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Multimedia applications are usually limited to stimulating only two human senses: vision and hearing.
Recent studies seek to expand the definition of multimedia applications to include stimuli for other human
senses. In this way, sensory effects that should be triggered in synchrony with the audiovisual content being
presented are included in the applications. By including sensory effects in multimedia, we aim to improve the
Quality of Experience (QoE) with these mulsemedia environments. Usually, two approaches are being used
for performing QoE evaluations these environments. The first, more common, is performed by subjective
evaluation approaches, i.e. through questionnaires, interrogations, oral responses, etc. The second, rarer but
growing, uses objective approaches by collecting physiological data from the user when dealing with the
system being evaluated. Such data is gathered in real time or not, however, it is considered objective because
it is "involuntary", that is, data is not the result of the user’s intention. This paper will address both the these
methods to evaluate QoE and what the respective obstacles are when dealing with in mulsemedia systems.
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1 INTRODUCTION
For many years, multimedia were limited to stimulating only two of the human senses: sight and
hearing. This situation is at odds with the fact that 60% of human communications are non-verbal,
and that most of us perceive the world through the combination of the five senses: sight, hearing,
touch, taste and smell [12]. Based on this, efforts have been made to study and understand how to
expand the definition of multimedia to include other sensory stimuli besides sight and hearing [3].

The last decade has witnessed a growing shift in emphasis from studying the senses alongside
other media devices. Calvert and Thesen [4] say that the adoption of a multisensory perspective
on human sensory perception has evolved in part as a consequence of developments in both
technology and sensory neurophysiology. These advances in technology have coincided with the
increasing knowledge about the mechanisms involved in the sensory systems. A natural extension
of this was the realization that a complete understanding of our perceptual systems would require
the inclusion of how each sense was integrated with input from different sensory systems. Thus,
the basis of mulsemedia capabilities is clear: the integration multiple sensory sources besides audio
and video to improve user feeling of presence.
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However, to understand how mulsemedia works, evaluations of QoE are necessary. There are
two ways to acquire QoE data: subjective and objective.

Subjective measures refer to self-report methods that are typically combined with a task during
which participants are asked to indicate how they are feeling during the evaluation. These are
the most common method of user evaluation, which compromises of user questionnaires, think A
loud methods, interrogation, etc. Subjective measures, however, are not without problems [19, 22]
as they can suffer from what is called “response bias”, which is a phenomenon that participants
respond inaccurately or falsely to said questions. For example, participants often set their own
criteria for assessing what they are feeling, and those who are not sure what to feel may not
report that they are confident unless they are absolutely right [19]. However, as these self-reported
measures are relative ease of use, they can be easily applied in a multitude of environments without
much cost.

Objective measures was proposed to address the problem aforementioned about the imprecision
of voluntary and self-report methods. This view is not new, authors such as Huynh et al. [16] and
Ciolacu and Svasta [6] have proposed models and architectures for evaluating QoE using objective
measures. Lin et al. [17] also has already stated that, although subjective evaluation is an essential
element in the usability evaluations, they are not enough and may need an objective method
for physiological measures to be integrated in traditional usability evaluations. Object measures
e.g. EMG, accelerometers, video recordings and biosiginals [22], are more costly and, so far, only
being applied in academics and laboratory environment. For instance, EngageMon [16] is a system
that uses a combination of sensors from the smartphone, a wristband, and an external camera to
accurately determine the engagement level of a mobile game. Aiming at learning and education,
Ciolacu and Svasta [6] presented a model that uses biofeedback to measure and control learning
processes during user interaction with learning content, as the authors argue that the process of
teach-learning should not be measured only at the end of the exam, but also during the learning
experience.

In summary, objective measures are those information captured from the user biofeedback and
biosignal response. To avoid misunderstandings about these terms, it’s important to make clear
what they are. According to McKee [20], biofeedback is as much a process as the instrumentation
used in that same process. For the first, it is taking physiological information that is monitored and
returning it to be used elsewhere through biofeedback instruments. The latter refers to biofeedback
instruments that are capable of monitoring one or more physiological processes, measuring what
is monitored and transforming that measurement into an understandable information, such as
images or audio cues, to present what is monitored and measured simply, direct and immediate.
Biosignals are closely related to biofeedback data. Giannakakis et al. [13] state that biosignals
are measures of human body processes that can be divided into two main categories: physical
signals and physiological signals. The former are measurements of body tension as a result of
muscle activity, such as pupil size, eye movements, blinking, head, body and semi-voluntary
position/movements, breathing, facial expressions, and voice. As part of it is not a subject of the
Autonomic Nervous System (ANS), it is not a entirely objective measurement. Thus, physiological
signals are more directly related to the ANS, such as cardiac activity, brain function, exocrine
activity, and some muscle excitability assessed by electromyography. These are closely related
to the ANS and are seen as objective metrics. However, objective measurements are not easy to
collect. Almost always expensive, they are usually limited to controlled environments and is not
commonly applied in real situations.

Biofeedback is an umbrella term for capturing physiological data from biosignals and returning
it for another purpose. With the advent of the Internet of Things (IoT) and a more ubiquitous
computing world with mobiles, smart watches, heart rate monitors, etc., we believe that the data
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collected through this multitude of connected devices and new ways to interact with information
can, in addition to being used for evaluations, also be used as a control mechanism for the delivery
of mulsemedia (multiple sensorial media) content, as IoT improvements are increasing the ubiquity
of the Internet by integrating all objects for interaction between systems leading to a highly
distributed network of devices that communicate with humans and other devices, opening up
opportunities for a host of new applications that promise to improve the quality of our lives [30].
What this paper proposes is to highlight some of the ongoing problems and challenges of

objective and subjective approaches for mulsemedia QoE evaluation. This work is divided into
the following sections. Section 2 is subdivided in three subsections: 2.1 Subjective Measures will
address approaches such as questionnaires, think-A-loud, etc. 2.2 Objective Measures will address
approaches such as biosignals gathering, involuntary data, etc. The last subsection 2.3 Challenges
will address the ongoing current challenges of both approaches. Finally, Section 3 our conclusions.

2 EVALUATION APPROACHES
2.1 Subjective Measures
Evaluation of QoE refers to a collection ofmethods and tools used to discover how a person perceives
a system (product, service, non-commercial item, or a combination thereof) before, during, and
after interacting with it. When investigating momentary user experiences, we can evaluate the
level of positive affect, negative affect, joy, surprise, frustration, etc. via vocal statements (i.e Think
Aloud protocol) or post-experience (i.e. User experience questionnaire or UEQ). It is not trivial to
assess user experience, as user experience is subjective, context-dependent, dynamic over time
and when dealing with mulsemedia, the challenge is magnified by the plethora of multisensory
devices.
Murray et al. [21] stated that user perceived QoE capture of mulsemedia is non-trivial mainly

due to the number and various types of media components that are presented synchronously. As
there are no standardized methodologies to conduct subjective assessment of mulsemedia quality,
researchers use different approaches to assess user QoE of mulsemedia applications, mostly of
them with questionnaires. Which questionnaires were administered depends on the mulsemedia
environment being assessed, with no standard questionnaire found to date. Furthermore, according
to Murray et al. [21] review on QoE evaluation of Olfaction-Based Multisensorial Media, only 20%
of the experiments provided details on questionnaires, allowing very few repeatability opportunity.
There are, however, already tested Subjective Methods involving Mulsemedia content, such

as Covaci et al. [7] which proposed a method to improve subjective QoE in 360° Virtual Reality
(VR) Videos through a QoE questionnaire that comprised a series of questions focused on the
user experience. The answer to each question was expressed on a 5-point Likert scale. In addition,
participants also answered a set of 8 more questions aimed at olfactory and wind effects.

2.2 Objective Measures
When dealing with objective measurements, there is a plethora of devices being used. The most
common and easier to use is the measurement of Electrodermal activity (EDA) or Galvanic Skin
Response (GSR). Mostly are being used to measure various psychological states, including arousal,
attention, and stress. Because of its low cost, being non-intrusive, and sensitivity to psychological
processes, EDA is one of themost popular response systems in psychophysiology [1]. Beingmeasure
by the skin, it is also common that the Heart Rate (HR) is measured along with EDA. The mostly
common method it is with Photoplethysmogram (PPG). An optically obtained plethysmogram that
can be used to detect changes in blood volume in the microvascular bed of tissue. PPG is usually
obtained using a pulse oximeter that illuminates the skin and measures changes in light absorption.
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A conventional pulse oximeter monitors blood perfusion in the dermis and subcutaneous tissue of
the skin. As EDA and PPG are non-invasive, they hold promise for stress detection because they
rely on passive sensors to provide pulse and electrodermal data that can be analyzed and have been
shown to be reliable alternatives for easy and inexpensive objective user evaluations. Houzangbe
et al. [15], Wang et al. [29] stated however that both are only able to show "arousal", which is the
physiological and psychological state of being awake or of sense organs stimulated to a point of
perception, leading to increased heart rate, electrodermal activity and blood pressure. This means
that arousal triggered by fear or happiness are detected equally and difficult to differentiate by
data collected.

To this end, and because being more capable of detecting emotions with greater precision, Elec-
troencephalography (EEG) is preferred. EEG is a method of recording an electrogram of electrical
activity in the scalp that has been shown to represent the macroscopic activity of the surface layer
of the brain. This measure can be used to explore physiological information about the user and can
be a useful tool for user experience as EEGs can be taken as an indicator to assess user perception
when using products without interruption [9]. However, they are expensive to collect, to analyze
and EEG suffers from high variability between subjects and requires a long setup of high expert
specialists to acquire good quality signal [11]. Because they are increasingly being used for QoE
evaluations, with EEG-based emotion recognition studies gaining popularity in many disciplines
[8], there are now commercial EEG products that promise to make your data easier to measure
and understand, such as Emotiv EPOC X, Emotiv EPOC+ , Emotiv INSIGHT, Emotiv EPOC FLEX,
OpenBCI and NeuroSky MindWav. Some of these EEG devices have one or more extra channels for
capturing physiological signals, such as Electrocardiogram (ECG), Electrooculography (EOG) and
Electromyography (EMG) [28], capable of collecting psychological (brain) and physiological (blood
pressure, muscle activity, heart rate, etc.) data, being an improvement over the cheaper devices
mentioned earlier. EMG and EOG, however, are not always necessarily "objective" biosignals, as
some of the bio-data recorded are a result of the user’s intention to do so, and are not a product of
our autonomic nervous system (ANS), which would jeopardize the "objectivity" of these data.

2.3 Challenges for MulsemediaQuality of Experience Evaluations
Subjective and objective approaches for QoE evaluations are prone to problems. Subjective mea-
surements, although cheaper, are also a source of criticism: questionnaires and surveys can break
user immersion when dealing with immersive experiences as in VR because the transition from
the virtual world to the physical world to respond to VR experience questionnaires can lead to
systematic biases [23, 24]. A better approach was proposed by Schwind et al. [27] who stated that
applying questionnaires directly in the VR environment is better because, although the results
indicate that, in addition to reducing the duration of a study and decreasing disorientation, filling
out questionnaires in RV does not change the measured presence, but it can increase the con-
sistency of variance. Almost the same conclusions were reached by Putze et al. [23] who stated
that the application of VR questionnaires (inVRQs) is becoming more common in contemporary
research. This builds on the intuitive notion that inVRQs can facilitate participation, reduce Break
in Presence (BIP), and avoid bias. Also, Safikhani et al. [24], despite not having reached a definitive
conclusion, highlighted that users preferred to use inVRQs designs to the traditional ones. Also for
that reason, a Think-A-Loud method is more suitable for evaluations of mulsemedia environments,
as it indicates the user’s feeling in real time, rather than a post-report carried out after the user’s
interaction with the environment, thus, avoiding biases and false statements. What we are trying
to say is that traditional approaches may not be suitable for mulsemedia QoE evaluation because
they explore new fields of experience that cannot be reached by such methods.
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While objectivemeasurements seek to be accurate, when dealing withmulsemedia environments,
the devices and sensors used may lack synchronization and latency, which is a current challenge of
using these devices altogether. Synchronization and latency are a major challenge for the inclusion
of other sensory stimuli than audio and video in these environments, which depends on a complete
synchronization between traditional multimedia and devices that deliver haptic, olfactory or taste
sensations [26, 33]. When wearable devices are used to capture and detect biosignals, the problem
is magnified.
Some sensory effects such as olfactory and gustatory effects are gradual, whereas using EDA

or PPG is a highly responsive body signal. Synchronize these devices can be challenging as Ho
et al. [14] claimed that electrodermal activity increased rapidly within seconds in response to
small physiological and mental stimuli. This means that correctly choosing which devices to
measure biosignals when evaluating multisensory environments can be tricky. For example, when
dealing with emotions such as fear and excitement, both produce an increase in heart rate and
electrodermal skin activity. This means that trying to identify them with just EDA and PPG
devices can lead to confusion. As noted before, both positive (“happy” or “joyful”) and negative
(“threatening” or “saddening”) stimuli can result in an increase in arousal, and by it, in an increase
in skin conductance and heart rate. That said, EDA and PPG signals are therefore not representative
of the type of emotion, but the intensity of it.

Another challenge is how to adapt these devices for "real time environments", this mean, outside
of a controlled area. EDA devices, for instance, can have their data compromised by outside
temperatures. That’s because while EDA have a strong association has with emotional arousal, it
also shares a link to the regulation of our internal temperatures [2]. Since PPG is dependent of
light, its signals can be affected by the light spectra and intensity of the environment [18].

When dealing with evenmore complex devices such as the EEG, the range of problems is widened.
EEG devices, even commercial ones, can be uncomfortable [5]. Other still ongoing challenges
are costs, accuracy of sensors (EEG sensors often need a saline solution or gel to facilitate skin
conduction), data transfer errors or inconsistency, and ease of use for devices [10, 31, 32].

However, some challenges are about to be faced with 5G, which has the potential to create new
interfaces for our everyday devices and network components. With 5G being able to connect more
users to provide smarter and faster communications we are about to see a boom in wearables. How
5G will work together with mulsemedia devices is an object of research [25], but we can assume
that 5G technology will provide faster and more reliable communication with high data rate and
low latency rates, partially dealing with the ongoing challenge of synchronization and latency on
mulsemedia devices, as cited by work by Yuan et al. [33].

Table 2.3 summarizes advantages and disadvantages of each approach.
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Evaluation Approaches in Mulsemedia Environments

Subjective Advantages
1.1 Cheap
1.2 It can be done anywhere, without the need for a lot of resources,

compared to other evaluation approaches.
1.3 Very explored and diverse field, with high number of references

and standardizations.
Disadvantages

1.4 Questionnaires and surveys can break user immersion when
dealing with immersive experiences

1.5 Can suffer from “response bias” and subject to inaccuracies
1.6 Mulsemedia explores new fields of experience that cannot be

evaluated by this method.

Objective Advantages
2.1 More accurate data
2.2 Does not suffer from user bias or inaccuracies presented in

subjective approaches.
2.3 Can detect hidden information, usually not detected with sub-

jective methods.
Disadvantages

2.4 Expensive
2.5 Requires resources and controlled environment.
2.5 Inherent complexities of mulsemedia environments can inter-

fere with the execution of objective approaches.
2.6 Wearable data collection devices can be uncomfortable.

3 CONCLUSION
For conclusions, we can agree that the usability evaluation of mulsemedia environments presents a
higher level of difficulty than the standard multimedia. The interaction of multiple systems makes
it difficult to evaluate sensory stimuli in isolation, compromising the standard forms of usability
evaluation, especially the subjective ones.
Growing alternatives currently are the use of wearable devices for real time analysis of the

user’s level of satisfaction when interacting with the system, and with the advancement of 5G
networks, it is expected that challenges such as latency and synchronization will be mitigated and
that better machine user interaction is reached.
However, the plethora of available devices makes it difficult to generalize how evaluations of

QoE should be performed, as each device has different peculiarities and structures: some use
Peltier heating systems, others simulate haptic effects by "tricking" the human senses (such as
using a mint scent to give the impression of being cold). This said, it’s not just a technical issue
of the devices, but how the human senses are stimulated by them. This increases the scope of
usability evaluations, expanding the field to psychology, medicine, design, etc.
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Furthermore, seeing how this area of study is growing every day, even more so with the arrival
of 5G, we assume that this will be a fertile field of research, even outside academia, as we can see
with the advent of Virtual Reality environments, as META.

We also do not seek to substitute onemethod for the other, as both can bemutual complementary.
What we want to say in this paper is the opportunity to use objective data collection devices to
better understand the functioning of mulsemedia systems.
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