
An approach to minimize useless checkpoints on distributed
optimistic simulations

Ricardo Parizotto1, Braulio Adriano de Mello2

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brasil

2Ciência da Computação – Universidade Federal da Fronteira Sul (UFFS)
Chapecó - SC - Brasil

rparizotto@inf.ufrgs.br, braulio@uffs.edu.br

Abstract. Distributed architectures for modeling and simulation can scale the
execution of large and complex models. These architectures frequently utilize
checkpoint strategies to guarantee the execution of synchronous and asynchro-
nous components. However, the complete avoidance of useless checkpoints is
impractical, and it can severely decrease the simulation performance. In this
paper, we present a set of metrics to identify useless checkpoints at run-time.
Additionally, we extended a probabilistic decision that employs our proposed
metrics to create only checkpoints with high probability to be loaded by roll-
back operations. The method identifies inconsistent checkpoints based on the
communication patterns and granularity of the events since the last rollback.
The results showed that the proposed metrics allow reducing the number of
useless checkpoints without negative impacts on simulation performance and
outperforms traditional probabilistic strategies in terms of rollback time.

1. Introduction

Modeling and simulation techniques have been applied as a tool for analyzing a broad
range of complex systems. While systems and its models grow, heterogeneous and distri-
buted simulation systems have been proposed to support more complex and larger models
[Reynolds 1988]. Their execution on distributed environments demands synchronization
primitives to ensure the consistency of the simulation results. However, synchronizing
[Jefferson 1985] components of distributed simulation systems can rise high overhead,
concerning processing and message exchanges. Rollback based mechanisms are a well
know strategy to repair the state of asynchronous systems after failures. This can take on
many forms, for instance: (1) Coordinating the placement of checkpoint promotes saving
only secure states but relies on the need of observing states of other processes to coordi-
nate correctly [Sato et al. 2012]; (2) non-coordinated or semi-coordinate strategies have
less or any interaction with another component state but are more susceptible to problems
such as domino effect.

Large and complex simulations are prone to create a large number of useless
checkpoints which can severely impact the processing and memory. This scenario has
been motivated the proposing of probabilistic and heuristic schemes to derive depen-
dencies of knowledge between event interactions and guide the placement of check-
points at runtime [Kunz et al. 2012] [Fu et al. 2013]. The heuristics for checkpoints try

to identify rollbacks preemptively to determine the intervals of checkpoints dynamically
[Wang et al. 2009], both to minimize the number of created checkpoints and the time
spent on rollbacks. However, those strategies ignore essential factors (e.g., the check-
point category) and fail to store important checkpoints. In addition, they frequently save
states that are not used during system execution. There are open challenges for proposing
approaches that avoid useless checkpoints without increasing the total time of rollback
operations.

To qualify these questions, we revisited the checkpoint placement problem and
presented a set of metrics to measure the utility of a checkpoint at run-time. The method
is based on communication patterns between dependent process composed with the granu-
larity of events since the last rollback. We employed these measurements in a probabilistic
decision that utilizes the measurements to estimate the usability of a checkpoint without
the needing to observe the state of any other process. Consequently, the approach does
not require additional management messages. Otherwise, it works based on information
extracted from the simulation behavior. We assume that components do not share a global
time and rely on the observation: if a rollback occurs to a time inferior to a checkpoint, it
will not be useful to restore to a consistent state. We integrated the solution into the DCB
(Distributed Simulation Backbone) [Carvalho 2015] and performed extensive simulations
in a synthetic scenario. The results of experimental simulations show that the method de-
creased the number of useless checkpoints without increasing the time spent on rollback
operations.

In the remainder of this paper, the Background section presents the central issues
of distributed simulations and useless checkpoints. Then we present the specification of
metrics and the probabilistic checkpoint method. Next, we give details about the imple-
mentation of our method into DCB and our case study, followed by the main related works
and the concluding remarks.

2. Background and Motivation
In this section, we review the aspects of synchronization in distributed simulation archi-
tectures. We also review the classification of useless checkpoints according to the rollback
scenario.

Distributed Simulation The system assumes that a distributed architecture connects
independent and heterogeneous components for supporting the cooperation among them.
The inner behavior of each component is seen as a black box and is connected to the
core of the simulator by an interface. The interface stores a log of messages which are
ordered by their timestamp (i.e., time to process the message), and associated with its
respective source by a dependency vector [Johnson 1990]. The dependency vector defines
the dependency among the components according to their configuration of the input and
output ports. Simulation components change their states by executing events. When a
process A executes an event e which will make changes on the state of the process B,
a simulation message is sent from A to B. When the destination process receives the
message, it executes the event e′ and e precedes e′ (or e < e′). It defines the causality
effect of e over e′ [Lamport 1978]. Therefore, a process Pk depends on the process Pj

(denoted by Pk ⇒ Pj) if Pj is configured to send a message requesting the execution of

an event e by Pk. And, if Pj depends on the Pw (denoted by Pj ⇒ Pw), by transitivity,
Pk also depends on the Pw (i.e., Pk ⇒ Pw) [Netzer and Xu 1995].

Useless checkpoints Components of distributed simulations manage their own local
virtual time (LVT) and must execute according to its value [Mattern et al. 1989]. A time
violation (or LCC-Local Causality Constraint) happens when a process receives a mes-
sage with the timestamp less than its LVT. When a component suffers an LCC violation,
it executes rollback operations to restart in a prior consistent state previously saved in
a checkpoint and then run the message in the correct order. Checkpoints are categorized
into two different categories: inconsistent and unreachable. A checkpoint becomes incon-
sistent if in some instant a rollback is performed to a timestamp before the checkpoint.
Inconsistent checkpoints turn the system susceptible to domino-effects (i.e., requires ad-
ditional rollbacks to restore the system to a consistent state). Any rollback operation never
restores unreachable checkpoints. This kind of checkpoint can be created by coordinate or
non-coordinated strategies and depend on garbage collection techniques to be eliminated
from memory [Elnozahy et al. 2002].

Virtual
Time

P0 P1

t2

t1

t3

P2

t0

1

2

3

C2

C1

C3

Rollback

Checkpoint

Figura 1. System state with inconsistent checkpoints

Figure 1 illustrates an LCC violation. In the exemple, process P0 send a message
to P1 triggering a rollback to its last checkpoint (Figure 1, rollback 1). The rollback leaves
a orphan message in P0 and requires a rollback on P0 (Figure 1, rollback 2). The rollback
operation executed by P0 generates another orphan message and it makes the global state
inconsistent. Another rollback of the process P1 eliminate the orphan messages and turn
the global state consistent again (Figure 1, rollback 3), but leave C3 as a inconsistent
checkpoint.

In this work, we extend a probabilistic checkpoint approach to reduce the number
of inconsistent checkpoints in distributed simulations. We assume that components do not

share a global time and rely on the observation: if a rollback occurs to a time inferior to a
checkpoint, it will not be useful to restore to a consistent state.

3. Probabilistic Checkpointing Method

This section presents a set of metrics to measure the utility of a checkpoint. The me-
trics operate by identifying communication patterns between dependent processes of the
simulation. Next, we correlate the communication patterns with the rollback probability
to extend a checkpoint method proposed by Quaglia [Quaglia 1999]. Finally, the method
uses the correlation to estimate the usability of a checkpoint at runtime.

3.1. Metrics Formulation

Table 1 presents a description and notation of the proposed metrics. The LVT and times-
tamp are already available by the target architecture. The Nevents monitors the number
of events processed by the process. The Nrollbacks monitors the number of rollbacks that
the process made. The Er is simply the number of events that a process made since the
occurrence of its last rollback. These metrics works basically as event counters and have
their values updated according to the event execution of each component. Further metrics
are updated only on the checkpoints generation.

Tabela 1. Description and Notation of the proposed metrics

LV Ti Local virtual time of the sender process Pi

Nevents Number of events executed
Nrollbacks Number of rollbacks executed
Er Number of events since the last rollback
f(Pk) Average time between messages received from Pk

Prollback = Nevents/Nrollbacks Average events between rollbacks
d(Pi, Pk) = |LV Ti − LV Tk| Temporal distance between Pi and Pk

t(Pi, Pk) = d(Pi, Pk)/f(Pk) Average interval between messages

The metrics which monitor the temporal distance between two components are
defined as the distance between the LVT of components. Aiming to avoid the overload of
the coordination protocols, we estimate the distance between two components using the
timestamp of the received messages. For instance, when calculating the distance between
Pi and Pk, we assume the timestamp of the last received message from Pk as the estimated
LVT of Pk. In a scenario where the LVT of a process Pi is higher than the LVT of the
process Pk, and it is true that Pi ⇒ Pk, the ‘distance’ represents a time interval in which
received messages from Pk will be LCC violation prone.

Rollback Probability We proposed the utilization of the rollback probability as a metric
to create checkpoints for avoiding an excessive number of rollbacks, which can decrease
the system performance. The method is applied whenever the simulation tries to generate
a new checkpoint at a given simulation time. The method uses the known past events
from all dependent components to predict if they can send new messages that create time
violations in the components which are going to generate checkpoints.

We denote the set of allowed events on the time interval (LV Ti−d(Pi, Pk), LV Ti)
as Γ. Computing Γ is impractical if the distance is large. Our method approximates Γ
efficiently based on a subset of received messages. It allows approximating the number
of messages that would be scheduled by Pk and received by Pi with timestamp ∈ Γ.
Applying it to each dependent process of Pi, according to equation 1, we have the number
of arriving messages which may generate LCC violation on this interval.

∆Pi =
∑

k∈DPi

{
d(Pi,Pk)
f(Puk)

if LV Ti > LV Tk

0 otherwise
(1)

The measurement of ∆Pi ≥ 1, may suggest that there is at least one estimated
message whose timestamp is lesser than LV Ti. In an ideal scenario, ∆Pi + Er is the
correct number of events in Γ. We then compose ∆Pi with the granularity of events
since the last rollback to check if the measurement reaches the idealistic scenario. The
reasoning behind that begins by assuming that a rollback is going to occur: if ∆Pi +Er ≥
Prollback is true, then it indicates that more events would be scheduled in Γ than the average
number of events between rollbacks, therefore the system is rollback prone; Otherwise,
if there are few events since the last rollback and few messages arriving in a way that
∆Pi +Er ≥ Prollback is not satisfied, by contradiction, it is probably not a rollback prone
and a checkpoint must not be created.

3.2. Consolidanting simulation checkpoints

In this section, we discuss how we integrated the measurement of ∆Pi into the probabi-
listic checkpoint method. Aiming to avoid the overload of coordination protocols, we do
not use any coordination with other components to obtain the data. The procedure uses ti-
mestamps extracted from simulation messages and utilized by the checkpointing strategy
only on the checkpoints generation.

if rand() > (1− Prollback) then
take a checkpoint

end if

Quaglia first presented the probabilistic decision depicted above. [Quaglia 1999].
Whenever the system tries to create a checkpoint, the probabilistic choice is applied to de-
termine if the current state represents a useless checkpoint. We extended the conditional
clause λ with our method to measures the usability of a checkpoint, requiring that both
the expressions are true to create a checkpoint [Fagin et al. 1994]. If the proposed metrics
indicate that the state can be useful for restoring the system from an LCC violation, then
the processes create a checkpoint. Next, we present the composition of our metrics into
the probabilistic decision:

λ := (rand() > (1− Prollback))...

λ := λ ∧ ((∆(Pi) + Er) ≥ Prollback)

As the probabilistic decision requires the rollback probability calculation whene-
ver it is executed, then the cost of the checkpoint creation increases proportionally to the
complexity of ∆Pi, O(n). It happens because the dependency vector must be entirely
considered by ∆Pi. The worst case is seen when the size of the vector is equal to the
number n of the processes in the simulation [Bouguerra et al. 2013].

4. Implementation and Evaluation
We implemented the probabilistic method into the DCB (Distributed Co-simulation Back-
bone) [Carvalho 2015]. DCB is a distributed and heterogeneous simulator. Our approach
was integrated into the receiver layer, that works as an interface between the core of DCB
and each component. This layer keeps the messages log and the dependency vector, which
are fundamental structures to calculate the rollback probability every time the system tries
to create a checkpoint. In this section, we present the scenario in which we evaluated our
method and the results we obtained in this scenario.

4.1. Case Study

We created a model with five asynchronous components that have the same internal beha-
vior, and communicate with each other through simple messages. Each component gene-
rates one new simulation message each 100ms according to the configuration presented
in Figure 2.

Figura 2. Message passing configuration graph

The configuration was used to execute the case study for three different check-
point methods: Periodic, where the system generates checkpoints according to determi-
nistic and periodic intervals; the technique proposed by Quaglia [Quaglia 1999]; and the
probabilistic extension proposed in this work. We executed the experiments with these
methods to compare with our probabilistic approach. We performed ten simulations of
1.000.000 units of virtual time for each one of the three methods. The experiments were
performed on an Intel Core i5-3470 CPU @ 3.20GHz x 4 with 7,7 GiB of memory and
running Antergos Linux 64-bit.

Evaluation It is important to measure both the number of each checkpoint category
and the time spent on rollbacks, that says about the delay aggregated by the respective
checkpoint strategy, in order to evaluate the checkpointing strategy. Figure 3 presents the
average of checkpoints created by all the components. The experiments with the Quaglia
algorithm was the one that created the least number of checkpoints. It created approxi-
mately 9% fewer checkpoints than the Periodic algorithm and 2% fewer checkpoints than
the Probabilistic algorithm.

Figura 3. Average number of checkpoints created

Figure 4 presents the average of simulation time spent rollbacking. The time spent
by one rollback is given by the simulation time, when happens the time violation, except
the timestamp of the checkpoint restored. The Quaglia algorithm performed higher me-
asurements for time on rollbacks. The time spent by rollbacking of the Probabilistic
algorithm was 17.6% higher than the Periodic algorithm, and the Quaglia algorithm was
95.5% higher than the Periodic algorithm. It is explained the fact that the Quaglia algo-
rithm did not create some checkpoints that would have been useful for reducing the time
spent by rollbacking.

Rollback Inconsistent Unreachable
Periodic 11.72 6.4 875.06
Quaglia 7.64 3.8 800.96
Probabilistic 6.48 2.92 817.32

Tabela 2. Statistics for each checkpoint method

Table 1 presents the average of rollbacks performed and the number of inconsis-
tent and unreachable checkpoints for each checkpoint method. As a general result, the
probabilistic method created less inconsistent checkpoints and consequently performed
fewer rollbacks than both other strategies. The execution with the Probabilistic algorithm
generated 45% fewer rollbacks than the Periodic algorithm and 15% than the Quaglia al-
gorithm. The percents are similar to the inconsistent checkpoints. However, our algorithm
generated 2% more unreachable ones than the Quaglia algorithm. Nevertheless, it spent
around 35% less time executing rollback operations than the Quaglia algorithm, which
we argue is an acceptable tradeoff for a system like ours.

Figura 4. Average of virtual time rollbacked

5. Related Work

Several studies addressed strategies to reduce the rollback overhead while managing
checkpoints efficiently. These efforts are classified as works that propose new architec-
tures that use checkpoints and the works that propose optimization for traditional check-
point/rollback algorithms. In this section, we review some of these strategies and highlight
similarities with our proposal.

Quaglia [Quaglia 1999] proposed a checkpointing algorithm for optimistic simu-
lations that combine periodic and probabilistic approaches. This algorithm uses the pro-
bability of the rollback occurrences in a given time interval to decide if a new checkpoint
should be created at the current time. However, useless checkpoints are not completely
avoided. We revisited the algorithm presented by Quaglia in this work and extended the
probabilistic decision they made to create checkpoints. The main difference of our stra-
tegy is that they use a granularity of the intermediate events since the last saved check-
point, while we utilize the granularity since the last rollback.

Kumar [Kumar et al. 2010] addressed the problem of minimizing the number of
communication messages and checkpointing overhead in mobile distributed systems. They
proposed a minimum-process coordinated checkpointing algorithm to avoid useless check-
points and imposing low memory usages and computations overheads without blocking
of processes. However, their strategy is application specific, and its deployment on a
simulation framework is not straightforward and still could result in a high overhead of
coordination messages. In this paper, we focus on checkpoint strategy for distributed and
heterogeneous architectures of simulation.

In [Carvalho 2015] the authors presented an uncoordinated checkpointing algo-
rithm to create checkpoints and its deployment on DCB. The algorithm allows each com-

ponent of a simulation model to generate checkpoints independently according to a peri-
odic time interval. The algorithm ensures a low management overhead, however, it pro-
duces a large number of useless checkpoints and consequently exhausts memory in large
simulations. In this work, we integrated a probabilistic approach to scaling the execution
of large simulations on DCB.

The contributions of Saker and Agbaria [Saker and Agbaria 2015] presented a
checkpoint protocol which coordinates only with the processes that it has communica-
ted with since the last checkpoint. The goal is to reduce the coordination effort as well as
the checkpointing frequency. In this work, we also based the communication patterns to
determine the checkpoint creation, but we do not use any coordination for the measure-
ments.

In this work, we focus on a checkpoint approach for distributed and heterogeneous
architectures of simulation. Our strategy does not require coordination to compute its
metrics. Therefore, the strategy is suitable for coordinated and uncoordinated methods to
minimize the number of inconsistent checkpoints.

6. Conclusions
Checkpoint strategies are essential to synchronize components of distributed simulations.
However, checkpoint strategies turn to record useless checkpoints, which decrease the
performance of the simulation. In this work, we presented metrics to measure the usability
of checkpoints at runtime. Our approach analyzes the granularity of events since the last
rollback to probe if the next checkpoint can be useful for the simulation.

We applied our metrics to extend a probabilistic decision, initially proposed by
[Quaglia 1999], and deployed it on DCB. Experimental results presented an equilibrium
between the number of checkpoints created and the time spent on rollbacks when com-
pared with more traditional strategies. It means that our method established the more
critical checkpoints for the rollbacks performed by the simulation. As a general result,
our approach improves simulation performance by reducing the number of inconsistent
checkpoints and consequently decreasing the time spent on rollbacks.

As future work,our method could be used to determine optimal intervals between
checkpoints. In an architectural view, we also consider integrating coordination messages
to improve the accuracy of our measurements and detect useless checkpoint efficiently.
Moreover, we believe that our metrics can be utilized by garbage collectors to determine
global states and remove inconsistent checkpoints.

Referências
Bouguerra, M.-S., Trystram, D., and Wagner, F. (2013). Complexity analysis of check-

point scheduling with variable costs. IEEE Transactions on Computers, 62(6):1269–
1275.

Carvalho, F. M. M., M. B. A. (2015). Hybrid synchronization in the dcb based on unco-
ordinated checkpoints. Proceedings of ESM’ 2015.

Elnozahy, E. N. M., Alvisi, L., Wang, Y.-M., and Johnson, D. B. (2002). A survey
of rollback-recovery protocols in message-passing systems. ACM Comput. Surv.,
34(3):375–408.

Fagin, R., Fagin, R., Fagin, R., and Halpern, J. Y. (1994). Reasoning about knowledge
and probability. J. ACM, 41(2):340–367.

Fu, D., Becker, M., and Szczerbicka, H. (2013). On the potential of semi-conservative
look-ahead estimation in approximative distributed discrete event simulation. In Proce-
edings of the 2013 Summer Computer Simulation Conference, SCSC ’13, pages 28:1–
28:8, Vista, CA. Society for Modeling & Simulation International.

Jefferson, D. R. (1985). Virtual time. ACM Trans. Program. Lang. Syst., 7(3):404–425.

Johnson, D. B. (1990). Distributed System Fault Tolerance Using Message Logging and
Checkpointing. PhD thesis, Houston, TX, USA. AAI9110983.

Kumar, S., Chauhan, R., and Kumar, P. (2010). A low overhead minimum process glo-
bal snapshop collection algorithm for mobile distributed system. arXiv preprint ar-
Xiv:1005.5440.

Kunz, G., Stoffers, M., Gross, J., and Wehrle, K. (2012). Know thy simulation model:
Analyzing event interactions for probabilistic synchronization in parallel simulations.
In Proceedings of the 5th International ICST Conference on Simulation Tools and Tech-
niques, SIMUTOOLS ’12, pages 119–128, ICST, Brussels, Belgium, Belgium. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications Engine-
ering).

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565.

Mattern, F. et al. (1989). Virtual time and global states of distributed systems. Parallel
and Distributed Algorithms, 1(23):215–226.

Netzer, R. H. B. and Xu, J. (1995). Necessary and sufficient conditions for consistent
global snapshots. IEEE Trans. Parallel Distrib. Syst., 6(2):165–169.

Quaglia, F. (1999). Combining periodic and probabilistic checkpointing in optimistic
simulation. In Proceedings of the Thirteenth Workshop on Parallel and Distributed Si-
mulation, PADS ’99, pages 109–116, Washington, DC, USA. IEEE Computer Society.

Reynolds, Jr., P. F. (1988). A spectrum of options for parallel simulation. In Proceedings
of the 20th Conference on Winter Simulation, WSC ’88, pages 325–332, New York,
NY, USA. ACM.

Saker, S. and Agbaria, A. (2015). Communication pattern-based distributed snapshots
in large-scale systems. In Parallel and Distributed Processing Symposium Workshop
(IPDPSW), 2015 IEEE International, pages 1062–1071. IEEE.

Sato, K., Maruyama, N., Mohror, K., Moody, A., Gamblin, T., de Supinski, B. R., and
Matsuoka, S. (2012). Design and modeling of a non-blocking checkpointing sys-
tem. In Proceedings of the International Conference on High Performance Compu-
ting, Networking, Storage and Analysis, SC ’12, pages 19:1–19:10, Los Alamitos, CA,
USA. IEEE Computer Society Press.

Wang, Y., Gao, S., Jia, Z., and Li, X. (2009). Make a strategic decision using markov
for dynamic checkpoint interval. In Proceedings of the 2009 Ninth IEEE International
Conference on Computer and Information Technology - Volume 02, CIT ’09, pages
197–202, Washington, DC, USA. IEEE Computer Society.

