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Abstract—Data annotation using visual inspection (supervi-
sion) of each training sample can be laborious. Interactive
solutions alleviate this by helping experts propagate labels from
a few supervised samples to unlabeled ones based solely on
the visual analysis of their feature space projection (with no
further sample supervision). We present a semi-automatic data
annotation approach based on suitable feature space projection
and semi-supervised label estimation. We validate our method on
the popular MNIST dataset and on images of human intestinal
parasites with and without fecal impurities, a large and diverse
dataset that makes classification very hard. We evaluate two
approaches for semi-supervised learning from the latent and
projection spaces, to choose the one that best reduces user
annotation effort and also increases classification accuracy on
unseen data. Our results demonstrate the added-value of visual
analytics tools that combine complementary abilities of humans
and machines for more effective machine learning.

I. INTRODUCTION

Machine Learning (ML) models have been extensively
investigated and used for regression and classification prob-
lems [2]–[4]. More recently, Convolutional Neural Networks
(CNNs) have shown great success in many applications, such
as image/text classification [5] and speech recognition [6],
since they require considerably less effort to optimize pa-
rameters than the common feature extraction pipeline [5].
However, CNNs may require a high number of labeled samples
(annotated objects) for training [7].

While small labeled training sets can impair the ability of an
ML model to correctly classify new samples (a problem known
as over-fitting [8]), large unlabeled sets make visual inspection
and annotation very expensive for the expert. Human costs
become even so more prohibitive in domains that require
specialized knowledge about the objects, like Medicine and
Biology. Solutions for small labeled sets include data augmen-
tation [9] and regularization methods [10]. For large unlabeled
sets, semi-supervised classifiers have been used to propagate
labels from a small supervised set to the many unsupervised
samples by exploring the sample distribution in some feature
space [11]–[13]. Yet, none of these approaches has combined
the cognitive ability of humans in data abstraction with the
ability of machines in data processing to increase the number
of labeled objects.

* This work relates to a M.Sc. dissertation [1].

Recent studies have investigated the use of feature space
projections and visual analytics to understand and engineer
ML models [14]–[18]. Such work addresses both aforemen-
tioned labeling cases with approaches for interactive data
augmentation [16] and interactive data annotation [17], [18]
guided by feature space projections, respectively. Bernard
et al. [17] have compared interactive data annotation in a
feature space projection with an active learning technique,
in which experts supervise and annotate samples selected
by a classifier and the classifier is retrained to annotate
and select more samples in the original feature space. They
discovered that interactive data annotation in the feature space
projection is superior to active learning. Benato et. al. [18]
have showed that when the user propagates labels to a large
unsupervised sample-set guided by the true-label knowledge
of a few samples and by the visual information of the sample
distribution in a feature space projection, the resulting labeled
training-set is more correct than the one created by semi-
supervised classifiers in the original feature space. Hence,
classifiers trained from such interactively labeled sets can
better predict labels of unseen test samples than those trained
from automatically labeled sets. Yet, Bernard et al. [17] and
Benato et al. [18] have not combined automatic and interactive
approaches for label propagation — i.e, they have not been
concerned with the user effort in visual data inspection and
annotation.

In this master dissertation, we fill the above gap by
proposing a semi-automatic approach that reduces user la-
beling effort while achieving better classification accuracy
on unseen test sets. For this, we exploit the concept of
sample informativeness from Active Learning (AL). Such
approaches select samples for expert supervision based on
their informativeness — i.e., potential to improve the design
of a classifier from the knowledge of their true label [19],
measured by the confidence of a classifier about the label
assigned to a sample [20]–[23]. In our case, we propagate
labels to samples with high-confidence values; and enable
the expert focus on low-confidence values for manual label
propagation. For this, the user visually analyzes the sample
distribution in a 2D scatterplot created by the t-Distributed
Stochastic Neighbor Embedding (t-SNE) technique [24], con-
structed similarly to [17], [18], and the true-label knowledge



of only a few samples per class. Although our method can
explore further classifier improvement of the classifier by
multiple iterations of AL with additional supervised samples,
we solve data annotation from a single user interaction for
label propagation with no sample supervision. For automatic
label propagation, we evaluate two semi-supervised classifiers
trained in both latent and projection spaces for automatic label
estimation and choose the best one for our goal. We show
that our semi-automatic label propagation (SALP) method
achieves end-to-end better classification results as compared
to both fully automatic label propagation and fully manual
label propagation.

II. SEMI-AUTOMATIC PROJECTION-BASED DATA
ANNOTATION
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Fig. 1. Semi-automatic data annotation pipeline [25]. We extract features
by unsupervised learning from the training set and next use these to project
this set to a 2D scatterplot. We next enrich the training set by propagating
labels from supervised to unsupervised samples by automatic methods (in
both latent and projection spaces) and by manual user-controlled methods.
We finally compare the quality of the classifiers trained on such training sets
to decide on the best label propagation method. Red indicates additions to
earlier related work [18].

Given a training set with a low number of supervised sam-
ples and considerably larger number of unsupervised samples,
our semi-automatic data annotation approach (Fig. 1) has four
steps:

• unsupervised feature learning: We start by extracting
features from the input dataset. To minimize the number
of supervised samples needed, we adopt an unsupervised
feature-learning procedure;

• feature space projection: We create a feature space 2D
projection that captures well the sample distribution in
the latent feature space for further visual analysis;

• semi-supervised label estimation: We propagate labels
automatically to high-confidence unlabeled samples,
thereby increasing with training-set size with little effort
and high quality;

• visual analysis: The expert creates additional labeled
samples to the above ones, by interactively propagating
labels to the less-confident samples using 2D projection.

A. Unsupervised Feature Learning

We use an Autoencoder Neural Network (AuNN) [26], [27]
for unsupervised feature learning. AuNNs consist of two parts,
encoder and decoder. The encoder maps the input samples
to points in a reduced (latent) feature space; the decoder

reconstructs these samples. The two parts are coupled and
trained together by backpropagation. As cost function, we use
the mean squared error between the original and reconstructed
samples. Hence, we train the AuNN with all labeled and
unlabeled samples by ignoring labels. After evaluating several
models, we decided for a Stacked Convolutional AuNN [26]
— a neural network that presents convolutional layers and can
usually obtain relevant latent features.

B. Feature Space Projection

Previous works indicate that 2D projections, created by
the t-SNE algorithm [28], [29], achieve this goal well [14],
[17], [18], so we follow these (Sec. II-B). The dimension
of the latent feature space can still be considered very high
(with hundreds to thousands of features) and so unfeasible
for visual inspection of the sample distribution. As previously
mentioned, we wish to reduce the latent space to two dimen-
sions by preserving as much as possible the relevant structure
of the data. The most suitable techniques for this task seem
to preserve local distances between samples and the t-SNE
algorithm satisfies this criterion [24].

C. Semi-Supervised Label Estimation

For semi-supervised label estimation, we consider two tech-
niques that explore the sample distribution in a given feature
space to propagate labels from supervised to unsupervised
ones: Laplacian Support Vector Machines (LapSVM) [30],
[31] and Semi-Supervised Classification by Optimum-Path
Forest (OPF-Semi) [32]. We evaluate both methods on both
latent and projection spaces. Given that the performance of
OPF-Semi in label propagation is much higher than that
of LapSVM (see Sec. III), we select OPF-Semi to output
confidence values, used next for our manual label propagation
(Sec II-D). Additionally, we found that OPF-Semi in the
projection space outperforms itself in the latent feature space
(see Sec. III). Hence, we use the 2D version of OPF-Semi for
semi-automatic data annotation.

OPF-Semi maps (un)labeled samples to nodes of a graph
and computes an optimum-path forest rooted at labeled sam-
ples. In this forest, each node s is conquered (labeled) by the
root R that offers a path of minimum cost k(R, s) to s. We
use costs to compute label confidence values c(s) as described
in [21]–[23]. We use the confidence as follows: All labels
assigned by OPF-Semi having a confidence above a threshold
τ are used as such in the training process. τ is chosen by the
user based on the visual analysis of the feature projection with
unsupervised samples colored by their confidence values from
red (low c) to green (high c) (Fig. 2). Changing τ interactively
by a slider lets the user (a) say that high-confidence samples
can keep their likely good labels assigned by OPF-Semi and
(b) focus on the remaining low-confidence samples to assign
them labels by manual label propagation. Users can choose
τ balancing how much they wish to trust OPF-Semi vs how
many samples they are willing to label manually.



D. Manual Label Propagation

The added value of user-driven label propagation in a t-
SNE projection was demonstrated by the interactive label
propagation technique in [18] which we refer to next as
ILP for brevity. However, ILP propagation is fundamentally
affected by the quality of the latent features extracted by the
AuNN (Sec. II-A) and the quality of the t-SNE projection
itself: If both these operations faithfully preserve the similarity
of original samples, then the user can likely propagate labels
well, by simply selecting points close in the projection to the
supervised samples. If either the latent space or the projection
create errors, which they inherently do [33], this will likely
create wrong labels. We assist the user in this process as
follows. We color the supervised points in the projection by
their labels, and color all low-confidence unsupervised points
s having c(s) < τ in black (Fig. 2(b)). The black points
are projected before the colored points, in order to minimize
undesired occlusions. When moving the mouse pointer over
a projected point, we show its sample image in a tooltip.
The user next employs these three sources of information
– proximity of unsupervised (black) points in the 2D pro-
jection to supervised (colored) ones, low-confidence value
of the unsupervised points, and similarity of unsupervised-
to-supervised tooltip images – to decide which unsupervised
samples get which supervised label. Label propagation is next
done simply by selecting desired points in the projection and
clicking to assign them a supervised-point label.

(a) (b)
Fig. 2. a) Feature projection: unsupervised samples from red (low) to green
(high confidence). (b) Semi-automatic label propagation is done from the su-
pervised samples (points colored by class, saturated colors) first automatically
to the unsupervised and high-confidence ones (light colors). Low-confident
samples (black) are candidates for manual propagation [25].

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

We divide each available dataset D into three subsets for
validation: a very small training set S with a few supervised
samples per class (3%|D|); a considerably larger training set
U with unsupervised samples for label propagation (67%|D|);
and a set T with unseen test samples (30%|D|). Next, based
on the user-chosen confidence threshold τ , we split U into
high-confidence samples Lc, which get their label from OPF-
Semi, and low-confidence ones Li, which can be interactively
labeled by the user. Note that Lc ∩ Li = ∅ and Lc ∪ Li 6= U ,
since the user can choose not to label Li entirely, to minimize
manual labeling effort. We randomly split D into S, U , and
T this way three times and repeat the evaluation — i.e., label

propagation from S to U followed by supervised training on
S ∪ U and testing on T — for statistical purposes.

After labels are propagated from S to U , we train a super-
vised classifier on S ∪ U using the latent feature space. For
this task, we used the Optimum-Path Forest (OPF) [34] and
Support Vector Machines (SVM) [35]. We test the classifiers
on T .

B. Baselines

We propose a semi-automatic label propagation (SALP)
that uses OPF-Semi in the 2D t-SNE projection space to
propagate labels to high-confidence samples and the user to
propagate labels to low-confidence samples, respectively. We
next compare SALP with the following three baselines:

1) No label propagation (NLP): SVM and OPF, are trained
from only S, ignoring set U .

2) Automatic label propagation (ALP): set U is fully la-
beled by one of the four ALP methods below and SVM
and OPF are trained from S ∪ U .

a) LapSVM using the nD latent feature space.
b) LapSVM using the 2D t-SNE projection space.
c) OPF-Semi using the nD latent feature space.
d) OPF-Semi using the 2D t-SNE projection space.

3) Interactive label propagation (ILP): set U is fully la-
beled by the user and SVM and OPF are trained from
S ∪ U , as in [18].

In all above cases, we test SVM and OPF on T .

C. Datasets

Our first dataset contains 5000 images (28 × 28 pixels
each) of handwritten digits from 0 to 9, randomly selected
from the popular public dataset MNIST [36]. Our next three
datasets use images (200×200 pixels each) from an automatic
processing pipeline that separates microscopy images of hu-
man intestinal parasites into three groups: (i) Helminth larvae
and fecal impurities (3514 images, two classes); (ii) Helminth
eggs and fecal impurities (5112 images, nine classes); and
(iii) Protozoan cysts and fecal impurities (9568 images, seven
classes). Fecal impurity is a diverse class that has very similar
samples to parasites (see Fig. 3). We consider these three
datasets with and without images of fecal impurities, yielding
five datasets for testing our proposal, apart from MNIST.
Those are the most common species of human intestinal
parasites in Brazil, which are responsible for public health
problems in most tropical countries [37]. All three datasets
are unbalanced with considerably more impurity samples.

Fig. 3. Examples of H.Eggs’ species (left) and similar impurities (right) [25].



D. Experimental Results

We discuss the performance of our pipeline, measured by
the performance of the classifiers trained from S ∪ U in
the latent feature space and tested on T , by answering the
following questions:

• Which space (nD latent, 2D projection) is better for ALP?
• How to set the confidence threshold τ?
• Which approach (manual, semi-automatic, automatic)

best propagates labels from S to U?
• What is the end-to-end value of SALP?
Note that we use the 2D projection space only for manual

label propagation, i.e. not for testing, since we cannot assume
that set T is known during training. Due to the limited space,
we opt by omitting the tables and let the graphs with the same
results instead.

1) Influence of reducing the feature space from nD to 2D:
From the mean and standard deviation of the classification
results on set T (Table omitted here, see graphs in Sec. IV),
we could get several insights. First, we see that LapSVM
performs sometimes better and sometimes worse in nD as
compared to 2D, depending on the dataset. In contrast, OPF-
Semi consistently shows a positive impact of reducing the
feature space independently of the dataset. This happens even
when its label-propagation performance is not the best one.

2) The choice of the confidence threshold: As stated in
Sec. II-C, users need to choose the threshold τ to specify
which automatically-propagated labels they want to keep and
which they wish to ‘override’ manually. Figure 4 shows
the projections for the six studied datasets. We see that the
threshold τ varies relatively little (0.5 or 0.6) across datasets.
This indicates that a good default value to start with is τ = 0.5,
after which users can tune τ upwards or downwards depending
on the actual distribution of confidences in the projection.

3) Best label propagation approach: From the mean and
standard deviation of the classification results on set T (Ta-
ble omitted here, see graphs in Sec. IV), we showed that
OPF-Semi 2D is the winner for automatic label propagation
(ALP). Hence, the next question is how well this method
would compare against interactive label propagation (ILP)
[18], which uses manual label propagation to all unsupervised
labels, and our new semi-automatic label propagation (SALP),
which uses manual label propagation to samples with low-
confidence unsupervised labels only. Figure 5 illustrates the
ILP and SALP projections for the studied datasets. A key
advantage of SALP over ILP is that it shows only the least
confident samples (according to OPF-Semi 2D) to the user,
hence reducing the effort needed to understand the picture
(and also reducing clutter and overlap in the projection), thus
making the interactive labeling task easier. We discuss next
several observations relating ILP to SALP in Fig. 5.

For the MNIST dataset, the user propagated labels to 1864
unsupervised samples on average (over the three considered
runs) when using ILP. When using SALP, this number dropped
to 1182 samples. This pattern of less effort for SALP is
consistent over all other datasets. We focused our discussion
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Fig. 4. Projections colored by label confidence (red=low confident,
green=high confident). Rows are datasets (easiest at top, hardest at bottom).
Columns show the entire set of supervised-and-unsupervised samples S ∪U ,
the high-confidence samples Lc labeled by ALP, and the low-confidence
samples U \ Lc that go to manual labeling [25].

here in the most difficult datasets: H.Eggs and P.cysts with
impurities.

For H.Eggs dataset with impurity, the supervised impurity
samples (gray) fall between groups of colored points (actual
H.Eggs classes) in the projection. In contrast to the earlier
datasets, we see many more black points in SALP, meaning
that OPF-Semi 2D has difficulties in automatically propagating
labels. This matches the fact that datasets with impurities
are considerably harder. For this dataset, the user propagated
labels to more points in SALP (2076) than ILP (1787). This
seems to support the evidence that the simplification of the
SALP projection by removing high-confidence points, even
though minor in this case, was enough to help the user
see more structure in the projection along which she could
propagate labels. Also, as for P.cysts, we see that OPF-Semi
2D propagates labels in more central regions of visible groups,
leaving the rest to the user. Finally, for P.cysts with impurities,
the supervised impurity samples (brown) are spread out over
the entire projection. The supervised P.cysts samples (other
colors than brown) are mixed quite strongly, and the projection
shows little structure – roughly, one large and one small
crescent-shaped group. This is the most challenging dataset
for manual label propagation. When adding the impurities
to those datasets, the difficulty increases for the classifiers
(Sec. III-D4).

As for H.Eggs, OPF-Semi 2D finds only few confident
samples, so the manual labeling effort is quite similar for both
ILP and SALP. This is matched by the actual number of points
to which the user actually propagated labels (1787 with ILP
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Fig. 5. Comparison of different label propagation methods (columns) for
different datasets (rows). From left to right: ILP, SALP, labels automati-
cally propagated by OPF-Semi, and final labeling result of SALP together
with OPF-Semi. Colors indicate labels given by either supervised samples
(ILP, SALP) or both unsupervised and propagated labels (OPF-Semi, OPF-
semi+user)). Black shows samples to be considered by manual propagation
(three left columns), and samples skipped by manual propagation (right
column). Sample set sizes are shown to the right [25].

vs 1733 with SALP). Even though these figures are almost
identical, the main benefit for SALP here is that OPF-Semi
2D already filtered the easy cases (high confidence) points,
thereby focusing the user’s effort to the more difficult cases.

4) End-to-end value of SALP: We have seen that SALP de-
creases the user’s effort in label propagation. A final question
we answer is: How much added-value does SALP bring, in
terms of classification quality, as opposed to the earlier similar
method, ILP, or to the best fully-automatic counterpart we
found, OPF-Semi 2D? From the mean and standard deviation
of the classification results on set T (Table omitted here, see
graphs in Sec. IV), we see that SALP consistently obtained
the best classification results on unseen T for all datasets.
This proves that SALP is, indeed, of added value with respect
to earlier existing methods – using it yields better classifiers
in the end. Separately, we see that, for all but the simplest
datasets (MNIST and H.Eggs), SALP also yields the best label
propagation accuracy.

IV. DISCUSSION

A. Using the nD vs 2D feature space

An interesting question is how the fully automatic label
propagation (ALP) performs when using the latent nD feature
space vs the 2D projection space. Figure 6 shows the average
κ classification values for LapSVM and OPF-Semi using these

two spaces for the OPF and SVM classifiers respectively.
Datasets are sorted along the x axis by decreasing order of
the κ value for OPF-Semi 2D. We see that LapSVM leads
to better results in 2D than in nD for half of the datasets,
while OPF-Semi does that for all datasets. This essentially
tells that the 2D projection space, created by t-SNE, is able
to retain all needed information to enable the desired label
propagation and, next, good-quality classifier construction.
This is an important result, as it justifies next presenting the
2D projection space to the user as the sole information based
on which she will perform the manual label propagation. We
also see that the trend of the κ values along the x axis, for
both the 2D and nD variants, matches the perceived difficulty
of the datasets: High κ values correspond to easier datasets
(left), while lower κ values correspond to the harder datasets
with impurities (to the right). Finally, we plot here also the
κ values for ILP and SALP (curves in the figures). In all
cases, these curves are above the automatic methods, showing
that adding manual effort pays off. The SALP curve is above
the ILP one, showing that the optimal design is reached by
combining automatic and manual propagation (both in 2D).
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Fig. 6. κ values for studied datasets, for OPF and SVM classifiers (columns)
and LapSVM and OPF-Semi automatic label propagation methods (rows).
Curves show κ values for ILP and SALP. Datasets are sorted from easiest to
hardest to classify (left to right) based on SALP results [25].

B. User effort reduction

Besides achieving the best classification results, as com-
pared to both fully-automatic and fully-manual (ILP) label
propagation, SALP also reduces the manual effort as compared
to ILP. Figure 7 shows this by depicting the percentage of
samples labeled by the user over total number of samples
to label (|U |) per dataset and for ILP and SALP. For SALP,
this measurement excludes, indeed, the automatically-labeled
samples by OPF-Semi 2D. Datasets are sorted along x by
increasing |U |, i.e, from the smallest to the largest dataset. Fig-
ure 7 reveals several insights. First, assuming that the labeling
effort is proportional with the number of labeled samples and
the effort per sample is the same for ILP and SALP (which
should be the case given that the two methods share the same
visualization and interaction), we see that the ILP effort is
always larger than the SALP effort, except for H.Eggs with
impurities. Secondly, the percentage of propagated samples
for ILP decreases with the dataset size. This can be explained



by the difficulty of propagating labels in projections showing
many points, where overlap and clutter become issues. We note
an opposite for trend SALP: The percentage of propagated
samples increases with dataset size. The trend breaks for the
largest dataset (Prot.c.(I), 6363 samples), about twice larger
than the second-largest dataset (H.Eggs(I), 3400 samples).
Here, the projection is likely quite dense and cluttered, so
manual propagation becomes similarly hard for ILP and SALP.

In parallel, we observe that the number of samples U \Lc,
those above the threshold τ and low-confidence labels to OPF-
Semi, also increases with the dataset size. Thus, the amount
of samples U \ Lc presented to the user to propagate labels
with SALP increases with dataset size. One case in point is
the H.Eggs with impurities dataset. This dataset has the largest
percentage of annotated samples by SALP, exceeding also ILP.
This is explained by the size of the dataset (second largest
one) and the fact that its projection makes it reasonably easy
to propagate labels for the large impurity class (Fig. 4).
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Fig. 7. Percentage of labeled samples in U vs ILP and SALP label propagation
methods. x-axis is sorted by the number of samples in the datasets [25].

C. Effectiveness

As shown in Fig. 6, SALP consistently yields best classifi-
cation results, for both SVM and OPF classifiers, overpassing
fully manual propagation methods (ILP) and the best fully au-
tomatic one (OPF-Semi 2D). The gains of SALP are higher for
the more challenging datasets, where fully automatic methods
encounter challenges. Conversely, where such methods work
well, they reduce user effort as compared to fully manual
propagation (ILP). In brief, this shows that the combination
of automatic methods with human insights is indeed of added
value both in increasing classifier quality and decreasing the
effort needed to achieve it.

D. Limitations

First, validation is limited to six datasets, two classifier tech-
niques, and one user performing manual labeling. Measuring
the added-value of SALP for more (dataset, classifier, user)
combinations would bring more insights into the effectiveness
of the method. Secondly, while the added-value of the 2D t-
SNE projection space has been demonstrated, the actual effect
of t-SNE’s distortions has not been quantitatively gauged.
Using projection accuracy metrics such as stress, trustworthi-
ness, continuity, or neighborhood hit [33] can be used to find
such correlations. On the other hand, using visual tools [33]
that highlight such errors can help the user to achieve more
accurate and/or faster manual label propagation.

V. CONCLUSION

We proposed a combined automatic-and-user-driven ap-
proach for creating labeled samples for sparsely-annotated
datasets for the purpose of training classifier models. For
this, we extract dataset features using Autoencoder Neural
Networks and next reduce these to a 2D space using t-SNE. We
next automatically propagate labels from the (few) supervised
to unsupervised samples in this 2D space, while monitoring
the propagation confidence. For low confidence labeled sam-
ples, we allow the user to manually annotate them by using
the visual insights encoded in the 2D projection annotated
with the supervised sample labels. Several quantitative results
follow: First, we showed that the 2D projection space leads
to higher-accuracy automatic label propagation than the high-
dimensional latent space extracted by the autoencoder. To our
knowledge, this insight is new, and suggests new ways for
dimensionality reduction. Secondly, we show that our semi-
supervised method, combining the OPF-Semi automatic label
propagation with user-driven manual label propagation, both
done in the 2D space, achieves higher classification quality
than both fully-automatic and fully-manual label propagation.
This opens the way to different methods for combining au-
tomatic and human-centered methods for the engineering of
high-quality machine learning systems.

Future work will consider the use of the proposed semi-
automatic label propagation method in Active Learning (AL)
scenarios. We expect that AL looping can improve classifi-
cation results. Separately, we plan to perform more extensive
validation studies measuring the added-value of our approach
for more types of datasets, classification methods, and using
additional visual analytics techniques to help users to propa-
gate labels better and faster.

The following distinctions resulted of this dissertation:
• Three international conference papers [16], [18], [38];
• One international journal paper at Pattern Recogni-

tion [25];
• Best poster award by the entitle work ”Data annotation

guided by Feature Projections”, XIV Workshop de Teses,
Dissertações e Trabalhos de Iniciação Cientı́fica (WTD),
IC UNICAMP, 2019;

• Six months research internship at University of Gronin-
gen funded by BEPE/Fapesp and supervised by Prof. Dr.
Alexandru Telea.
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