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Abstract—Automatic License Plate Recognition (ALPR) has
been a frequent topic of research due to many practical applica-
tions, such as border control and traffic law enforcement. This
work presents an efficient, robust and layout-independent ALPR
system based on the YOLO object detector that contains a unified
approach for license plate detection and layout classification and
that leverages post-processing rules in the recognition stage to
eliminate a major shortcoming of existing ALPR systems (being
layout dependent). We also introduce a publicly available dataset
for ALPR, called UFPR-ALPR, that has become very popular,
having been downloaded more than 650 times by researchers
from 80 different countries over the past two years. The proposed
system, which performs in real time even when there are 4 vehi-
cles in the scene, outperformed both previous works and commer-
cial systems on four public datasets widely used in the literature.
The entire ALPR system (i.e., the architectures and weights),
along with all annotations made by us are publicly available at
https://web.inf.ufpr.br/vri/publications/layout-independent-alpr/.

I. INTRODUCTION

Automatic License Plate Recognition (ALPR) became an
important topic of research since the appearance of the first
works in the early 1990s [2], [3]. A variety of ALPR systems
and commercial products have been produced over the years
due to many practical applications such as automatic toll
collection, border control, traffic law enforcement, access
control in private spaces, among others [4], [5].

Despite the importance of having a robust ALPR system,
several solutions are still not robust enough to be executed
on real-world scenarios. Such solutions commonly depend on
certain constraints such as specific cameras or viewing angles,
simple backgrounds, good lighting conditions, search in a fixed
region, and certain types of vehicles – e.g., they would not
detect License Plates (LPs) from motorcycles, trucks or buses.

Many computer vision tasks have recently achieved a great
increase in performance mainly due to the availability of large-
scale annotated datasets (e.g., ImageNet) and hardware (GPUs)
capable of handling a large amount of data. In this scenario,
deep learning-based techniques arise. Nevertheless, despite
the remarkable progress of such techniques in the ALPR
context [6]–[8], there is still a great demand for realistic
datasets with vehicle and LP annotations. For example, the
SSIG-SegPlate dataset [9] – the best known public dataset
of Brazilian LPs for ALPR – contains less than 800 training
examples and has several constraints such as the use of a static

∗ This work is a summary of a master’s dissertation [1].

camera mounted always in the same position, the images have
very similar and relatively simple backgrounds, there are no
motorcycles and only a few cases where the LPs are not well
aligned. Therefore, as one of our contributions, in this work
we propose a larger benchmark dataset, called UFPR-ALPR,
focused on challenging, but usual, real-world scenarios.

When recording the UFPR-ALPR dataset, we sought to
eliminate many of the constraints found in ALPR applications
by using three different non-static cameras to capture 4,500
images from different types of vehicles (cars, motorcycles,
buses, trucks, among others) with complex backgrounds and
under different lighting conditions. The vehicles are in dif-
ferent positions and distances to the camera. Furthermore, in
some cases, the vehicle is not fully visible on the image. To the
best of our knowledge, there are no public datasets for ALPR
with annotations of cars, motorcycles, LPs and characters.

ALPR systems must also be capable of recognizing multiple
LP layouts since there might be various LP layouts in the
same country or region (e.g., Brazilian and Mercosur LPs
will coexist for many years); however, as stated in [10], most
solutions work only for a specific LP layout. In addition, such
systems should operate fast enough to fulfill the needs of
Intelligent Transportation Systems (ITS). In the literature [11]–
[13], generally a system is considered “real-time” if it is
capable of processing at least 30 frames per second (FPS), as
commercial cameras usually record videos at that frame rate.

Many authors still overlook real-time requirements in ALPR
by proposing computationally expensive approaches that are
not able to process frames in real time, even when the
experiments are performed on a high-end GPU [6], [7],
[14]. Considering that YOLO [11], [15], [16] is a real-time
object detector that achieved impressive results in terms of
speed/accuracy trade-off in the Pascal VOC [17] and Mi-
crosoft COCO [18] detection tasks, as our main contribution,
we decided to specialize YOLO-based models for ALPR. We
perform several data augmentation tricks and modifications
to the chosen networks aiming to achieve the best balance
between speed and accuracy at each stage.

In summary, this work contributes to the field of ALPR in
the following ways: (i) a new efficient and layout-independent
ALPR system using YOLO-based Convolutional Neural Net-
works (CNNs), which outperforms previous works and two
commercial systems in four public datasets, and achieves
competitive results to the baselines in another four; (ii) a public
dataset for ALPR that includes 4,500 fully annotated images
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acquired in real-world scenarios, assisting the development
and evaluation of new approaches as well as the fair com-
parison among published works1; (iii) annotations regarding
the position of the vehicles, LPs and characters, as well as
their classes, in the public datasets used in this work that have
no annotations or contain labels only for part of the ALPR
pipeline. Precisely, we manually labeled 38,351 bounding
boxes on 6,239 images; and (iv) a comparative assessment
of the proposed approach with previous works and two com-
mercial systems in eight publicly available datasets that have
been frequently used to train and/or evaluate algorithms in the
ALPR context. In this regard, we are not aware of any work in
which an end-to-end ALPR system was evaluated on as many
publicly available datasets as we have.

II. RELATED WORK

In this section, we summarize the most common limitations
found in recent works in the ALPR context while highlighting
the main strategies leveraged by us in order to eliminate them.
A detailed description of several works based on deep learning
can be seen in the first author’s master’s dissertation [1].

The approaches developed for ALPR are still limited. In
many studies, the authors only addressed part of the ALPR
pipeline (e.g., LP detection [19]–[22] or character/LP recogni-
tion [23]–[25]), or performed their experiments exclusively on
proprietary datasets [26]–[28], making it difficult to accurately
evaluate the presented methods. It should be noted that works
focused on a single stage do not consider localization errors
(i.e., correct but not so accurate detections) in earlier stages.
Such errors directly affect the recognition results. As an
example, Gonçalves et al. [12] improved their results by 20%
by skipping the LP detection stage, that is, by feeding the LPs
manually cropped into their recognition network.

In this work, the proposed end-to-end system is evaluated
in eight public datasets (including UFPR-ALPR) that present
a great variety in the way they were collected, with images
of various types of vehicles (including motorcycles) and
several LP layouts. Note that most solutions work only for a
specific layout [10] and were evaluated in no more than three
datasets (e.g., [6], [25], [27]). In addition, despite the fact that
motorcycles are one of the most popular transportation means
in metropolitan areas, motorcycle images have been over-
looked in the assessment of most ALPR systems [12], [29].

Most of the approaches are not capable of recognizing
LPs in real time (i.e., 30 FPS) [6], [7], [25], which makes
it impossible for them to be applied in some real-world
applications. Furthermore, several authors either do not report
the execution time of the proposed methods or report the time
required only for a specific stage [14], [24], [30], making it
difficult an accurate analysis of their speed/accuracy trade-off,
as well as their applicability. In this sense, when conceiving
our system, we evaluate different YOLO models with various
modifications, carefully optimizing and combining them aim-
ing to achieve the best speed/accuracy trade-off at each stage.

1The UFPR-ALPR dataset is publicly available to the research community
at https://web.inf.ufpr.br/vri/databases/ufpr-alpr/ subject to privacy restrictions.

In our experiments, both the accuracy and execution time are
reported to enable fair comparisons in future works.

Although outstanding results in terms of mean Average Pre-
cision (mAP) have been achieved with other object detectors,
such as SSD [31] and RetinaNet [32], in this work we employ
YOLO since it focuses on an extreme speed/accuracy trade-
off [32], which is essential in our domain application [8], being
able to process more than twice as many FPS as other detectors
while still achieving competitive results [15], [16].

We consider LP recognition as the current bottleneck of
ALPR systems since (i) impressive LP detection results have
been reported in recent works [13], [20], [22], both in terms of
recall rate and execution time; (ii) Optical Character Recogni-
tion (OCR) approaches must work as close as possible to the
optimality (i.e., 100%) in the ALPR context, as a single mis-
take may imply in incorrect identification of the vehicle [33].
Therefore, in this work, we propose a unified approach for
LP detection and layout classification in order to improve
the recognition results using heuristic rules. Additionally, we
design and apply data augmentation techniques to simulate
LPs of other layouts and also to generate LP images with
characters that have few instances in the training set. Hence,
unlike [24] and [34], we avoid errors in the recognition stage
due to highly unbalanced training sets of LP characters.

III. THE UFPR-ALPR DATASET

The proposed dataset contains 4,500 images acquired from
inside a vehicle driving through regular traffic in an urban
environment. These images were obtained from 150 videos
with a duration of 1 second and a frame rate of 30 FPS. Fig. 1
illustrates the diversity of the dataset.

The images were acquired with three different cameras and
are available in the PNG format with a size of 1,920 × 1,080
pixels. The cameras used were: GoPro Hero4 Silver, Huawei
P9 Lite, and iPhone 7 Plus. Images obtained with different
cameras do not necessarily have the same quality, although
they have the same resolution and frame rate. This is due
to different camera specifications such as autofocus, bit rate,
focal length, and optical image stabilization. There are minor
variations in the camera position due to repeated mountings
of the camera and also to simulate a real condition, where the
camera is not always placed in exactly the same position.

The dataset is split as follows: 40% for training, 40% for
testing, and 20% for validation. We adopt this protocol (i.e.,
with a larger test set) due to the fact that it has already been
adopted in other public datasets [9], [35], and also to provide
more samples for analysis of statistical significance.

Every image has the following annotations available in a text
file: the camera in which the image was taken, the vehicle’s
position, type (car or motorcycle), manufacturer, model and
year; the identification and position of the LP, as well as the
position of its characters. As Brazilian LPs have 7 characters,
more than 30,000 characters were manually labeled2.

2More information about the UFPR-ALPR dataset can be seen in [13], as
well as in the first author’s master’s dissertation [1].
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Fig. 1. Sample images of the UFPR-ALPR dataset. First three rows show the variety in backgrounds, lighting conditions, as well as vehicle/LP positions and
types. The fourth row shows examples of vehicle and LP annotations. The LPs were blurred due to privacy constraints.

IV. PROPOSED ALPR SYSTEM

The nature of traffic images might be very problematic to
LP detection approaches that work directly on the frames (i.e.,
without vehicle detection) since (i) there are many textual
blocks that can be confused with LPs, such as traffic signs
and phone numbers on storefronts, and (ii) LPs might occupy
very small portions of the image (note that object detectors
commonly struggle to detect small objects [11], [29]). Thus,
we propose to first locate the vehicles in the input image and
then detect their respective LPs in the vehicle patches. After-
ward, we detect and recognize all characters simultaneously
by feeding the entire LP patch into the network, instead of
segmenting and classifying each character individually.

In order to develop an ALPR system that is robust for
different LP layouts, we propose a layout classification stage
after LP detection. However, instead of performing both stages
separately, we merge the LP detection and layout classification
tasks by training an object detection network that outputs a
distinct class for each LP layout. In this way, with almost no
additional cost, we employ layout-specific approaches for LP
recognition in cases where the LP and its layout are predicted
with a confidence value above a predefined threshold. Fig. 2
illustrates the pipeline of the proposed ALPR system. As far
as we know, this is the first time a layout classification stage
is proposed to improve the recognition results.

In this work, we detect each LP and simultaneously classify
its layout into one of the following classes: American, Brazil-
ian, Chinese, European or Taiwanese. These classes were
defined based on the public datasets found in the literature [9],
[13], [36]–[41] and also because there are many ALPR systems
designed primarily for LPs of one of those regions (e.g., [24],
[34], [40]). As mentioned further, the employed network can

be easily modified to detect and classify additional LP layouts.
As great advances in object detection have been achieved

using YOLO-inspired models, we decided to specialize it for
ALPR. We use specific models for each stage. Therefore, we
can tune the parameters separately in order to improve the per-
formance of each task. The models adapted are YOLOv2 [15]
(for vehicle detection), Fast-YOLOv2 (for LP detection and
layout classification) and CR-NET [34] (for LP recognition),
which is an architecture inspired by YOLO for character detec-
tion and recognition. We evaluated several data augmentation
techniques and performed modifications to each network (e.g.,
changes in the input size, number of filters, layers and anchors)
to achieve the best speed/accuracy trade-off at each stage.

In the following paragraphs, we briefly present the main
changes made to the chosen models. Due to space restrictions,
refer to [1], [42] for more details on the proposed approach
and also on the data augmentation techniques leveraged by us.
YOLOv2: we first changed the network input size from 416×
416 to 448×288 pixels since the images used as input to ALPR
systems generally have a width greater than height. Hence, our
network processes less distorted images and performs faster, as
the new input size is 25% smaller than the original. The new
dimensions were chosen based on speed/accuracy assessments
with different input sizes (from 448×288 to 832×576 pixels).
Then, using the k-means clustering algorithm, we recalculate
the anchor boxes for the new input size as well as for the
datasets employed in our experiments. Finally, we reduced the
number of filters in the last convolutional layer so that the
network outputs 2 classes: cars and motorcycles. According
to our experiments, the results were better when using two
classes instead of just one regarding both types of vehicles.
Fast-YOLOv2: first, we modified the kernel size of the next-to-



Vehicles PatchesVehicle Detection LPs Patches/LayoutsLP Detection and 
Layout Classification LP Recognition

ZY-0887

280-BGY

TW

TW

Heuristic Rules

Fig. 2. The pipeline of the proposed ALPR system. First, the vehicles are detected in the input image. Then, in a single stage, the LP of each vehicle
is detected and its layout classified (in the example above, the LPs are Taiwanese). Finally, all characters of each LP are recognized simultaneously, with
heuristic rules being applied to adapt the results according to the predicted layout class (e.g., Brazilian LPs consist of exactly 3 letters and 4 digits).

last convolutional layer from 3×3 to 1×1. Then, we added a
3×3 convolutional layer with twice the filters of that layer. In
this way, the network reached better results (F-measure ≈ 1%
higher, from 97.97% to 99.00%) almost without increasing
the number of floating-point operations (FLOP) required, i.e.,
from 5.35 to 5.53 billion FLOP, as alternating 1 × 1 convo-
lutional layers between 3× 3 convolutions reduce the feature
space from preceding layers [11], [15]. Lastly, we recalculate
the anchor boxes for our data and make adjustments to the
number of filters in the last convolutional layer. It is notewor-
thy that we just need to increase the number of filters in the
last convolutional layer so that the network can detect/classify
additional LP layouts (we have already successfully carried
out some experiments in this regard with Mercosur LPs).

CR-NET: we changed its input size, which was originally
defined based on Brazilian LPs, from 240× 80 to 352× 128
pixels taking into account the average aspect ratio of the LPs
in the datasets used in our experiments, in addition to results
obtained in the validation set, where several input sizes were
evaluated (e.g., 256× 96 and 384× 128 pixels). The network
is trained to predict 35 classes (0-9, A-Z, where the letter ‘O’
is detected/recognized jointly with the digit ‘0’) using the LP
patch as well as the class and coordinates of each character
as inputs. As we classify the LP layout prior to the recognition
stage, we design heuristic rules to adapt the results produced
by CR-NET according to the predicted class.

Based on the public datasets employed in this work, we
defined the minimum and the maximum number of characters
to be considered in LPs of each layout. Brazilian and Chinese
LPs have a fixed number of characters, while American,
European and Taiwanese LPs do not (see Table I). Initially,
we consider all characters predicted with a confidence value
above a predefined threshold. Afterward, a non-maximum
suppression (NMS) algorithm is applied to remove redundant
detections. Finally, if necessary, we discard the characters
predicted with lower confidence values or consider others
previously discarded (i.e., ignoring the confidence threshold)
so that the number of characters considered is within the range
defined for the predicted class. We consider that the LP has
between 4 and 8 characters in cases where its layout was
classified with a low confidence value (i.e., undefined layout).

Additionally, inspired by Silva & Jung [34], we swap digits

TABLE I
THE MINIMUM AND MAXIMUM NUMBER OF CHARACTERS TO BE

CONSIDERED IN LPS OF EACH LAYOUT CLASS.

Characters American Brazilian Chinese European Taiwanese

Minimum 4 7 6 5 5
Maximum 7 7 6 8 6

and letters on Brazilian and Chinese LPs, as there are fixed
positions for digits or letters in those layouts. The specific
swaps are given by [1 ⇒ I; 2 ⇒ Z; 4 ⇒ A; 5 ⇒ S; 6 ⇒ G;
7 ⇒ Z; 8 ⇒ B] and [A ⇒ 4; B ⇒ 8; D ⇒ 0; G ⇒ 6; I ⇒ 1;
J ⇒ 1; Q ⇒ 0; S ⇒ 5; Z ⇒ 7]. In this way, we avoid errors
in characters that are often misclassified (e.g., ‘B’ and ‘8’,
‘G’ and ‘6’, ‘S’ and ‘5’, among others).

V. RESULTS AND DISCUSSION

The experiments were carried out in eight publicly avail-
able datasets: Caltech Cars [36], EnglishLP [37], UCSD-
Stills [38], ChineseLP [39], AOLP [40], OpenALPR-EU [41],
SSIG-SegPlate [9] and UFPR-ALPR. Most of them have no
annotations or contain labels for a single stage only, despite the
fact that they are often used to train and/or evaluate algorithms
in the ALPR context. Therefore, for training our networks, we
manually labeled the position (x, y, w, h) of the vehicles, LPs
and characters, as well as their classes in all images of these
datasets (these annotations are also publicly available).

For space reasons, here we focus on an overall (end-to-end)
evaluation of our method across the eight datasets mentioned
above. In spite of that, we highlight that our system reached F-
measure rates above 99% in both the vehicle detection and LP
detection and layout classification stages. Such robustness is
crucial for achieving impressive recognition results since the
regions used in the LP recognition stage are from the detection
results, rather than cropped directly from the ground truth.
Detailed information on the datasets used by us, and the results
achieved in each stage individually can be seen in [1], [42].

For each dataset, we compared the proposed ALPR system
with state-of-the-art methods that were evaluated using the
same protocol as us (we strictly followed the protocols used
in previous works; see [1], [42] for details regarding them).
In addition, our results are compared with those obtained by



TABLE II
RECOGNITION RATES (%) OBTAINED BY THE PROPOSED SYSTEM, A MODIFIED VERSION OF OUR SYSTEM, PREVIOUS WORKS, AND COMMERCIAL
SYSTEMS IN ALL DATASETS USED IN OUR EXPERIMENTS. TO THE BEST OF OUR KNOWLEDGE, IN THE LITERATURE, ONLY ALGORITHMS FOR LP

DETECTION AND CHARACTER SEGMENTATION WERE EVALUATED IN THE CALTECH CARS, UCSD-STILLS AND CHINESELP DATASETS. THEREFORE,
OUR APPROACHES ARE COMPARED ONLY WITH THE COMMERCIAL SYSTEMS IN THESE DATASETS.

Dataset
Approach [43] [25] [44] [29] [13] Sighthound OpenALPR

No Layout
Classification† Proposed

Caltech Cars − − − − − 95.7± 2.7 99.1 ± 1.2 96.1± 1.8 98.7± 1.2
EnglishLP 97.0 − − − − 92.5± 3.7 78.6± 3.6 95.5± 2.4 95.7± 2.3

UCSD-Stills − − − − − 98.3 98.3 97.3± 1.9 98.0± 1.4
ChineseLP − − − − − 90.4± 2.4 92.6± 1.9 95.4± 1.1 97.5 ± 0.9

AOLP − 99.8‡ − − − 87.1± 0.8 − 98.4± 0.7 99.2± 0.4
OpenALPR-EU − − 93.5 85.2 − 93.5 91.7 96.7± 1.9 97.8 ± 0.5
SSIG-SegPlate − − 88.6 89.2 85.5 82.8 92.0 96.9± 0.5 98.2 ± 0.5
UFPR-ALPR − − − − 64.9 62.3 82.2 82.5± 1.1 90.0 ± 0.7

Average − − − − − 87.8± 2.4 90.7± 2.3 94.8± 1.4 96.9 ± 1.0
† The proposed ALPR system assuming that all LP layouts were classified as undefined (i.e., without layout classification and heuristic rules).
‡ The LP patches for the LP recognition stage were cropped directly from the ground truth in [25].

Sighthound [45] and OpenALPR [46], which are two commer-
cial systems often used as baselines in the ALPR literature.

The results obtained in all datasets by the proposed sys-
tem, previous works, and commercial systems are shown in
Table II. In the average of five runs, across all datasets, our
end-to-end system correctly recognized 96.9% of the LPs,
outperforming Sighthound and OpenALPR by 9.1% and 6.2%,
respectively. More specifically, the proposed approach outper-
formed both previous works and commercial systems in the
ChineseLP, OpenALPR-EU, SSIG-SegPlate and UFPR-ALPR
datasets, and yielded competitive results to those attained by
the baselines in the other four datasets.

The proposed system reached results similar to those ob-
tained by OpenALPR in the Caltech Cars dataset (98.7%
against 99.1%, which represents a difference of less than one
LP per run, on average, as there are only 46 testing images),
even though our system does not require prior knowledge as
OpenALPR (the user must enter the correct LP layout before
using OpenALPR’s API). Regarding the EnglishLP dataset,
our system performed better than the best baseline [43] in 2
of the 5 runs. Although we used the same number of images
for testing, in [43] the dataset was divided only once and the
images used for testing were not specified. In the UCSD-Stills
dataset, both commercial systems reached a recognition rate
of 98.3% while our system achieved 98% on average (with a
standard deviation of 1.4%). The above evaluations highlight
the importance of executing the proposed method five times
and then averaging the results (most works in the literature,
e.g., [7], [25], [29], report the results achieved in a single
run only). Lastly, in the AOLP dataset, the proposed approach
obtained similar results to those reported by Zhuang et al. [25],
even though in their work the LP patches used as input in the
LP recognition stage were cropped directly from the ground
truth; in other words, they did not take into account vehicles
or LPs not detected in the earlier stages, nor background noise
in the LP patches due to less accurate LP detections.

To evaluate the impact of classifying the LP layout prior
to LP recognition (i.e., our main proposal), we also report in
Table II the results obtained when assuming that all LP layouts

were classified as undefined and that a generic approach (i.e.,
without heuristic rules) was employed in the LP recognition
stage. The mean recognition rate was improved by 2.1%. We
consider this strategy (layout classification + heuristic rules)
essential for accomplishing outstanding results in datasets that
contain LPs with fixed positions for letters and digits (e.g.,
Brazilian and Chinese LPs), as the recognition rates attained
in the ChineseLP, SSIG-SegPlate and UFPR-ALPR datasets
were improved by 3.6% on average.

Figure 3 shows some examples of LPs that were correctly
recognized by the proposed approach. As can be seen, our
system can generalize well and correctly recognize LPs of
different layouts, even when the images were captured under
challenging conditions (e.g., with shadows and high exposure).

UFD69K 018VFJ 281SGL 3WVM533

MCA9954 HJN2081 IOZ3616 AUG0936

AK6972 CG08I5 AK8888 A36296

ZG806KF DU166BF 317J939 W0BVWMK4

0750J0 UH7329 F9F183 6B7733

Fig. 3. Examples of LPs that were correctly recognized by the proposed
ALPR system. In the rows, LPs of different layout classes are shown. From
top to bottom: American, Brazilian, Chinese, European and Taiwanese LPs.

In Table III, we report the time required for each network
in our system to process an input image. It is remarkable that
although a deep CNN model is used for vehicle detection, our
system is still able to process 73 FPS on a high-end GPU.
As vehicle detection is performed only once, regardless of
the number of vehicles in the image, our system is capable of
processing more than 30 FPS even when there are 4 vehicles in



the scene. This information is relevant since most approaches
either do not process frames in real time or can only perform
in real time if there is at most one vehicle in the scene.

TABLE III
THE TIME REQUIRED FOR EACH NETWORK IN OUR ALPR SYSTEM TO

PROCESS AN INPUT IMAGE ON AN NVIDIA TITAN XP GPU.

ALPR Stage Adapted Model Time (ms) FPS

Vehicle Detection YOLOv2 8.5382 117

LP Detection and
Layout Classification Fast-YOLOv2 3.0854 324

LP Recognition CR-NET 1.9935 502

End-to-end - 13.6171 73

VI. CONCLUSIONS, PUBLICATIONS AND DISTINCTIONS

In this work, we presented an end-to-end, efficient and
layout-independent ALPR system based on the YOLO detector
that contains a unified approach for LP detection and layout
classification and that leverages post-processing rules in the
recognition stage to eliminate a major shortcoming of existing
ALPR systems (being layout dependent). According to our
experiments, this strategy was essential for accomplishing
outstanding results since, depending on the LP layout class,
we avoided errors in characters that are often misclassified and
also in the number of predicted characters to be considered.

We performed several data augmentation tricks and modi-
fied the chosen networks to achieve the best speed/accuracy
trade-off at each stage. In this regard, it is remarkable that
our system achieved recognition rates higher than 95% in all
datasets except UFPR-ALPR (where it outperformed the best
baseline by 7.8%) while being able to process images in real
time even when there are 4 vehicles in the scene.

We also introduced a public dataset for ALPR that includes
4,500 fully annotated images from 150 vehicles in real-world
scenarios where both the vehicle and the camera (inside
another vehicle) are moving. Compared to the best known and
most frequently used public dataset with Brazilian LPs, our
dataset has more than twice the images and contains a larger
variety in different aspects (see more details in [13]). Further-
more, we manually labeled the position of the vehicles, LPs
and characters, as well as their classes, in all datasets used in
this work since they have no annotations or contain labels only
for part of the ALPR pipeline (precisely, we manually labeled
38,351 bounding boxes on 6,239 images). These annotations
are also publicly available to the research community, assisting
the development and evaluation of new approaches as well as
the fair comparison among published works.

As future work, we intend to conduct extensive experiments
on cross-dataset scenarios, using for training all available
datasets except one – which would be used for testing. Such
experiments would simulate real-world situations, in which
new cameras are being installed in new locations without
existing systems being retrained. In this sense, we plan to
design/exploit data augmentation techniques in order to re-
alistically simulate scenarios where the camera’s position is
known, but there are no labeled images available.

This work generated the following publications:
• [13] (Qualis A1) - A preliminary version of the pro-

posed method, along with the UFPR-ALPR dataset, was
published at the 2018 International Joint Conference on
Neural Networks (IJCNN), being by far the most cited
paper of that edition both according to IEEE Xplore
and Google Scholar (out of 760 papers). This work
was covered on the NVIDIA News Center, with great
importance being given to the results obtained, the dataset
introduced by us, and potential applications. In just two
years, the UFPR-ALPR dataset was downloaded more
than 650 times by researchers from 80 countries around
the world, as can be seen here.

• [42] (Qualis A1)3,4 - The proposed ALPR approach,
which addresses the limitations of the system presented
in [13] to considerably improve both the execution time
(from 28ms to 14ms) and the recognition results (e.g.,
from 64.89% to 90% in the UFPR-ALPR dataset), was
submitted to IET Intelligent Transport Systems (provi-
sionally accepted subject to major revisions). According
to [8], a review article published very recently, our
method is the most advanced ALPR algorithm at present.

• [35] (Qualis A2) - We designed a two-stage approach for
image-based Automatic Meter Reading (AMR) leverag-
ing many concepts presented in our works on ALPR [13],
[42]. In this work, published in the Journal of Electronic
Imaging, we reported detection and recognition results
significantly better than those obtained in previous works,
with the networks used by us being able to process
impressive 185+ FPS on a high-end GPU.

In addition to the works mentioned above, we would like to
highlight three related papers we co-authored during the devel-
opment of this work: [12], [47], [48], helping to conceptualize
the proposed methods and employing our ALPR system as a
baseline or part of the novel approaches.

Last but not least, this work was recently selected in the
XXXIII Thesis and Dissertation Awards, organized by the
Brazilian Computer Society (SBC), as one of the 10 best
master’s dissertations concluded in 2019 (the final result will
be released in November 2020).
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