos funcionais e não
funcionais. Estas técnicas envolvem, nos casos mais simples, modificação de código,
recompilação e nova distribuição. As técnicas existentes hoje para tratar a evolução de
software têm várias limitações: são dependentes das linguagens de programação, não
escalam, são difı́ceis de integrar e não possuem embasamento teórico.

Num contexto em que sistemas computacionais se tornarão cada vez mais
onipresentes, exercendo funções essenciais, essa manutenção e reestruturação terá um
custo cada vez maior, uma vez que especificações e ambientes estarão em constante
modificação. Será, portanto, necessário o desenvolvimento de técnicas que permitam
a evolução do software ao longo do tempo, com mı́nima interferência de programadores.

4. Interdependências entre Requisitos
Correção, disponibilidade, segurança, escalabilidade e evolutividade são requisitos de
quase todos os sistemas computacionais do presente e de um futuro próximo. Como
visto na Seção 3, sistemas computacionais tradicionais já apresentam desafios impor-
tantes para o atendimento a estes requisitos de forma isolada. Quando sistemas ubı́quos
são considerados, o atendimento simultâneo a todos estes requisitos será essencial e pode
se tornar impraticável. De fato, estes sistemas terão dimensões bem maiores (em número
e complexidade) às atuais, com caracterı́sticas de interdependência e cooperação entre um
grande número de componentes em diferentes nı́veis de abstração. Além disso, os com-
ponentes destes sistemas serão projetados isoladamente (provavelmente em momentos
distintos) e, em vários casos, sem uma ligação explı́cita (fı́sica ou lógica) ou mesmo pre-
visı́vel. Como será visto adiante, nestas condições o atendimento de um requisito implica
ou exige o relaxamento de outro, e mecanismos para auxı́lio à tomada de decisão precisam
ser cuidadosamente definidos. Por outro lado, esta divisão do sistema como um todo em
partes operacionais autônomas pode permitir a definição de compromissos e espaços fini-
tos (ou limitados) para exploração das alternativas de projeto que levem ao atendimento
de determinadas condições ou grupos de condições de acordo com as demandas de cada
aplicação. Neste caso, alguns requisitos impõem um alto nı́vel de dependência em relação
a outros para que o sistema como um todo responda a um conjunto de requisitos.

Alguns conflitos e dependências entre os requisitos dos sistemas onivalentes são
discutidos abaixo.

4.1. Correção e demais requisitos
Conforme explicado na Seção 3, para se garantir o requisito de correção de um sistema
é preciso se definir um modelo matemático que representa seu comportamento. A partir
deste modelo, pode-se elaborar um conjunto de asserções que provem sua correção ou
apontem eventuais problemas.

2268



À medida em que a complexidade do sistema computacional aumenta, torna-se
mais difı́cil modelar suas funcionalidades ou comportamento esperado de uma forma
clara e não ambı́gua. Dependabilidade e segurança são transversais aos requisitos fun-
cionais, mas eles podem afetar significativamente o comportamento de um sistema. Para
se garantir a correção em sistemas com requisitos de dependabilidade e segurança, não
basta apenas analisar cada requisito separadamente. Normalmente, o tratamento desses
requisitos ocorre espalhado por todos os módulos que compõem um sistema (incluindo
hardware e software), modificando o comportamento do sistema caso uma situação de
exceção (falha ou violação de segurança) seja detectada. Existem abordagens de de-
senvolvimento de software (por exemplo, programação orientada a aspectos) que tentam
construir modelos onde estes dois requisitos convivam de forma integrada, mas ainda não
há uma base formal sólida para essas novas abordagens.

A previsão de que um número cada vez maior de componentes funcionais partic-
iparão de um mesmo sistema (escalabilidade) só confirma que o número de modelos e
asserções possı́veis crescerá a um passo provavelmente bem maior que os avanços feitos
nos métodos tradicionais de verificação. Apesar das limitações de se analisar a correção
de sistemas muito grandes, não necessariamente essas provas não escalam. Por exemplo,
se é mostrado que para uma determinada solução do problema dos filósofos jantando não
há postergação indefinida (ou seja, nenhum filósofo morre de fome), esta prova valeria
para sistemas com 5, 10, 1000 filósofos, desde que os “novos” filósofos se comportem
exatamente como os que já existem, e a configuração inicial da mesa seja análoga (um
palito entre cada dois filósofos). Porém, sistemas distribuı́dos são naturalmente passı́veis
de modificação (evolutividade). A funcionalidade do sistema pode ser definida dinami-
camente, de acordo com os nodos que participam de uma comunicação em um dado
momento, por exemplo. Além disso, a quantidade de componentes que interagem em
uma computação pode ser não apenas variável, mas bastante numerosa. A convivência de
componentes construı́dos em diferentes momentos e sob premissas e condições distintas
traz um grau de variabilidade de funcionalidades e cooperações possı́veis que dificilmente
podem ser previstas. Continuando com a analogia com o problema dos filósofos, con-
sidere por exemplo a inclusão do tempo de resposta como um novo requisito. Neste caso,
obviamente provas para sistemas pequenos dificilmente escalam para instâncias maiores
(por exemplo, se o requisito de tempo for que o filósofo não pode passar mais que 12
horas sem comer, um sistema que tem 5 filósofos pode satisfazer esse requisito, mas se
colocarmos 1000 filósofos, o sistema pode não conseguir atender essa restrição). Se mais
filósofos forem incorporados ao longo do jantar, o sistema pode mudar totalmente sua
configuração original.

Especificar propriedades funcionais e verificá-las é praticamente inviável para sis-
temas com capacidade de evolução. A complexidade de sistemas evolutivos se justifica
na medida em que estão inseridos em situações de constantes modificações tanto de am-
biente como de requisitos. Outras noções de correção serão necessárias: como em uma
sociedade, agentes deverão ter a capacidade de se adequar a normas pré-definidas, de-
verão respeitar noções de hierarquia e, ao longo do tempo adquirir ou perder confiança
dos demais agentes de acordo com o seu comportamento social. Dado que estabelecer
correção funcional será extremamente difı́cil, senão impossı́vel, as garantias de qualidade
dos sistemas computacionais virão, em boa parte, da verificação de aspectos do seu com-
portamento social.

2269



Pode-se observar, então, que o atendimento aos requisitos de escalabilidade e evo-
lutividade estão em conflito com o requisito de correção. Quanto mais escalável e evo-
lutivo o sistema, mais difı́cil se torna a verificação de sua correção. Requisitos de de-
pendabilidade e segurança, por outro lado, devem ser considerados de forma integrada ao
requisito de correção. Caso contrário, a correção do sistema sob determinadas condições
não poderá ser assegurada.

4.2. Dependabilidade e demais requisitos
A experiência com o atendimento dos requisitos de dependabilidade em sistemas es-
caláveis é relativamente recente e está longe de ser estável. Muitos dos atributos de
dependabilidade necessários a sistemas distribuı́dos correspondem a propriedades fortes
e, portanto, não escalam adequadamente, ou seja, com custo administrável. Sem esque-
cer que sistemas que escalam de centenas a milhões de nós dinamicamente poderiam
ser enquadrados no modelo de computação distribuı́da assı́ncrona. Neste modelo não é
possı́vel distinguir um computador atrasado de outro em colapso ou particionado. Não
é possı́vel usar time-out para detecção de falhas. Não é possı́vel chegar a consenso em
sistemas assı́ncronos sujeitos a falhas. Em sistemas distribuı́dos, consenso é uma necessi-
dade recorrente: para eleição de lı́der, cada compor grupos de participantes, para diagnos-
ticar sub-sistemas com defeito, para ordenação total de mensagens, para consistência de
dados replicados e várias outras atividades essenciais. Se tentássemos tornar sistemas es-
caláveis, impondo sincronização de relógios através de onerosos protocolos baseados em
troca de mensagens, ainda assim, consenso é uma propriedade forte e o custo relacionado
seria demasiado para sistemas dinâmicos escaláveis.

Apesar da possibilidade de evolução do sistema onivalente tanto em quantidade
quanto em qualidade (funcionalidades disponı́veis) de nodos computacionais, a garantia
de desempenho e confiabilidade destes sistemas dinâmicos será um grande desafio. Dis-
positivos móveis com conectividade intermitente e com diferentes nı́veis de garantias de
dependabilidade podem comprometer a confiabilidade de todo o sistema.

Por fim, associando-se dependabilidade com segurança computacional pode-se
obter um ambiente robusto para execução de aplicações distribuı́das. É sabido que di-
versas brechas na segurança de sistemas ocorrem devido a modelos de protocolos de
comunicação, polı́ticas de controle de recursos, etc, que afetam da mesma forma a depen-
dabilidade do sistema.

Portanto, pode-se observar um conflito importante entre os requisitos de dependa-
bilidade e escalabilidade e evolutividade dos sistemas onivalentes. Por outro lado, o re-
quisito de segurança afeta e é afetado pela dependabilidade. Falhas de segurança podem
comprometer a dependabilidade do sistema, mas decisões que garantam a dependabili-
dade também podem afetar os nı́veis de segurança que podem ser assegurados.

4.3. Segurança e demais requisitos
Segurança e escalabilidade são aspectos que, dificilmente, convivem harmoniosamente no
projeto e desenvolvimento de sistemas de qualidade [Barcellos and Gaspary 2006]. Por
exemplo, para gerenciar identidades e evitar que um nodo malicioso assuma múltiplas
identificações em um sistema de larga escala, como os sistemas peer-to-peer (P2P), é pre-
ciso lançar mão de uma autoridade certificadora de confiança [Douceur 2002]. Tal abor-
dagem, contudo, é pouco indicada para sistemas distribuı́dos com potencial para lidar com

2270



milhões de nodos por representar um “gargalo”. Mesmo que se relaxe o aspecto escalabili-
dade, o emprego de autoridade certificadora dificulta a satisfação do aspecto de tolerância
a falhas, posto que tal autoridade configura ponto central de falhas. Por outro lado, caso
se admita como premissa a possibilidade de um usuário assumir múltiplas identificações,
então outros mecanismos como replicação (comumente utilizados para conferir confia-
bilidade e disponibilidade ao sistema) acabam comprometidos. No caso de um sistema
de armazenamento de arquivos em rede, por exemplo, as múltiplas réplicas de um objeto
podem ficar sob controle de um único nodo malicioso.

Em relação ao requisito de evolutividade, pode-se observar não um conflito, mas
uma relação de interdependência. Em um sistema dinâmico, a definição de novas fun-
cionalidades ou mudanças sobre um sistema que já se encontra em funcionamento pode
acarretar em inconsistências ou alterações de determinadas polı́ticas que garantiam a
segurança do sistema original. A dificuldade, neste caso, está na previsibilidade de como
uma nova funcionalidade (ou a modificação de uma funcionalidade ou implementação
existente) impactará o sistema em seus diversos nı́veis. Por exemplo, ao se trocar a
implementação de um algoritmo de criptografia de software para hardware, deve-se pre-
ver que a garantia de segurança dada pelo primeiro não será a mesma quando implemen-
tada por outro componente. Dessa forma, se se deseja um sistema evolutivo e seguro, os
mecanismos que garantem a evolutividade não podem deixar de considerar as eventuais
mudanças nas garantias de segurança.

4.4. Escalabilidade e Evolutividade
Estes dois requisitos apresentam uma relação de interdependência no caso dos sistemas
onivalentes definidos no contexto deste artigo. Sistemas onivalentes pressupõem, de
acordo com o que foi dito na Seção 2, a possibilidade de inserção de nodos computa-
cionais heterogêneos dinamicamente e o uso do sistema computacional em um conjunto
cada vez maior e mais diverso de aplicações. A construção deste tipo de sistema só
será viável economicamente se o paradigma do reuso for intensamente utilizado. Reuso
de hardware se dá pela construção de plataformas de processamento, dispositivos com
um conjunto básico de componentes de hardware que sejam facilmente programáveis
(processadores, lógicas reconfiguráveis, etc). Reuso de software se dá pela definição de
programas também parametrizáveis ou de fácil reprogramação, ou ainda pela possibili-
dade de se integrar novos programas a uma unidade funcional sem tirá-la de operação
(reprogramação em funcionamento). Dessa forma, o requisito de escalabilidade só será
atendido se o requisito de evolutividade também o for.

5. Em Busca de um Modelo para Construção de Aplicações Onivalentes
Na seções anteriores descrevemos as aplicações onivalentes, os requisitos de qualidade
que consideramos essenciais para este tipo de sistemas, bem como as interdependências
entre esses requisitos. Resumindo, podemos chegar às seguintes conclusões:

• Os sistemas distribuı́dos, dinâmicos e ubı́quos são cada vez mais freqüentes e ten-
dem a controlar várias atividades potencialmente crı́ticas. Portanto, precisamos
poder depositar um grau de confiança neles, que depende do quão crı́tico o sis-
tema é.

• Os problemas relacionados a falhas nos componentes fı́sicos (tanto no sentido de
componentes deixarem de funcionar como gerarem resultados incorretos) serão

2271



cada vez mais freqüentes, e a ponto de não poderem ser desconsiderados no pro-
jeto de sistemas de software que executam nesses componentes.

• Usualmente os sistemas distribuı́dos, dinâmicos e ubı́quos são compostos por um
número imenso de componentes (de software e hardware). Portanto, o desenvolvi-
mento de sistemas deve ser guiado pelas práticas de “dividir para conquistar”
(desenvolvimento baseado em componentes) e nı́veis de abstração.

• Determinados requisitos de qualidade devem ser tratados de forma conjunta, pois
existem fortes dependências entre eles. É o caso da correção, dependabilidade e
segurança, da segurança e evolutividade e da escalabilidade e evolutividade, por
exemplo.

• Alguns requisitos são conflitantes e também precisam ser considerados de forma
conjunta (dependabilidade e evolutividade, correção e evolutividade).

• O requisito da escalabilidade pode dificultar enormemente o atendimento si-
multâneo de outros requisitos (correção, dependabilidade e segurança).

A partir desta análise, pode-se inferir que não é possı́vel atender a todos os re-
quisitos de qualidade simultaneamente para sistemas distribuı́dos, dinâmicos e ubı́quos.
Não há como garantir, por exemplo, que o hardware não vai falhar (deixar de fun-
cionar ou gerar resultados imprecisos) ou que o software esteja livre de erros ou imune
a ataques a qualquer momento. Devido às dimensões e complexidade do sistema oni-
valente, qualquer método que vise proteção total terá um custo impraticável. Dessa
forma, novos métodos de projeto, verificação e teste devem ser definidos para sistemas
distribuı́dos, dinâmicos e ubı́quos. Devem estar previstas etapas de exploração do espaço

de projeto, com o auxı́lio de ferramentas de apoio à tomada de decisões, para que um
conjunto de compromissos entre custos e nı́veis de qualidade sejam definidos e imple-
mentados de acordo com as demandas de cada aplicação alvo. Portanto, a questão que se
coloca agora é:

Como podemos desenvolver sistemas distribuı́dos, dinâmicos e ubı́quos de maneira a po-
dermos associar um ”grau ou função de confiabilidade”ao produto final?

Para responder essa questão, uma série de modificações no processo de desen-
volvimento de sistemas é necessária. Dentre elas, três são consideradas fundamentais:
(i) trabalhar com modelos probabilı́sticos, pois o que queremos saber na realidade é
qual a probabilidade do sistema funcionar sem defeitos; (ii) modificar o desenvolvi-
mento baseado em componentes, em contratos, etc, para incluir, nas interfaces/contratos,
informações sobre o nı́vel de garantia que o componente oferece com relação às várias
caracterı́sticas consideradas no sistema (dependabilidade, segurança, escalabilidade, ...);
(iii) verificar correção levando em consideração as outras caracterı́sticas do sistema, ou
seja, deve haver uma integração dos requisitos impostos por algumas caracterı́sticas (pois
vimos, por exemplo, que correção depende da segurança ou da disponibilidade de um
sistema).

A seguir, citaremos as pesquisas que estão sendo realizadas no Instituto de
Informática da UFRGS que contribuem para a solução do problema de desenvolver
aplicações onivalentes confiáveis.

A noção de probabilidade para a execução de determinadas tarefas deve ser in-
cluı́da já na fase de especificação de software, pois a noção de correção depende da

2272



especificação. Sendo assim, métodos de especificação de sistemas distribuı́dos que in-
cluem noções de probabilidades são necessários, como por exemplo, gramáticas de grafos
estocásticas [Mendizabal et al. 2005]. Usando este tipo de modelos, pode-se analisar pro-
priedades do tipo: “Qual a probabilidade do sistema atingir um determinado estado?”,
que são bastantes relevantes em aplicações onivalentes.

Os comportamentos de componentes de aplicações distribuı́das raramente podem
ser descritos por funções. Eles são melhor descritos como interações entre o componente
e seu ambiente. Portanto, a interface que descreve de maneira abstrata a funcionalidade
de um desses componentes deve conter os padrões de interação nos quais o componente
espera de engajar [Ribeiro et al. 2006]. Além disso, essas interfaces devem expressar,
também de maneira probabilı́stica, e provavelmente através de funções dependendo do
custo/desempenho esperados e dos graus de confiabilidade dos componentes utilizados,
o grau de satisfação do componente em relação a cada requisito (correção, segurança,
dependabilidade, ...). Do ponto de vista da arquitetura do sistema, precisamos prover
técnicas de composição que permitam não somente gerar um modelo comportamental do
sistema, mas também permitam calcular a qualidade do sistema com base nas qualidades
oferecidas por seus componentes. Isso permitiria, por exemplo, desenvolver técnicas de
integração e otimização para, dados um conjunto de componentes alternativos, gerar o
melhor sistema (ou seja, o que melhor se adequa aos graus de confiabilidade dos requisi-
tos, levando em consideração o custo e desempenho esperados).

No aspecto de evolutividade de sistemas computacionais, técnicas de Inteligência
Artificial, mas precisamente de Sistemas Multiagentes, serão de extrema utilidade. Sis-
temas tipicamente serão compostos de vários agentes, provavelmente desenvolvidos de
forma independente. Estes agentes deverão cooperar, negociar e competir entre si
por recursos e serviços de forma mais sofisticada e complexa do que verificado atual-
mente. Um sistema computacional poderá ser visto como uma sociedade com toda a
sua complexidade onde fatores tais como papéis, relações de hierarquia e confiança,
e crenças serão determinantes. Propostas iniciais de modelos teóricos incluindo al-
gumas caracterı́sticas relevantes para evolução de software podem ser encontradas em
[Vieira et al. 2007, Bordini and Moreira 2004] .

Diversos itens abordados neste texto são cobertos, até certo ponto, pelo conceito
de computação autonômica onde um sistema autonômico é capaz, por exemplo, de se
recuperar de falhas, se auto-otimizar, e ser consciente do seu próprio estado interno. Os
princı́pios da computação autonômica estão sendo investigados na UFRGS na perspectiva
do gerenciamento de sistemas altamente distribuı́dos e de alcance mundial, mais particu-
larmente em relação aos sistemas peer-to-peer (P2P). Acredita-se que sistemas de soft-
ware desenvolvidos sob esta perspectiva terão uma chance maior de estarem alinhados
com os desafios anteriormente considerados.

No que se refere à segurança, sobretudo em sistemas de larga escala, tem-se bus-
cado investigar técnicas que permitam satisfazer requisitos cruciais de segurança – como
autenticidade e autorização – sem comprometer outros requisitos não funcionais e ou-
tros aspectos importantes, tais como escalabilidade e tolerância a falhas. Nesse contexto
particular, um dos focos de investigação tem sido segurança em aplicações peer-to-peer
[Barcellos and Gaspary 2006], que constituem uma alternativa promissora para o desen-
volvimento de aplicações de grande porte, potencialmente compostas por milhares de

2273



usuários.

Injeção de falhas é um método experimental de teste que complementa testes fun-
cionais e visa especificamente validar o sistema sob condições de falha. Para sistemas
distribuı́dos de larga escala, em que os participantes interagem unicamente por troca de
mensagens, injetam-se falhas nos subsistemas de comunicação e observa-se como o sis-
tema reage a essas falhas [Jacques-Silva et al. 2006] . Desta forma a disponibilidade e
confiabilidade do sistema podem ser aferidas. Emular tão próximo quanto possı́vel falhas
reais de comunicação em sistemas de larga escala, permitir o controle do experimento
de forma eficiente diminuindo a interferência e intrusividade das ferramentas de injeção
de falhas e monitoramento e extrair medidas apropriadas para a validação de sistemas
onivalentes sujeitos a falhas são os desafios enfrentados na pesquisa nesta área.

Técnicas de teste integrado de hardware e software serão essenciais para avaliar
o funcionamento do sistema em presença de falhas nos dois nı́veis de abstração. Es-
tas técnicas devem garantir um teste de qualidade e de baixo custo. Teste baseado em
software para processadores e estruturas de interconexão foram desenvolvidos recente-
mente no grupo e estão sendo expandidos atualmente. Da mesma forma, o grupo possui
experiência com o planejamento do teste a partir do inı́cio do projeto e a exploração
do espaço de projeto e teste de uma sistema desde as fases iniciais de desenvolvi-
mento [Cota and Liu 2006]. Por fim, técnicas para garantir a confiabilidade de um sis-
tema de hardware durante seu funcionamento são também alvo de pesquisas deste grupo
[Frantz et al. 2006].

6. Conclusões
Sistemas computacionais onipresentes de qualidade possuem caracterı́sticas de difı́cil es-
calabilidade, que imporão severas dificuldades ao desenvolvimento destes futuros sis-
temas. Pesquisas feitas por grupos multidisciplinares que levem em conta interde-
pendência entre os diferentes requisitos serão a chave para a construção das aplicações
que dominarão a sociedade futura. Os modelos e abstrações hoje utilizados deverão ser
substituı́dos por outros onde a integração de soluções prevaleça sobre a otimização de um
único parâmetro.

Neste artigo foi dado um primeiro passo na direção de um método para desen-
volvimento de sistemas computacionais onivalentes: identificar conflitos e dependências
entre os requisitos considerados fundamentais para este tipo de sistemas: correção, depen-
dabilidade, segurança, escalabilidade e evolutividade. Além disso, foram sugeridas linhas
de pesquisa que podem levar ao desenvolvimento de aplicações onivalentes de qualidade.

Referências
Anderson, R. J. (2001). Security Engineering: A Guide to Building Dependable Dis-

tributed Systems. Wiley.

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. E. (2004). Basic concepts
and taxonomy of dependable and secure computing. IEEE Trans. Dependable Sec.
Comput., 1(1):11–33.

Barcellos, M. P. and Gaspary, L. P. (2006). Fundamentos, Tecnologias e Tendências rumo
a Redes P2P Seguras, pages 187–244. Atualizações em Informática. PUC-Rio, Rio de
Janeiro.

2274



Bordini, R. H. and Moreira, Á. F. (2004). Proving BDI properties of agent-oriented pro-
gramming languages: The asymmetry thesis principles in AgentSpeak(L). Annals of
Mathematics and Artificial Intelligence, 42(1–3):197–226. Special Issue on Computa-
tional Logic in Multi-Agent Systems.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. J. (1992).
Symbolic model checking: 1020 states and beyond. Information and Computation,
98(2):142–170.

Cazzola, W., Chiba, S., Coady, Y., and Saake, G., editors (2006). Proceedings of RAM-
SE’06, 3rd ECOOP Workshop on Reflection, AOP and Meta-Data for Software Evolu-
tion Nantes, France, 4th of July.

Clarke, E., Grunberg, O., and Peled, D. (2000). Model Checking. MIT Press.

Cota, É. and Liu, C. (2006). Constraint-driven test scheduling for NoC-based systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
25:2465–2478.

Davidoff, S., Lee, M. K., Yiu, C., Zimmerman, J., and Dey, A. K. (2006). Principles of
smart home control. In Ubicomp 2006, LNCS 4206, pages 19–34.

Défago, X., Schiper, A., and Urbán, P. (2004). Total order broadcast and multicast algo-
rithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421.

Devanbu, P. T. and Stubblebine, S. (2000a). Cryptographic verification of test coverage
claims. IEEE Transactions on Software Engineering, 26(2):178–192.

Devanbu, P. T. and Stubblebine, S. (2000b). Software engineering for security: a roadmap.
In International Conference on Software Engineering, Proceedings of the Conference
on the Future of Software Engineering, pages 227–239. ACM Press.

Douceur, J. R. (2002). The sybil attack. In Peer-to-Peer Systems: First Internation-
alWorkshop, IPTPS 2002 Cambridge, MA, USA, March 7-8, 2002. Revised Papers,
pages 251–260. Springer Berlin / Heidelberg.

Duchien, L., D’Hondt, M., and Mens, T., editors (2006). Proceedings of the International
ERCIM Workshop on Software Evolution, Lille, France, 6-7th of April.

Elnozahy, E. N., Alvisi, L., Wang, Y.-M., and Johnson, D. B. (2002). A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375–408.

Eugster, P. T., Guerraoui, R., Kermarrec, A.-M., and Massoulié, L. (2004). Epidemic
information dissemination in distributed systems. IEEE Computer, 37(5):60–67.

Frantz, A. P., Kastensmidt, F. L., Carro, L., and Cota, É. (2006). Dependable network-on-
chip router able to simultaneously tolerate soft errors and crosstalk. In Proceedings of
the IEEE International Test Conference.

Gärtner, F. C. (1999). Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Comput. Surv., 31(1):1–26.

Hill, M. D. (1990). What is scalability? SIGARCH Comput. Archit. News, 18(4):18–21.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580.

2275



ISC (2007). Internet domain survey. Internet system consortium. http://www.isc.
org.

Jacques-Silva, G., Drebes, R. J., Gerchman, J., da Trindade, J. M. F., Weber, T. S., and
Jansch-Pôrto, I. (2006). A network-level distributed fault injector for experimental
validation of dependable distributed systems. In COMPSAC (1), pages 421–428.

Jones, C. (1990). Systematic Software Development using VDM. Prentice Hall, 2nd
edition.

Lodderstedt, T., Basin, D., and Doser, J. (2002). SecureUML: A UML-based modeling
language for model-driven security. In UML 2002 - The Unified Modeling Language:
5th International Conference, Dresden, Germany, September 30 - October 4, 2002.
Proceedings, pages 426–441. Springer Berlin / Heidelberg.

Mendizabal, O., Dotti, F., and Ribeiro, L. (2005). Stochastic object based graph gram-
mars. In 8th Brazilian Symposium on Formal Methods (SBMF), pages 128–143.

Rana, O. F. and Stout, K. (2000). What is scalability in multi-agent systems? In AGENTS
’00: Proceedings of the fourth international conference on Autonomous agents, pages
56–63, New York, NY, USA. ACM Press.

Ribeiro, L., Dotti, F. L., Santos, O., and Pasini, F. (2006). Verifying object-based graph
grammars: An assume-guarantee approach. Software and Systems Modeling, 5:289–
312.

Saito, Y. and Shapiro, M. (2005). Optimistic replication. ACM Comput. Surv., 37(1):42–
81.

Sancho, J. C., Barker, K. J., Kerbyson, D. J., and Davis, K. (2006). Quantifying the po-
tential benefit of overlapping communication and computation in large-scale scientific
applications. In SC 2006.

Stallings, W. (2002). Network Security Essentials. Prentice Hall, 2nd edition.

TOP 500 (2006). TOP500 Supercomputer Sites. http://www.top500.org.

Vieira, R., , Moreira, Á. F., Wooldridge, M., and Bordini, R. (2007). On the formal seman-
tics of speech-act based communication in an agent-oriented programming language
(aceito para publicação). Journal of Artificial Intelligence Research.

Weiser, M. (1993). Some computer science issues in ubiquitous computing. Commun.
ACM, 36(7):74–84.

Wing, J. M. (1998). A symbiotic relationship between formal methods and security. In
Computer Security, Dependability and Assurance: From Needs to Solutions. Proceed-
ings, pages 26–38. IEEE Computer Society Press.

2276




