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Abstract—Feature transfer learning aims to reuse knowledge
previously acquired in some source dataset to apply it in another
target data and/or task. A requirement for the transfer of
knowledge is the quality of feature spaces obtained, in which
deep learning methods are widely applied since those provide
discriminative and general descriptors. In this context, the main
questions include: what to transfer; how to transfer; and when
to transfer. Hence, we address these questions through distinct
learning paradigms, transfer learning techniques, and several
datasets and tasks. Therefore, our contributions are: an analysis
of multiple descriptors contained in supervised deep networks; a
new generalization metric that can be applied to any model and
evaluation system; and a new architecture with a loss function
for semi-supervised deep networks, in which all available data
provide the learning.

I. INTRODUCTION

In recent years, machine learning has collaborated with
computer vision, showing high performances in pattern recog-
nition tasks. In particular, representation learning [1] allowed
obtaining feature spaces tailored for particular applications,
using data driven end-to-end approaches. Such methods rely
heavily in availability of massive data annotation, which was
an incentive for transfer learning (TL) methods [2].

Let S be large sample of data from a source domain
Xs with labels Ys. After training, we have an estimate of
the joint probability function P (Xs, Ys). Then one wants to
estimate the joint probability distribution of, another, target
domain, i.e. P (Xt, Yt), for which we have a sample T that
is smaller (in number of instances) than S. At first, in order
to obtain transfer learning both functions are assumed to be
well represented by the same feature space or share the same
data distribution. However, this assumption is not always true
in real-world applications. When the T differs from S, one
may need to consider to fully reconstruct the original model
from scratch. This approach can be expensive and sometimes
impossible considering the size of T [2], in particular when
considering the high human cost to collect and annotate
large databases [3]. In this scenario, the possibility of reusing
similar and large datasets would diminish efforts to collect and
annotate new data [4]. For this purpose, TL leverage concepts
already learned, for example as a classifier or detector, and
apply those to facilitate the search of parameters for new
classifiers or detectors [2]. If the source and the target datasets
are sufficiently similar, e.g. their output space Ys and Yt
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is equivalent, or P (Xs) does not diverge drastically from
P (Xt), the learned model has acceptable performance using
either datasets S or T [5]. Since this is not always the
case, the main challenge in TL is to correlate the source
training data distribution to the target test data distribution [6].
Therefore, TL should be analyzed in three perspectives [7]:
what to transfer by investigating the similarity between
domains in which common peculiarities must be highlighted
and discrepancies must be minimized; how to transfer the
knowledge, such as exploring machine learning techniques
and pattern recognition; and when to transfer the knowledge
detecting scenarios where transfer is useful to avoid negative
transfer [4], that occurs when the acquired knowledge worsens
the model performance [8].

Convolutional Neural Networks (CNNs) are currently
widely explored for TL since such methods are able to
represent general low-level and high-level image features [9]–
[11]. In order to investigate TL with CNNs, two approaches
were explored in this thesis: fine-tuning from a model pre-
trained with a large dataset [11]; and manifold alignment in
the feature space, such as the method of Transfer Component
Analysis (TCA) [12], designed to strengthen relationships
from different feature spaces into a new unified latent space
by aligning underlying manifolds.

The meaning of TL also changes accordingly with the
assigned task: in classification, the trained model should be
sufficiently representative to allow distinguishing coexisting
labels in both source and target domains, or allow to adapt
the feature space for new labels at the target. When con-
sidering anomaly detection, TL should be used to enhance
the similarity between normal and abnormal instances, so the
main objective is to learn a common concept of normality.
In both tasks, although the aim and meaning of the methods
is different, there is a common underlying task: to make
sure the features extracted or learned from source data
can transfer, as best as possible, to the target data. In
this thesis, we use the concept of generalization, which is a
divergence measure of the error of some model considering the
real distribution of the data (often unavailable and estimated
via a test set) with respect to the sampled training data [13].
Hence, we advocate transfer learning should consider not only
metrics of performance (such as errors and accuracies), but
also with how the learned feature spaces generalize between
source and target domains.



A. Thesis Contributions
We investigated how to leverage previously acquired knowl-

edge and how to evaluate its generalization in image and video
recognition tasks, in particular:

1) investigate different layers of pre-trained CNNs to ob-
tain better transfer learning for skin lesion classification,
a domain that differs from photographic content, includ-
ing an analysis of model complexities and robustness
(section II);

2) a Cross-Domain Feature Space Generalization
(CDFG) Measure, allowing comparison of TL method-
ologies beyond performance metrics, estimating how
well data from one domain transfers to another (sec-
tion III);

3) a semi-supervised deep network combining classifica-
tion and reconstruction tasks using a Weighted Label
Loss (WLL), where supervised and unsupervised learn-
ing work together to improve representation learning for
transfer learning scenarios, leveraging unlabeled exam-
ples that otherwise cannot not be used (section IV).

II. FEATURE TL USING MULTIPLE CNN LAYERS

Usually, models that involve CNN feature extraction only
use layers that are very close to prediction output [14]–[16].
However, does this adopted convention indicate that initial
and inner layers do not offer good discriminative capacity?
In situations where dissimilarity between the source and target
domain is evident, the semantic information contained in end-
layers should be avoided or minimized [9]. Hence, we should
not assume that only the end-layers provide representativeness.
Contrarily, as the initial and inner layers offer low-level
features, they may play an important role in the task.

A. End-layers features on skin lesion classification
Initially, considering only CNNs pre-trained by ImageNet

dataset [17], we compare several end-layers regarding dis-
criminative capacity, as well as impact caused by distortions
applied to the best feature space obtained. Dimensionality
reduction by PCA, color quantization, and noise injection were
studied in this sense. The PH2 dataset [18] was employed for
these experiments, which is widely used as a benchmark for
skin lesion classification.

As shown in Table I, MobileNet provided more compact and
discriminative feature spaces with only 1024 features. These
advantages are evidenced by the amount of attributes with
variance in each layer and respective high performance. In
contrast, VGG-19 generates more attributes without variance,
having its performance surpassed also by ResNet50 on av-
erage but with the cost of dimensionality: 100352 features.
This corroborated evidence that smaller datasets for specific
applications do not need complex networks. Hence, MobileNet
(the lighter CNN) provides the best performance in accuracy,
complexity, and dimensionality.

Since CNN layers often output high-dimensional feature
maps, dimensionality reduction is an important projection to

TABLE I
PH2: 20-FOLDS CROSS VALIDATION (CV) BY BALANCED

ACCURACY [19]. LAYERS ARE REFER AS -1 (THE LASTEST), THEN -2
(ONE BEFORE THE LAST), UNTIL -7.

CNN Layer Features Variance Linear SVM (%)

MobileNet [20]

-1 1000 100.0% 85.0 ± 12.04
-2 1000 100.0% 92.0 ± 8.72
-3 1024 100.0% 94.0 ± 6.63
-4 1024 100.0% 93.5 ± 7.26
-5 1024 100.0% 93.0 ± 8.43
-6 50176 90.2% 90.5 ± 8.65
-7 50176 100.0% 91.5 ± 7.26

VGG-19 [21]

-1 1000 100.0% 81.0 ± 12.61
-2 4096 93.7% 88.5 ± 6.54
-3 4096 93.7% 88.5 ± 8.53
-4 25088 86.8% 89.0 ± 6.24
-5 25088 86.8% 88.5 ± 7.26
-6 100352 75.2% 91.5 ± 7.92
-7 100352 92.8% 91.5 ± 6.54

ResNet50 [22]

-1 1000 100.0% 80.5 ± 11.17
-2 2048 100.0% 90.0 ± 7.75
-3 2048 100.0% 90.5 ± 7.4
-4 100352 96.3% 91.5 ± 7.92
-5 100352 100.0% 91.5 ± 7.26
-6 100352 100.0% 90.5 ± 7.4
-7 100352 100.0% 90.5 ± 9.73

Fig. 1. Dimensionality reduction and variance by PCA [19].

show attributes relevance. The MobileNet layer -3 feature
space (best performance) was gradually reduced from 128
to only 1 feature, halving the size each step. Therefore,
as seen in Fig.1, it continues achieving high performance
between 64 and 16 features (92% with 60.80% variance).
Also, feature spaces quality are significantly impacted by color
quantization [23]. To measure this influence, news sets were
generated by computing 64, 32, and 16 colors per channel. As
the color space contracted, Table II, performances become less
linear, although not dramatically lower. Among noise injection,
Salt & Pepper shows positive impact in small amounts, but
negative with larger amounts.

Overall, MobileNet followed by a Linear SVM (94%)
produces performances above competing methods, which com-
prise pre-processing steps to achieve at most 90.31% [24].
Based on these results, it is notable the discriminative
capacity contained in end-layers of CNNs, being reinforced
by results of dimensionality reduction and noise injection.



TABLE II
QUANTIZED AND NOISY: 20-FOLDS CV BY BALANCED ACCURACY [19]

Set Linear SVM (%)
PH2 Quantization 64 94.5 ± 4.97
PH2 Quantization 32 92.5 ± 8.29
PH2 Quantization 16 90.0 ± 9.49
PH2 Gaussian 0.008 93.0 ± 7.81
PH2 Gaussian 0.016 93.0 ± 6.4
PH2 Gaussian 0.032 94.5 ± 7.4

PH2 Salt & Pepper 0.005 95.0 ± 6.71
PH2 Salt & Pepper 0.01 91.5 ± 9.1
PH2 Salt & Pepper 0.02 90.5 ± 8.65

B. Alignment of multi-layers features fusion

In addition to end-layers, we set out to leverage initial layers
representativeness for image classification. Considering the
pre-trained ResNet50 [22] and fine-tuning by a source domain,
we extracted features from the pre-prediction layer (as global
descriptor) and from the three first residual blocks (the output
of each block represents the local descriptor) to merge them in
a single feature map (as fusion descriptor). Consequently, three
scenarios are presented for alignment of multi-layer features
fusion: global with each local descriptor. Previously of fusion
step, the local features passed on a process of selection due to
larger amount of attributes. With the fusion features, the data
distributions (source and target) are transformed to increase the
correlation using TCA [12]. As result, the source is applied
to SVM for training and the target for tests, as illustrated on
Fig.2.

Due to the large number of attributes from local descriptors,
three methods of feature selection was applied to choose which
ones will compose the fusion maps. PCA is applied only to the
source dataset, then the chosen components were applied to the
target dataset. In Flatten Pooling (Flat.), the feature maps are
fully converted from matrix to vector and a value x = 100 was
adopted to split the vector into small symmetric segments, in
which the average is calculated. For Pooling 2D is considered
a square region (55 × 55) to calculate the average, where each
region provides only one attribute. The variation in the number
of attributes is suppressed due to TCA transformation, which
defines the real amount for classification. For the experiments,
the fine-tuning setup applied is the original ResNet50 training
during 100 epochs and only the last seven layers were allowed
to adapt with the new domain. This configuration offers a
better observation of performances.

Table III presents results of three different image domains.
This diversity is extremely important to emphasize the dis-
criminative capacity of low-level descriptors, due to variation
of styles, scene composition, and degree of task difficulty.
Specifically to Fruits domain, multi-layer fusion structure are
highly applicable. Individually, PCA has a higher accuracy in
the first block (≈ 41%), then the accuracy gradually decays
while Flatten Pooling has a small better performance in the
second block. Pooling 2D is practically constant in all blocks.
All these results indicate that Fruits-360 and Supermarket Pro-
duce are datasets with predominantly low-level features, such

Fig. 2. Considering two datasets, both are passed on to fine-tuned ResNet50
for feature extraction. Initial layers (the red ones) provide low-level features
and the pre-prediction layer (the blue one) provides high-level features. In the
following, feature fusion is obtained through map concatenation. Using TCA,
the resulting feature map is transformed and assigned to SVM [25].

as shapes and edges, evidenced when the global performance
is lower than fusion accuracies (bold values). For Objects
domain is noticed a decrease in the performance of multi-
layer fusion features in relation to Fruits domain. Despite this
evidence, fusion features still offers significant improvement
using Flatten Pooling in all residual blocks. PCA has better
performance in the second block, however, worse than global
performance and Pooling 2D remains practically constant.
These results confirm that Webcam is a dataset with greater
variance, requiring more semantics from the global descriptor.
Considering Skin Lesion domain, different texture represents
a decisive attribute to diagnose an injury as malignant or
not. Hence, the semantic contained in the global descriptor
is more relevant for classification. Based on this requirement,
the fusion features do not increase the accuracy on average.
A few multi-layer fusion results present slight superiority to
global ones. In general, all of them presented themselves in
an equivalent form in all residual blocks.

Here, we explored descriptors from low-level of a CNN to
complement end-layers in scenarios of feature TL. Different
image domains were evaluated through fusion and data align-
ment, showing that images with well behaved composition
are better classified by merging features from multi-layers.
Global descriptors are more adequate to be used in domains
with more clutter or composed of larger intra-class variance.

III. GENERALIZATION OF TRANSFERRED FEATURES: A
ONE-CLASS STUDY CASE

One of the reasons for a model not to be completely
adaptable to several domains is the absence of generalization,
in which these models are often evaluated only by classical
measures of the assigned task. Hence, a good measure of
domain generalization can indicate which dataset is more
suitable to others to improve TL performances.

A. Cross-Domain Feature Space Generalization Measure

We proposed a new metric to evaluate cross-domain TL,
asking: how can one measure generalization of a feature
space produced by some method? The concept of general-
ization is expressed as |Remp(fn)−R(fn)|, where Remp(fn)
is the risk of a classifier fn evaluated over the training set and



TABLE III
ACCURACY (%) FROM FINE-TUNED RESNET50 USING LINEAR SVM. PH2 IS A SMALL DATASET FOR PCA WITH 256 AND 192 FEATURES. VALUES IN

BOLD INDICATE THAT THE FUSION PERFORMANCE IS SUPERIOR TO THE GLOBAL ONE [25].

Training set −→ Testing set TCA Global Fusion 1st output Fusion 2nd output Fusion 3rd output
Features PCA Flat. 2D PCA Flat. 2D PCA Flat. 2D

Fr
ui

ts Fruits360 [26] −→
Supermarket Produce [27]

256 23.75 41.37 36.33 35.73 37.97 36.98 35.83 33.63 37.18 35.83
192 25.65 41.22 36.48 36.48 38.37 36.93 36.58 30.44 36.58 36.58
128 31.39 41.47 38.87 38.82 37.48 39.27 38.77 32.58 37.43 38.77
96 29.74 41.37 39.97 39.52 38.42 40.67 39.47 29.14 39.52 39.52
64 25.3 41.87 37.97 39.87 38.62 39.37 39.92 31.59 38.37 39.92

O
bj

ec
ts

Amazon [28] −→ Webcam [28]

256 39.37 40.63 46.04 40.0 41.38 46.67 40.0 39.75 45.53 40.13
192 47.55 44.65 51.45 46.54 45.91 52.7 46.54 45.91 49.43 46.67
128 48.55 48.43 54.34 49.31 49.06 52.83 46.56 50.44 54.47 49.18
96 55.47 53.84 60.13 55.72 54.34 58.49 56.35 45.91 57.48 56.1
64 60.88 61.51 64.91 60.88 60.0 64.91 60.75 61.51 62.77 61.13

Sk
in

L
es

io
ns

HAM10000 [29] −→ PH2 [18]

256 87.5 – 88.0 87.0 – 89.0 87.0 – 89.0 87.0
192 86.5 – 89.0 87.5 – 88.0 87.5 – 86.5 87.5
128 85.0 84.5 87.5 83.5 83.5 85.5 83.5 84.5 84.0 83.5
96 86.0 84.5 84.0 85.5 84.5 84.0 85.0 85.0 84.0 85.0
64 85.0 85.5 87.5 85.5 84.5 86.0 85.5 84.5 87.0 85.5

R(fn) is the true risk of same fn over “all data”. This idea
is totally abstract because it is an intractable quantity, which
reveals the importance of not losing ourselves only with classic
metrics and training costs. Hence, two metrics were proposed:

Gpart(f
A
n ) =

∣∣∣∣R(fAn )
x∈XA

−R(fAn )
x∈XB

∣∣∣∣ (1)

Gcomp(f
A
n , f

B
n ) =

1

2

(
Gpart(f

A
n ) +Gpart(f

B
n )

)
(2)

Considering two domains (A and B) and their respective
training feature spaces (XA and XB), R(fAn ) denotes the risk
of test on classifier fAn trained over the feature space XA
and over the feature space XB . The two functions represent
different levels of domain generalization, in which impor-
tant guidelines should be followed: (i) the set of admissible
functions from the classifier/detector are the same; (ii) both
feature spaces are described by the same set of descriptors;
and (iii) the domain mapping method has no prior knowledge
of test data on either domain. Based on the Gpart and Gcomp,
we introduce three particular levels of domain generalization.
Considering the pair results of two methods α and β, the first
level of generalization is obtained by:

Gpart(f
A
α ) < Gpart(f

A
β ) (3)

With this inequality satisfied, one could claim that method
α is capable of generalizing well from domain A to domain B.
Also, we can verify the Gpart from the “opposite direction”
and confirm if the α methodology is also better than β at
generalizing from B to A. However, to obtain a more precise
and rigorous analysis from both directions, we should compare
using Gcomp:

Gcomp(f
A
α , f

B
α ) < Gcomp(f

A
β , f

B
β ) (4)

In all these expressions, lower results imply less divergence,
where the concept of generalization is more substantial.

B. CDFG Measure for surveillance videos

To evaluate the practical scenario of CDFG Measure [30] on
one-class scenario, it was performed an experiment extracting
features via pre-prediction layer of pre-trained VGG-19 [21].
Experiments were designed by: (i) cross-feature embedding,
which only relates one training set to another test set; (ii) cross-
domain transformation by PCA with 80 features, selecting the
components from training set and applying them to the test
set; and (iii) latent space by TCA [12], also with 80 features.

Table IV presents that Cross-feature overcomes PCA and
TCA in pairs with better performances, especially when Ped2
or Belleview is the target (bold values). However, the average
of results between the Cross-feature and TCA is practically
negligible: 63.84 versus 62.8. It is important to emphasize
that the concept of anomalies among these domains is very
dissimilar, implying that the feature learning should not be
totally transferred. Hence, considering only domains with the
same concept of anomalies (Ped1 and Ped2), TCA stands out
when compare to Cross-feature and PCA in average. Although
TCA is superior, the classic metric are not enough to guarantee
the feature generalization. Analyzing those performances in
isolation gives an imprecision due to the great diversity of
results achieved. For these reasons, the CDFG Measure [30]
offers a more detailed and reliable comparison.

Applying Gpart, Table V, TCA average (9.0) overcomes
PCA (14.7) and Cross-feature (19.54). In context of different
concepts of anomalies, there are also great applicability of
TCA, implying that the TL is more relevant from Ped1 to
Belleview. As expected, Ped1 offers high learning for Ped2,
however, the opposite direction does not occur in the same
intensity. Another interesting highlight is the PCA perfor-
mance when compared to Cross-feature, demonstrating that
dimensionality reduction increases the generalization. This last
remark contradicts the isolated analysis from Table IV, impli-
cating the importance of CDFG Measure. Considering Gcomp,
Table VI, TCA offers even more generalization in relation to
the competing methods. Considering similar domains, TCA is



TABLE IV
ANOMALY DETECTION MEASURED BY AREA UNDER THE CURVE [30].

Source −→ Target Cross-feature PCA TCA
Ped1 [31] −→ Ped1 50.91 71.46 62.94
Ped2 [31] −→ Ped1 50.82 64.01 60.39

Belleview [32] −→ Ped1 51.77 76.12 58.86
Train [32] −→ Ped1 53.42 60.65 71.02

Ped2 −→ Ped2 80.34 55.24 74.16
Ped1 −→ Ped2 80.18 56.95 67.06

Belleview −→ Ped2 80.88 69.46 65.16
Train −→ Ped2 81.81 61.77 50.11

Belleview −→ Belleview 68.91 50.54 72.63
Ped1 −→ Belleview 68.67 56.22 68.39
Ped2 −→ Belleview 68.73 60.42 65.24
Train −→ Belleview 69.1 54.36 68.65

Train −→ Train 53.97 57.67 51.88
Ped1 −→ Train 54.02 57.75 53.98
Ped2 −→ Train 54.13 55.47 55.56

Belleview −→ Train 53.85 50.63 58.86

TABLE V
PARTIAL CDFG MEASURE USING AREA UNDER THE CURVE [30].

Source −→ Target Cross-feature PCA TCA
Ped2 −→ Ped1 29.52 8.77 13.77

Belleview −→ Ped1 17.14 25.58 14.27
Ped1 −→ Ped2 29.27 14.51 4.12

Belleview −→ Ped2 11.97 18.92 7.47
Ped1 −→ Belleview 17.76 15.24 5.45
Ped2 −→ Belleview 11.61 5.18 8.92

TABLE VI
COMPLETE CDFG MEASURE USING AREA UNDER THE CURVE [30].

Datasets Cross-feature PCA TCA
(Ped1, Ped2) 29.4 11.6 8.95

(Ped1, Belleview) 17.5 20.4 9.86
(Ped2, Belleview) 11.79 12.05 8.19

(Train, Ped1) 1.83 8.35 14.1
(Train, Ped2) 27.0 2.17 10.2

(Train, Belleview) 15.1 1.7 15.3

highly applicable: Ped1 and Ped2 with 8.95. Even when the
concept of anomalies is different, the performance gain with
TCA is evidenced (Ped2 and Belleview with 8.19). However,
the Train video presents an anomaly concept very distinct from
the others. As the results demonstrate, Train is not a suitable
domain for Ped1, Ped2, or Belleview, causing negative transfer.

These results express the applicability of CDFG Measure
to indicate which domains offer the most learning rate for a
target domain. As mentioned earlier, classic evaluation metrics
do not provide a perform of model generalizability. With the
CDFG Measure we confirmed that TCA (the only TL method)
stands out from the others, indicating when the transfer should
occur, avoiding the negative transfer. Hence, CDFG Measure
is an evaluation method that offers quantitative analysis
of learning guarantees from models built for TL.

IV. FEATURE TL IN SEMI-SUPERVISED SETTINGS

When fine-tuning is applied in deep networks, one of the
concerns is about how much data is required [34]. In this

Fig. 3. Hybrid architecture: combination of supervised (loss 1) and unsuper-
vised (loss 2) networks and their losses to learn a feature embedding [33].

context, if unlabeled data is available, how to use those to
improve the final learned representation? Semi-supervised
networks are architectures that do not require much labels [35].
Hence, a combination of CNN and AE provides a hybrid
network that conciliates all available data simultaneously [36].

A. Weighted Label Loss

Our semi-supervised architecture is composed of a CNN
and an AE that share intermediate layers and optimize the
combined loss function through the amount of labeled ex-
amples, as shown in Fig.3. Therefore, the model applies
supervised (Cross-entropy loss l(ce)) and unsupervised (Mean
Square Error ε) functions for learning representations, com-
bining them according to the percentage of existing labels to
balance the individual loss. Consequently, this structure can be
adaptable to any amount of data: only labeled; only unlabeled;
or partially labeled. Our semi-supervised network is trained
in two steps: (i) the AE is trained using only the unlabeled
training data; and (ii) the hybrid network is fine-tuned using
the remaining labeled data. Hence, given a percentage of
labeled data P from the training set, the first stage trains the
AE from scratch using (100−P )% examples. In the following,
the whole network is fine-tuned using the remaining P% of
labeled examples by WLL:

WLL =

(
0.5+0.5 · P

100

)
· l(ce)+

(
0.5− 0.5 · P

100

)
· ε (5)

The first term describes the classification weight wsup
while the second one defines the reconstruction weight wuns.
Moreover, we have 0.5 < wsup < 1.0 and 0 < wuns < 0.5.
Consequently, this balancing ensures that wsup + wuns = 1.
Also, the constraint 0 < P < 100 should occur. Therefore,
when P = 100 all data are labeled and only the CNN must
be considered; when P = 0 all data are unlabeled and only
the AE must be considered.

B. Features embedding on semi-supervised learning

Two architectures were investigated: sequential convolu-
tional forming the SmallNet (SN); and residual blocks for
SmallResNet (SRN), changing the number of blocks (SRN-
1, SRN-2, and SRN-4). Focus on learning discriminative
representations, the networks are used as feature extraction
modules after the training, selecting the Embedding to generate
the feature maps. Analyzing the overall results, Fig.4, WLL
are superior than regular combination of individual losses.



Fig. 4. Semi-supervised accuracies with different proportions of labels per training data: MNIST [37]; SVHN [38]; and USPS (https://cs.nyu.edu/∼roweis/
data.html). The results include training and testing with the same dataset (first row) as well as across datasets (training set −→ test set). The SVM classifier
is applied to perform a 5-fold cross validation. Also, for each network, we compared WLL to a regular balancing with the CNN (0.5) and AE (0.5) [33]

Furthermore, a few performances with P = 90% are even
better than the supervised approach: MNIST−→SVHN (47.5%
– 54.21%) and MNIST−→USPS (89.44% – 91.53%) in SRN-
4; and SVHN−→MNIST in all networks (≈ 1%). As expected,
the accuracy decreases as the proportion of labeled data to
train the network, especially for feature TL scenarios. Despite
of that, WLL offers a slower decrease. Seeing more deeply,
USPS demonstrates more consistent performances on SRN.
Contrarily, SVHN has a broader variance in different archi-
tectures because it is a more complex dataset than USPS and
MNIST. When SVHN is employed with MNIST, SN (74.06%)
overcomes the other networks (48.78% SRN-1, 50.55% SRN-
2, and 52.84% SRN-4 with P = 70%). Considering SVHN as
source, SRNs have their performances improved due to greater
parameters fluctuation obtained during the first step of training.

Also, considering STL-10 training set (unlabeled for AE and
labeled for WLL), three experiments were performed: (i) using
STL-10 test set; (ii) using CIFAR-10 with only the 9 common
classes; and (iii) using CIFAR-10 with all 11 classes. Given
the results, WLL excels a better performance than regular
combination, reinforcing previous results with digit images
domain, with: (i) 49.34% to 51.95%; (ii) 40.57% to 42.18%;
and (iii) 38.27% to 40.11%. Comparing both performances
on CIFAR-10, it is interesting to note that the WLL accuracy
remains equivalent (42.18% — 40.11%), which indicates that
the architecture generalizes well to unknown classes.

In general, WLL presented high performances than regular
weight and few labeled instances provided a considerable
increase in the performance, where it can even surpass su-
pervised scenarios. Since WLL loss function is dependent
only on the proportion of labeled examples, it is adaptable
to different scenarios with low computational complexity.

V. CONCLUSION

In this thesis, we established a new manner to development
predictive models involving feature transfer learning, in which
the descriptors contained in the CNNs are explored and
combined to enhance the pattern recognition performance.
Additionally, we contributed with a new measure to assess the
model generalization in feature learning, even for unlabeled
data. This can have a positive impact on methods already avail-
able, improving generalization abilities. Hence, we believe that
our results represent a guideline for building new models,
and allow to further explore the representativeness of deep
networks with appropriate validation metrics. Future work may
expand our metric to multiple domains simultaneously as well
as finding new ways to combine features from different layers
to improve representations.

VI. PUBLICATIONS

This PhD Thesis was defended in January 2020 and ap-
proved unanimously by the evaluating members resulting in
6 papers (3 journals, 3 conferences). This manuscript focus
on the results published at SIBGRAPI 2018 [19]; SIBGRAPI
2019 [25]; Journal of Visual Communication and Image Rep-
resentation [30]; and Neural Networks [33]. Due to space
constraints we do not describe additional results also published
at Applied Soft Computing [39] and CAIP 2019 [40].
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