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Abstract—Superpixel segmentation methods aim to partition
the image into homogeneous connected regions of pixels (i.e.,
superpixels) such that the union of its comprising superpixels
precisely defines the objects of interest. However, the homogene-
ity criterion is often based solely on color, which, in certain
conditions, might be insufficient for inferring the extension of
the objects (e.g., low gradient regions). In this dissertation, we
address such issue by incorporating prior object information
— represented as monochromatic object saliency maps — into
a state-of-the-art method, the Iterative Spanning Forest (ISF)
framework, resulting in a novel framework named Object-based
ISF (OISF). For a given saliency map, OISF-based methods are
capable of increasing the superpixel resolution within the objects
of interest, whilst permitting a higher adherence to the map’s
borders, when color is insufficient for delineation. We compared
our work with state-of-the-art methods, considering two classic
superpixel segmentation metrics, in three datasets. Experimental
results show that our approach presents effective object delin-
eation with a significantly lower number of superpixels than the
baselines, especially in terms of preventing superpixel leaking.

I. INTRODUCTION

Due to the absence of fatigue, machines are useful for
solving tasks involving a large amount of data, such as
automatic object delineation. Although recent works have
investigated machine learning strategies [2], [3], they often
rely on a substantial quantity of annotated images for training
and adaptation; therefore, it is of utmost importance to develop
methods which can achieve good results in such scarcity of
certified data.

A major class of algorithms partitions the image in nu-
merous disjoint groups of connected pixels (i.e., superpixels)
driven by a particular concept of homogeneity (e.g., color
similarity). The objective of superpixel segmentation methods
is to represent any object in the scene precisely by the union of
its superpixels (i.e., semantic segmentation), requiring fewer as
possible [4]. One can see that, not only the task of delineation
is simplified, but superpixels carry more semantic information
(of the object) than pixels. Due to such properties, many works
use superpixels as primitives for their respective solutions [2],
[3], [5], [6].

However, due to the lack of prior object information (e.g.,
location), the homogeneity criterion — often defined by
heuristics — may not be sufficient in certain circumstances.
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Fig. 1. (a) Original image with the ideal delineation in green. Superpixel
segmentation by (b) LSC [1]; and our approach considering object (c) under-
sampling; and (d) over-sampling. The number of desired superpixels was 50,
and the images were zoomed for visualization purposes.

By grouping similar pixels, the frontiers of the objects of
interest could be safely inferred when their contrast with
the background is significant. But, as the color transitions
tend to become less perceivable, so are the indications of
object borders — leading to superpixel leaking and errors in
delineation. Although one may argue that a simple increase
in the number of superpixels could overcome such issue,
this solution may result in a higher workload for subsequent
methods within an application. One may see that the prior
information regarding the objects’ locations — and, thus, their
extension — could assist in the delineation task, avoiding
the aforementioned consequences. Given an indication of the
objects’ limits, superpixel leaking could be prevented by
constraining the superpixels’ growth and, therefore, enforcing
the intersection between the objects’ frontiers and superpixels’
borders. The majority of state-of-the-art methods do not permit
the inclusion of prior object information; moreover, the nec-



essary modifications for overcoming such incapability might
not be intuitive.

In this dissertation, we propose a generalization of the
Iterative Spanning Forest (ISF) [7] framework, which allows
the inclusion of prior object information, represented as object
saliency maps — i.e., monochromatic images whose pixel
value indicates the proportional likelihood of belonging to an
object of interest. Named Object-based ISF (OISF) [8], our
framework maintains the properties of ISF, and straightfor-
wardly incorporates the saliency information in each step of
the pipeline. OISF-based methods can alter the superpixel res-
olution within the objects of interest, whilst permitting a better
delineation of the object (Figure 1); being a suitable tool for
distinct applications, such as feature extraction and semantic
segmentation. Note that such improvement can be achieved
without the need to increase the number of superpixels.
Moreover, we also propose two object-based seed sampling
strategies: the Object Geodesic Grid Sampling (OGRID) [8],
and the Object Saliency Map by Ordered eXtraction (OS-
MOX) [9]. As stated in [9], the simple consideration of one of
both leads to a significant improvement for object delineation.

Our contributions can be summarized as follows: (i) a new
paradigm for superpixel segmentation; (ii) a novel object-
based superpixel segmentation framework; (iii) two object-
based superpixel methods; and (iv) a study of the impacts of
object-based seed sampling for superpixel segmentation.

This paper is organized as follows. In Section II, we
analyze the state-of-the-art in superpixel segmentation and,
in Section 2, our approach is presented. The performance of
OISF-based approaches is shown in Section IV, alongside a
brief discussion of their limitations. Finally, in Section V we
conclude and draw possible future work that can be done from
ours.

II. RELATED WORKS

In this section, we briefly discuss about state-of-the-art
proposals for superpixel segmentation, starting by those which
do not take into account any prior object information (Sub-
section II-A), to those which use a particular definition of the
latter (Subsections II-B and II-C). Specifically, we discuss the
proposals in which are major representatives in their category,
with respect to efficiency, popularity, and uniqueness. One can
refer to notable surveys [10]–[12] for more information about
superpixel segmentation.

The term “superpixel” was first coined in [13], and has been
widely used in many applications [11]. Many concepts are
used interchangeably between different paradigms [11], [14];
however, in this work, we consider the possibility of generating
an arbitrary high number of superpixels (i.e., 500 or more) as
primordial for distinction. Aside from the previous two, many
authors [1], [4], [15] elect other desirable properties for su-
perpixel segmentation: (i) pixels must be assigned to a unique
superpixel; (ii) superpixels must be represented as connected
regions of pixels, with effective boundary adherence; and (iii)
superpixels should be generated efficiently. Furthermore, as
stated in [4], the aforementioned properties should be achieved

with a minimum quantity of superpixels. Other properties are
commonly associated with aesthetics [10], [11], which are
often not relevant.

A. Classic Methods

Many state-of-the-art methods present efficient object delin-
eation performance; however, they are driven by evidence (e.g.,
color variation), which might be misleading for low-gradient
borders. Also, the latter definition not only includes irrelevant
(i.e., non-object) borders but assigns the same relevance to
the objects’. Finally, even if in possession of prior object
information, such methods do not consider it during the
superpixel generation, and the necessary modifications for
overcoming this drawback might not be intuitive nor possible.

Due to the popularity of the Simple Linear Iterative Clus-
tering (SLIC) [15], clustering-based methods constitute a
significant group in superpixel segmentation. Although they
are usually faster than other approaches, their strategy often
leads to connectivity violation [1], [15], or strict rules of seed
displacement [16], [17]. Aside from SLIC, the Linear Spectral
Clustering (LSC) [1] is another example, with effective delin-
eation at the expense of being slower than the primer. Still,
LSC requires a post-processing step for ensuring connected
superpixels.

Another group of methods models the problem of object de-
lineation as the task of edge insertion/removal in an undirected
weighted graph. The Entropy Rate Superpixels (ERS) [4] is
a popular method with good object delineation; however, it
is computationally expensive even if greedy strategies are
considered.

Methods based in connectivity, by definition, overcomes
both drawbacks of clustering-based ones, whilst being faster
than most edge-based algorithms. As an example, the Simple
Non-Iterative Clustering (SNIC) [16] is an extension of SLIC
which generates connected superpixels in a single iteration;
however, its performance its only slightly better than SLIC.
The Image Foresting Transform (IFT) [18] is a framework
which computes an optimum-path forest in an image graph;
and IFT-based superpixel methods, such as the Iterative Span-
ning Forest (ISF) [7] framework, often present top delineation
performance in many datasets and applications [7]–[9], [19]–
[21].

B. Deep Learning Methods

Recent advances in deep learning have lead to proposals
in the context of superpixel segmentation. Often, such works
argument that the inclusion of deep features (i.e., of the object)
improves the segmentation results [22]; but this statement
requires more evidence, since their performance is not superior
to hand-crafted solutions. Moreover, in contrast to the latter,
the number of annotated examples for training is crucial for
deep-learning approaches, and they are not easily extended
to distinct domains without requiring more examples for
adaptation.

For all we know, the Superpixel Sampling Network
(SSN) [23] is the first superpixel generation network. It uses



a modification of SLIC in order to be differentiable, but
inherits the previous deep learning drawbacks and those of
SLIC as well. Although the authors in [22] and [24] classify
their works as superpixel methods, we categorize them as
feature engineering proposals. As one may see, each core
superpixel method remains unaltered, whilst parts of the input
are drastically altered — specially through deep learning —
for the improvement of the segmentation method.

C. Saliency-based Methods

To the best of our knowledge, aside from our proposal, the
work of [25] is the only method that considers saliency values
for generating superpixels. It performs a bottom-up merging
approach from an initial segmentation with a higher number of
superpixels than desired. Its drawbacks are listed as follows:
(i) it considers a particular saliency definition; (ii) the errors
from the initial segmentation are propagated to the final one;
and (iii) it lacks user-control over the superpixel displacement
and shape.

III. OBJECT-BASED SUPERPIXEL SEGMENTATION

In this section, we present the Object-based ISF (OISF) [8]
framework, which is a generalization of the Iterative Spanning
Forest (ISF) [7] framework. The ISF is an efficient three-staged
superpixel segmentation framework in which each component
can be defined independently, being the major reason for
recent publications shortly after its own [19]–[21]. In OISF,
the independence between steps is maintained, with the benefit
of incorporating prior object information (i.e., saliency map)
within each one (Figure 2); for a suitable set of parameters,
OISF obtains segmentations equivalent to ISF’s. Therefore,
we detail: (i) the initial seed sampling (Subsection III-A); (ii)
the superpixel generation (Subsection III-B); and (iii) the seed
recomputation (Subsection III-C); by presenting object-based
strategies.

A. Seed Sampling

For a given estimation of the object location (e.g., object
saliency maps) and a total number of k seeds, one could
alter the displacement of the latter through a percentage ρ
of object seeds. Thus, higher values of ρ promote a higher

Fig. 2. Pipeline of our proposed object-based superpixel segmentation
framework.
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Fig. 3. Object-based seed sampling. (a) Original image. (b) Object saliency
map [26]. (c-d) OGRID; and (d-e) OSMOX; considering k = 100 and ρ ∈
{0.01, 0.99}, respectively. Although the differences are subtle, only OSMOX
guarantees the desired number of k seeds.

superpixel resolution within the objects of interest, due to
oversampling — and it is analogous for lower values of ρ
(Figure 3). As an example, feature extraction solutions may
benefit from object oversampling since a higher superpixel
resolution captures most of the objects’ nuances. In contrast,
a lower resolution may simplify semantic segmentation tasks
by reducing the number of superpixels to be evaluated. The
following methods describe the necessary steps for obtaining
ko = ρk object seeds; however, for kb = (1−ρ)k background
ones, the exact same procedure is applied over the complement
of the saliency map.

In [8], we present the Object Geodesic Grid Sampling
(OGRID) method in which samples seeds equidistantly within
the probable objects in the map. The set of probable objects C
is obtained by thresholding for a given minimum certainty
value t. Since wider regions require a higher number of
seeds, while noises (i.e., small components) should not contain
any, the number of internal seeds ki is proportional to the
size of its respective component Ci. Moreover, since each
component has a different size and shape, computing the
necessary minimum seed distance di in Ci is challenging;
therefore, di is optimized, such that it best approximates ki.
One can see that, due to the latter, OGRID might not guarantee



the desired total number of seeds.
For each component, its first seed candidate is selected

arbitrarily, and it is inserted in a priority queue. The following
steps are repeated until the queue is empty, or ki seeds were
sampled. The candidate with the highest priority is removed
from the queue, selected as seed, and all of its adjacents —
distanced by di — are inserted in the queue as seed candidates.
Note that the latter events might insert candidates that do not
respect the equidistance rule for some seed sampled; therefore,
removing them from the queue is mandatory. In contrast, when
a seed candidate satisfies the equidistance rule for more than
one seed, its priority must be increased accordingly. Finally,
as one may see, the object seed set consists of the union of
all components’ internal seeds.

Aside not assuring the desired number of seeds, the se-
lection of the threshold t in OGRID is not intuitive in most
cases. Therefore, we propose in [9] the Object Saliency Map
sampling by Ordered eXtraction (OSMOX) algorithm, which
elegantly overcomes both by relaxing the equidistance rule. In
OSMOX every pixel is a possible seed candidate: its priority to
be selected as one is determined by the summed saliency value
within a precalculated neighborhood. All pixels are inserted in
a priority queue, and the next steps are repeated until the queue
is empty, or ko object seeds are obtained. The pixel with the
highest priority is removed from the queue and selected as
seed. In order to promote a fair distribution, all of the seed’s
adjacents — defined by a disk of radius d — have their priority
values decreased by a Gaussian function, and their positions
in the queue are updated accordingly.

B. Superpixel Generation

Depending on the quality of the object saliency map, the
user should have the ability to control its influence during
the generation of superpixels. For instance, for an ideal map
(i.e., the ground-truth), one can increase such influence for
obtaining superpixels with higher adherence to the primer’s
borders. Oppositely, for a map with imprecise object borders,
its influence must be minimum for avoiding deterioration of
the delineation performance — i.e., consider color variation
more relevant than saliency.

In OISF, the superpixels are generated through seed com-
petition using the Image Foresting Transform (IFT) [18]
framework. In IFT, the segmentation task is modeled as the
minimization of path-costs in the graph, for the generation
of an optimum-path forest rooted in a seed set. Therefore,
as one may see, a superpixel is interpreted as an optimum-
path tree. Such solution is efficiently obtained through an
adaptation of the Dijkstra’s algorithm for more general path-
cost functions — also known as connectivity functions. Due
to its performance, the IFT has been widely used in different
contexts and purposes [28]–[30].

In the work of [31], the authors propose a new connectivity
function for the correction of presegmented binary images.
Based on a previous function [32], it imposes a penalization
to the path-cost whenever the path crosses a boundary of
its originating object. The user can establish the degree of

(a) (b)
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(e) (f)
Fig. 4. Object-based superpixel segmentation. (a) Original image, with its
ideal delineation in green. (b) Object saliency map [27]. (c-f) OISF with
OSMOX sampling considering k = 50, ρ = 0.1, and γ ∈ {0.5, 1, 2, 5},
respectively. All images were zoomed for visualization purposes.

such penalization through an importance factor γ. Since the
previous work deals with binary images and saliency maps
might not be such, we adapted the connectivity function [8]
in order to penalize the saliency transitions along the path.
Thus, higher importance values impose a harsher penalization,
causing an exponential growth of the path-costs and, conse-
quently, reducing the chances of superpixel leaking. Moreover,
it indirectly leads to a higher superpixel adherence to the
borders of the saliency map (Figure 4).

C. Seed Recomputation

After the generation of superpixels, most state-of-the-art
methods compute the seed set for the subsequent iteration,
based on the local characteristics of each superpixel [1], [7],
[15], [17], [19]. Selecting the superpixel’s medoid considers
the texture information by selecting the pixel most similar to
its superpixel mean feature vector. The objective is to promote
homogeneity — e.g., less color dissimilarity amongst its
pairs — by selecting the pixel that reinforces its superpixel’s



characteristics. It is straightforward to notice that, by extending
the feature vector of the pixel for including its saliency value,
the aforementioned strategy remains unaltered and becomes
object-based. Although one may argue over the possibility
of increasing the influence of the saliency value over the
remaining ones, we understand that the real values of the
image (i.e., color) must be more relevant than inference ones
(e.g., saliency).

IV. EXPERIMENTAL RESULTS

In this section, we discuss the setup for our experiments
(Subsection IV-A) and discuss the quantitative and qualitative
results of our approach, compared to the baselines (Subsec-
tions IV-B and IV-C, respectively).

A. Experimental Setup

We selected three datasets from distinct domains and two
object saliency estimators. For natural images, we considered
the ECSSD [33] (1000 images) and the DUT-OMRON [34]
(5168 images) datasets, which offers a challenge by presenting
distinct objects and backgrounds. Due to the latter, we chose
the Pyramid Feature Attention (PFA) [26] since its perfor-
mance excelled many other approaches, including in both
datasets considered. For non-natural images, we selected the
Parasitos [8] (72 images) dataset, in which the parasite egg
(i.e., object of interest) is extremely similar to the impurities
that are often attached to it — posing a major difficulty. Since
the PFA estimator requires a significant number of examples to
be trained, we considered an OPF-based solution (SUP) [27],
which trains a pixel-level IFT-based classifier [35] from user-
drawn scribbles, in a single image. Given such classifier, one
can estimate the saliency of the remaining images in the
dataset.

Due to the lack of object-based superpixel segmentation
algorithms, we selected the following state-of-the-art methods
in object delineation as baselines: (i) SLIC [15]; SNIC [16];
(iii) ERS [4]; (iv) ERGC [36]; (v) LSC [1]; and two ISF in-
stances [7]: (vi) ISF-GRID-ROOT; and (vii) ISF-MIX-MEAN.
For simplicity, we maintained the ISF nomenclature for the
instances of our approach — i.e., OISF-OGRID, and OISF-
OSMOX. For a fair comparison, we optimized the OISF
parameters in a small training set (i.e., three images of each
dataset), and, for the baseline, the default recommended values
were set. For OISF-OSMOX, ρ = 0.9 and γ = 2; whereas for
OISF-OGRID, t = 0.5, ρ = 0.9, and γ = 3. The performance
of each method was evaluated in terms of Boundary Recall
(BR) [15], and of Under-segmentation Error (UE) [37]. In this
work, we aim that superpixels accurately delineate the object
boundaries (i.e., higher BR), while avoiding the presence of
leakings (i.e., lower UE). Finally, we evaluated all methods
considering a desired number of superpixels NS varying from
20 to 1000.

B. Quantitative Analysis

The results obtained for each method, in every dataset,
are presented in Figure 5. In terms of BR and considering

NS ≤ 200, our approach presents competitive performance
with the top methods in both ECSSD and DUT-OMRON.
Moreover, for any NS, OISF-based methods still surpass
its ISF-based counterparts with a significant margin — an
improvement of 5% on average. In Parasitos, our approach
managed to effectively delineate (i.e., BR ≥ 90%) the parasite
egg by requiring a minimum quantity of superpixels (i.e.,
NS ≈ 20). Note that, for the baselines, such is achieved at
significantly higher values of NS (i.e., NS ≈ 400).

The charts illustrate the findings of [9]: the use of object-
based strategies leads to lower UE values. For ECSSD and
DUT-OMRON, our method achieved the best performance for
NS ≤ 200, for a considerable margin — an improvement of
3% on average. For higher values of NS, their performance
is still on pair with its ISF-based counterparts. However, for
Parasitos, OISF-based methods surpass all baselines for any
value of NS, achieving UE ≈ 1% for NS ≈ 200 — while,
for the remaining methods, NS ≈ 1000 —, reinforcing the
premise that our approach manages to delineate the object of
interest effectively.

C. Qualitative Analysis

As one can see in Figure 6, in regions which the color
transition is smooth — e.g., regions near the head and hand
of the child — the best methods for the considered dataset
presents major leakings and delineation errors. However, for a
given object saliency map, our approach managed not only to
avoid both aforementioned errors without requiring a higher
number of superpixels but also to increase the superpixel
resolution within the object of interest (as desired). This
delineation improvement is mainly due to the indirect object
delineation obtained by the map: even for a fair one, the
contrast between object and background may be a good
indication of the primer’s extension, thus assisting in a better
approximation to the real object borders while reducing the
severity of leakings.

D. Limitations

As shown in Figure 5, OISF-based approaches present a
rapid convergence in their performance as the number of
superpixels increases. We infer that such behavior is caused by
one main reason: the saliency map’s unchangeable nature. For
a given map, OISF-based methods incorporate both correct and
incorrect estimations for generating superpixels at all steps of
the pipeline. For example, in Figure 6, OISF-based approaches
managed to prevent severe leakings, but the superpixel borders
could not approximate the real ones at the child’s hand.
One can see that such errors minimally impact the seed
recomputation step since it amortizes by computing the mean
feature vector. Although object-based seed sampling strategies
might sample seeds in incorrectly estimated regions, a high
percentage of object seeds may overcome the latter.

In contrast to the aforementioned steps, the superpixel
generation procedure degrades significantly from errors. For
a small number of superpixels, the low competition amongst
seeds favors the incorporation of significantly dissimilar pixels,



Fig. 5. Results obtained in each dataset for BR and UE. For the baseline, the default parameter configuration was set.
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(e) (f)
Fig. 6. (a) Original image with the ideal delineation in green. (b) PFA’s
saliency map. Segmentation results obtained by: (c) ERS; (d) LSC; (e) OISF-
OGRID; and (f) OISF-OSMOX. The number of desired superpixels was 50,
and the images were zoomed for visualization purposes.

whereas, for higher quantities, the extreme competition makes
subtle variations crucial for incorporating similar ones. As
one can see, for the same saliency importance factor, it may
assist or degrade the delineation performance, for a different
number of superpixels. More explicitly: in the absence of seed
competition, the γ penalization may prevent the occurrence of
superpixel leaking, while for a high number of superpixels,
it may intensify the influence of saliency inaccuracies in the

path-cost computation. Note that such behavior is repeated
throughout the iterations of OISF.

V. CONCLUSION

In this dissertation, we propose the Object-based Iterative
Spanning Forest (OISF) framework, which is a generalization
of the Iterative Spanning Forest (ISF). Our approach considers
prior object information represented by monochromatic object
saliency maps at each step of its pipeline, allowing the user to
control not only the superpixel resolution within the objects of
interest but also the superpixel adherence to the saliency map’s
borders. Both characteristics can be of assistance for different
applications of distinct domains, while not being comprised in
a particular definition of an object of interest.

Experimental results show that the inclusion of such in-
formation leads to a major improvement — especially in
preventing superpixel leaking — over its non-object-based
counterparts, for a significantly small number of superpixels.
For future endeavors, we intend to extend other ISF-based
algorithms and evaluate our proposal in medical applications.
Moreover, we also desire to study an adaptive solution for
establishing the saliency importance factor based on the seed
competition environment. This study resulted in the publica-
tion of two international conference papers [8], [9].
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