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Abstract—Techniques for 3D reconstruction of scenes based
on images are popular and support a number of secondary
applications. Traditional approaches require several captures
for covering whole environments due to the narrow field of
view (FoV) of the pinhole-based/perspective cameras. This paper
summarizes the main contributions of the homonym Ph.D.
Thesis, which addresses the 3D scene reconstruction problem
by considering omnidirectional (spherical or 360◦) cameras that
present a 360◦ × 180◦ FoV. Although spherical imagery have
the benefit of the full-FoV, they are also challenging due to the
inherent distortions involved in the capture and representation
of such images, which might compromise the use of many well-
established algorithms for image processing and computer vision.
The referred Ph.D. Thesis introduces novel methodologies for
estimating dense depth maps from two or more uncalibrated and
temporally unordered 360◦ images. It also presents a framework
for inferring depth from a single spherical image. We validate our
approaches using both synthetic data and computer-generated
imagery, showing competitive results concerning other state-of-
the-art methods.

I. INTRODUCTION

Image-based 3D scene reconstruction approaches have been
widely studied by the scientific community, having applica-
tions in archaeological [1] and architectural modeling [2],
robot navigation [3], autonomous driving systems [4], and in-
frastructure inspection [5], just to mention a few. Most existing
techniques deal with the traditional pinhole-based/perspective
cameras, which present a narrow field of view (FoV), and,
hence, require several captures to model large scenes. Classi-
cally, multi-view stereo (MVS) approaches rely on calibrated
image sets and produce dense 3D reconstructions [6], whereas
structure from motion (SfM) and visual simultaneous local-
ization and mapping (V-SLAM) methods estimate both the
camera poses and the 3D geometry from video sequences but
in a much sparser feature level [7].

In the past few years, omnidirectional (spherical or 360◦)
images and videos started to become popular thanks to the
release of easy-to-use consumer-grade devices for acquisition
and visualization, and the growing number of novel artificial,
mixed, and virtual reality (AR/MR/VR) applications [8]. Op-
positely to pinhole-based media, 360◦ imagery are intrinsically
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Fig. 1. Example of a 360◦ image mapped (a) onto the sphere and (b) to the
plane (in equirectangular format).

defined over the surface of the unit sphere, and thus, present
a full 360◦ × 180◦ FoV [9]. Fig. 1(a) illustrates such an
example1. From the application point of view, in theory, a
dense 3D representation of a given scenario (excepting for
disocclusions) might be generated from two views only, as
occurs in the traditional stereo matching case, simplifying the
capture and the methods’ pipelines.

Nonetheless, 360◦ media contain intrinsic distortions as-
sociated to the camera model that become apparent when
projecting the sphere on the plane [11]. The most commonly
adopted sphere-to-plane mapping is the so-called equirect-
angular format, depicted in Fig. 1(b). As one can see, the
distortions appear more intensely near to the image poles;
but they are also prominent on objects that are close to the
camera [12]. Therefore, most of the algorithms developed
so far by the scientific community may not be capable of
performing the tasks they were designed for when applied to
omnidirectional images and videos [8], [11], [13], [14].

The main goal of the referred Ph.D. Thesis was to build a
method for dense depth estimation from indoor scenes based
on two or more non-calibrated and temporally unordered 360◦

captures. In fact, we explore the flexibility of SfM/V-SLAM
approaches but requiring a dense output, as done by MVS
methods, while attaining the particularities of the spherical do-
main. The Ph.D. Thesis also introduced a pipeline for inferring
depth from a single 360◦ image, taking advantage of existing
techniques for perspective single-view depth inference. Here,

1The real images in this manuscript were obtained from the publicly
available SUN360 database [10].



we focus on indoor scenarios since every imaged point can be
associated to a (scaled) physical distance, unlike outdoors.

The rest of this article is organized as follows. Section II
briefly exposes the related works for 3D reconstruction that
rely on spherical imagery only. The four main contributions of
the Ph.D. Thesis associated to this manuscript are highlighted
throughout the Section III. Some final remarks and future
investigations are drawn in Section IV. Finally, Section V lists
the published works related to the discussed Ph.D. Thesis.

II. RELATED WORK

Classically, techniques for 3D geometry estimation are
classified according to the number of views required. The
same rule applies to the omnidirectional context. There are
methods that tackle the problem using just one view (single-
image stereo); a pair of captures (stereo matching); or multiple
spherical images (SfM/V-SLAM or MVS).

From the geometrical point of view, at least two views
from the same scene are required for estimating the 3D
position of correspondent points [15]. However, deep learning
approaches have allowed solutions for depth inference from
a single image. In this context, we highlight pioneer studies
like [16]–[18], in which the former is one of our contributions.
Other recent works focus on identifying and reconstructing 3D
layouts from a single image [19], [20], where only information
about the joints of two or more planes are actually estimated. It
is worth mentioning, however, that learning-based approaches
that infer depth from a single image do not incorporate any
real geometric constraint from multiple views. Also, they
are strongly dependent on the training datasets, being or not
accurate in general, unseen, contexts.

There are only few works [21]–[23] that estimate depth
from pairs of views. The studies [21], [22] (and their prior
analyses) estimate the relative pose between the cameras
using traditional A-KAZE features [24] and the eight-point
algorithm (8-PA) [25]; derotate and estimate dense features
from the views; and refine the pose using an iterative non-
linear approach. Lai and colleagues [23] present an encoder-
decoder model that deals with stereo-rectfied image pairs with
a small, fixed baseline. Their convolutional neural network,
although not adapted to the spherical distortions, encourages
the depth estimates from left and right boundaries to connect.
Although it is possible to extract dense depth from two views
only, stereo-based methods are much more prone to noise in
feature matching and pose estimates than methods considering
more captures. Thus, most methods work with many views.

The techniques proposed in [2], [26] work with stereo-
rectified image pairs in an MVS context. The former work [26]
introduces a time-consuming approach for disparity estimation
based on hierarchical partial differential equations. From the
disparities, a 3D mesh is constructed and aligned using an
adaptation of the iterative closest point algorithm [27]. The
latter study [2] considers that the scene can be modeled
as a collection of blocks (Manhattan world). Their method
segment planes, which are adjusted and registered together.
Afterward, the resultant planes are refined and used in the
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Fig. 2. 5-DoF pose error and bounds for different FoVs and noise levels. The
graphics relate to (a)(b) two regular narrow-FoV cameras, (c) a camera with
wide-angle fisheye lenses, and (d) a full-FoV 360◦ camera [30], [31].

cuboid representation of the scene. Although these methods
deal with multiple views, they require stereo-rectified image
pairs, which may jeopardize practical applications.

Another possible limitation is the need of video sequences
for estimating the 3D geometry. The methods from [1], [8],
[28], [29] use traditional approaches – 8-PA and direct linear
transform (DLT) [15] – for initial pose and 3D geometry
estimation based on sparse keypoint matching. After linearly
extracting the extrinsic parameters of the cameras – using
either the 8-PA or the “spherical n-point problem” (SnP) [29] –
it is common to apply a non-linear refinement technique to the
pose estimates [1], [28], [29]. Furthermore, an iterative joint
non-linear refinement of both the pose and the 3D geometry
– bundle adjustment (BA) – is often considered [8], [28],
[29]. Although effective, it is well known that BA approaches
do not scale well with the number of cameras and imaged
points [15]. As a final step, depending on the target application,
a “densification” approach can be applied on the sparse depth
map or 3D point cloud [1], [28]. Each method [1], [8], [28],
[29] presents a slightly different approach from the others,
and contributes to the literature of SfM/V-SLAM, extending
the basic concepts of the classical pinhole imaging [15] to the
spherical context.

Our main contributions, which are detailed throughout the
next section, address some of the issues raised in this section,
especially in the context of multiple views.

III. CONTRIBUTIONS OF THE PH.D. THESIS

We discuss the main contributions of the referred Ph.D.
Thesis in the following. Section III-A presents a perturbation
analysis of the traditional algorithm for relative pose estima-
tion on wide-FoV imagery. Then, we use these results for
proposing an approach that provides a dense 3D geometry
estimate of indoor scenes based on multiple uncalibrated
and unordered spherical images, described in Section III-B.
Section III-C refers to a novel algorithm for 360◦ image
oversegmentation and presents its applications to pose and
depth estimation. Finally, in Section III-D, we introduce a
framework for inferring depth from a single omnidirectional



Fig. 3. An overview of the proposed multi-view method. Input reference and supporting images allow for dense 3D geometry estimation and, then, narrow-FoV
view synthesis for 3-DoF+ VR applications.

image, which can be coupled to existing approaches for
monocular depth prediction of planar images. We refer the
reader to the complete text [31] for more details.

A. Perturbation Analysis for the Eight-Point Algorithm

This contribution presents both theoretical and experimental
analyses for the estimate of Epipolar (Fundamental/Essential)
matrices under noisy conditions using the popular 8-PA [25].
The 8-PA is a linear solution for estimating the relative pose
between two cameras – the five-degrees of freedom (5-DoF)
pose – through the epipolar constraint that relates a set of eight
or more key-point correspondences. We rewrite the original 8-
PA formulation to work with normalized homogeneous coordi-
nates, making it applicable to every central projection camera,
including both the pinhole and spherical camera models.

Then, our approach explores existing bounds for singular
subspaces – namely Wedin’s [32] and Merikoski, Sarria and
Tarazagas’ [33] bounds – and relates them to the 8-PA. We
do not assume any error distribution for the matched features
and do not require the noiseless measurement matrix to be
known, unlike other recent approaches [34]. Specifically, we
obtain that the sine error bound is inversely proportional to
the second least singular value of the observation matrix,
which is strongly affected by the spatial distribution of the
correspondences.

Our experimental validation indicates that the bounds and
effective errors tend to decrease as the camera FoV increases.
In particular, the features extracted when using narrow-FoV
images are spatially concentrated, leading to larger bounds,
and, according to our experiments, also larger errors in the
estimate of the Epipolar matrix. On the other hand, images
with wider FoV (in the limit case, spherical images) tend to
present a much better spatial distribution of features, leading
to smaller bounds and also smaller effective errors in the
estimated matrix.

Additionally, we present bounds for the unit translation
vector extracted from the Essential matrix based on singular
subspace analysis. We experimentally show that the rotation
error associated to the Essential matrix is much smaller than
the translation one, regardless of the FoV. The latter is typically
proportional to the Epipolar matrix error, and dominates the
camera pose errors. Fig. 2 illustrates the actual translation and
rotation errors as a function of the matching error (in degrees)
depending on the camera FoV. Translation error bounds are

provided for wide-FoV camera cases. Also, we experimentally
show that non-linear approaches for pose refinement tend
to be much more effective when the matched features are
concentrated, resembling the narrow-FoV scenario.

An empirical analysis of the impact of using either tradi-
tional planar or spherical feature extractors on pairs of 360◦

images in the context of pose estimation was documented in
[35]. The theoretical analysis and the results associated with
the contribution revisited in this section were published in [30].

B. Dense 3D Reconstruction from Multiple Spherical Images

We use the results from Section III-A to introduce a linear
approach for estimating a dense 3D representation of indoor
scenes from multiple uncalibrated and temporally unordered
spherical images. The method estimates a depth value for
each pixel (in equirectangular format) of a reference view,
relying on one or more additional views. Fig. 32 illustrates the
inputs (reference and supporting views) and possible outputs
provided by our technique.

Firstly, our approach computes and matches sparse spherical
ORB (SPHORB) features [36] that relate the reference view
to the others, and estimates the 5-DoF camera poses using the
8-PA supported by outlier removal [37]. We found in [35] that
SPHORB performs well and scatters the features on the image
pairs, occupying a large region, regardless of the distortions.
Our method benefits from the small rotation errors associated
with wide-FoV imagery (confer Section III-A) to derotate –
i.e., remove the relative rotation of – all supporting images.

Then, the proposed approach uses an optical flow algo-
rithm to obtain dense matches, attaining for the circular-
ity property of equirectangular images. We choose to use
the DeepFlow [38] algorithm, which performs well under
large-displacement and (affine) distortion conditions. Although
DeepFlow was not designed for dealing with spherical im-
agery, we can somehow identify good and bad correspon-
dences and treat them accordingly. More precisely, we propose
to explore a joint photometric-geometric confidence metric
that uses cross-checking and epipolar geometry consistency
to detect and remove the contribution of inconsistent flow
vectors. One may note that dense correspondences can be
naturally converted to dense depth maps, as required.

2The “Classroom” environment is fully available under license CC0 at https:
//www.blender.org. Color images and depth maps are rendered using Blender.
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Fig. 4. Relative error associated to different approaches for calibrated reconstruction as the number of views increases. The graphics relate to different angular
noise levels on feature matching: (a) 7.25◦, (b) 3.20◦, and (c) 2.27◦ [31].

A subset of the best dense matches is used to accurately
estimate the full 6-DoF pose (SnP problem) of each supporting
view using a simplified linear approach that optimizes only the
remaining translation-related 3-DoF (recalling that the images
are derotated). Then, we estimate the 3D scene geometry from
the (now) calibrated cameras and dense matches by minimiz-
ing a weighted error in the 3D space. The proposed weighting
scheme benefits from an initial (unweighted) estimate of the
geometry, and performs as good as the reprojection error (even
when refining with BA) under low feature matching error
(around 2.27◦ [13]). Our calibrated reconstruction algorithm,
although, performs the best in higher noise conditions, as
depicted in Fig. 4. Finally, we adapt the domain transform
[39], an image-guided filter, to the spherical domain for
imposing edge-aware spatial smoothness, taking advantage of
the fact that the depth map and reference image are registered.
Different depth estimates for the image set shown in Fig. 3
(left) are illustrated in Fig. 5. The point cloud associated to
the final depth map from Fig. 5 is shown in Fig. 3 (middle).

We further explore the output of our method to implement a
simplified depth-image-based rendering (DIBR) technique for
synthesizing coherent binocular stereo pairs and small head
motion parallax. This is the application context for 3-DoF+ VR
immersive exploration using head-mounted displays (HMDs),
which is implementable with the aligned color plus depth
representation. More precisely, we project the synthesized
views to the user’s HMD viewport and fill the small holes
that come from the occlusions or disocclusions using the fast
hierarchical hole filling (HHF) [40]. Some visual results are
shown in cyan-red anaglyphs in Fig. 3 (right).

The results from this contribution showed that it is possible
to propose a method that naturally produces a dense depth
map even in uncalibrated and unordered 360◦ camera setups.
For acquiring dense correspondences, we can indeed use a
traditional large-displacement optical-flow algorithm provided
that they are assessed for quality and properly weighted. Also,
our results showed that we can rely on linear approaches only
for 5-/6-DoF pose estimation and for (weighted) calibrated
3D reconstruction, still having competing results with state-
of-the-art methods that use traditional, but expensive, non-
linear approaches based on BA. The methodology and results
reviewed in this section were published in [41]. An exploratory

Fig. 5. Example of depth estimation based on the views in Fig 3. From top
to bottom: reference view, ground-truth and estimated depth maps using the
unweighted and weighted approaches [31], [41].

study about stereoscopy and DIBR techniques was published
in [42].

C. Spherical Superpixels and Applications to 6-DoF Pose and
Multi-View Depth Estimation

The contributions of this section are three-folded. Firstly, we
present a novel superpixel algorithm suited for omnidirectional
images that encourages the segments to adhere to borders and
keep a regular size on the sphere. Because this novel algorithm
extends the simple non-iterative clustering (SNIC) [43] to the
spherical domain, we name it as spherical SNIC (SSNIC).
Fig. 6 illustrates the application of both algorithms – SNIC and
SSNIC – to a 360◦ image. Similarly to the spherical SLIC [44],
spherical SNIC is applicable to any image oversegmentation
problem defined in the spherical domain. Our algorithm,
although, performs faster than spherical SLIC, and generates
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Fig. 6. Example of a 360◦ image segmented using (a)(b) SNIC and (c)(d)
SSNIC. Images shown in (a)(c) equirectangular and (b)(d) spherical formats.

nearly uniformly distributed points on the sphere. SSNIC’s
software registration is available at [45].

Based on the results from Section III-A and SSNIC prop-
erties, we conduct an experimental analysis for determining
if the linear solutions for the SnP problem are affected by
the distribution of the features. Synthetic feature matching
experiments confirm our hypothesis, indicating that scattered
correspondences allow for better 6-DoF pose estimates than
concentrated ones. Thus, we propose to select representative
matches from the SSNIC labels using the joint confidence
metric from Section III-B, so that we enforce nearly-uniform
spatial distribution. However, in our experiments using real
feature matching, this approach did not improve the results
obtained by the unconstrained correspondence selection from
Section III-B. The reason for this may be that most of the
“good matches” are along the entire image equator line, which
spans a large horizontal FoV.

Finally, we propose to enforce spatial consistency a pri-
ori, i.e., during depth estimation, using SSNIC segments.
Unlike the approach from Section III-B that estimates all
depth values separately and applies an image guided filter
in a post-processing step, here, we propose to enforce depth
consistency within semantically grouped SSNIC regions. Our
experimental results indicate that this approach can be effective
for removing incoherent matches within superpixels, and it
presented smaller average errors when estimating the 3D scene
geometry. We also still obtain small gains when combining
both a priori and a posteriori solutions.

D. Dense 3D Reconstruction from a Single Spherical Image

This additional contribution provides a framework for in-
ferring depth from a single spherical image, so that it can be
coupled to any existing single-view depth prediction method
suited for perspective images [46], [47]. Single-image depth
estimation is clearly an ill-posed problem, so that the baseline
methods inevitably rely on machine learning for inference.

...

...

...

Fig. 7. Pipeline of the proposed approach for inferring depth from a single
spherical image.

This framework is intended to be used only in extreme cases,
i.e., when it is not possible to capture more than one image.
We depict the overview of the method in Fig. 7.

Our framework starts by extracting multiple overlapping
tangent planar projections with smaller FoVs from the spher-
ical image. A larger FoV implies in more contextual infor-
mation, but also heavy distortions. This is a trade-off that
impacts the rest of the pipeline. In our experiments, a diagonal
FoV of 120◦ produced the best results. After extracting the
narrow-FoV images from the spherical image, we apply a
monocular planar depth estimation algorithm – as a black
box – to each of them. Once it is done, we back-project the
associated depth maps to the adequate locations on the sphere.
In a third moment, we minimize the depth discrepancies along
the pairwise intersections on the sphere and finally perform
alpha-blending to obtain the final spherical depth map.

We perform tests by plugging three, to the time, state-of-
the-art baseline algorithms, two of them from [47] and the
other from [46], and compared the results on both synthetic
and real spherical imagery. The results indicated that our
approach outperforms two common strategies for adapting
planar methods to the spherical domain: the application of a
planar method (i) directly to equirectangular images or (ii) to
multiple disjoint planar sections, mapped back to the sphere.
Fig. 8 exemplifies (i), (ii) and our approach, using the method
from [46] as the module for narrow-FoV single view depth
estimation. The methodology and results discussed in this
section were previously published in [16].

IV. FINAL CONSIDERATIONS

This article highlighted the main contributions of the Ph.D.
Thesis entitled “Dense 3D Indoor Scene Reconstruction from



(a) (b)

(c) (d)

Fig. 8. Example of single spherical image depth estimation. Depth estimates
obtained from (a) after applying [46] to (b) the full equirectangular image,
(c) disjoint spherical sections and (d) overlapping spherical sections (and the
post-processing described in the text) [16], [31].

Spherical Images”, authored by Thiago L. T. da Silveira and
advised by Cláudio R. Jung, which is fully accessible in [31].

We do believe that this work has advanced important
theoretical and practical contributions to the image process-
ing and computer vision fields. More precisely, we have
addressed the pose and depth estimation problems using a
single view, stereoscopic captures, and multiple uncalibrated
and temporally unordered spherical images. Last but not least,
we have advanced in related areas such as key-point matching,
image oversegmentation, edge-aware filtering, depth-image-
based rendering, etc.

We hope that the referred Ph.D. Thesis could be rec-
ognized as a solid starting point for future researches on
dense 3D reconstruction based on spherical imagery, besides
novel AR/MR/VR-related applications. In the future, we intend
to better explore the use of spherical regions for spatially-
consistent depth estimation, and incorporate monocular layout
or depth estimates to the multi-view pipeline.

V. INTELLECTUAL PRODUCTION

The contributions of this Ph.D. Thesis, published between
2016 and 2019, are highlighted in the following.

• Software registration [45] granted by Instituto Nacional
de Propriedade Industrial (INPI).

• Article [30] published in IEEE/CVF CVPR (Qualis A1).
According to Google Scholar, CVPR holds the higher
h5-index (240) among all conferences and journals in
computer science3. In 2019, CVPR’s acceptance rate was
of 25.2%.

• Article [41] published in IEEE VR (Qualis A1). VR is
the premier international conference on virtual reality and
3D user interfaces. In 2019, VR’s acceptance rate was of
21.5%.

• Article [42] published in IEEE ICASSP (Qualis A1).
ICASSP is the premier international conference on signal
processing.

3Confer https://scholar.google.com/citations?view op=top venues\&hl=en

• Article [16] published in IEEE ICIP (Qualis A1). ICIP is
the premier international conference on image processing.

• Article [35] published in SIBGRAPI Conference (Qualis
B1). SIBGRAPI is the annual brazilian conference on
graphics, patterns and images.
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