
Broad Phase Collision Detection: New
Methodology and Solution for Standardized

Analysis of Algorithms
Ygor Rebouças Serpa1, Maria Andréia Formico Rodrigues (Orientadora)

Programa de Pós-Graduação em Informática Aplicada (PPGIA)
Universidade de Fortaleza (UNIFOR) – 60811-905 – Fortaleza-CE – Brasil

{ygor.reboucas,andreia.formico}@gmail.com

Abstract—Collision detection is a computational problem fo-
cused on the identification of geometric intersections between
objects and, in general, proximity relationships among them.
Despite its notorious relevance and applications in various com-
puting fields, few authors have proposed solutions that are both
general and scalable. Additionally, until the time of publication
of the results of this work, there was no standard methodology
for the analysis of algorithms, neither in academia nor in the
industry: only proprietary scenes and comparative studies had
been developed, making it difficult to reproduce and compare
results. To tackle the issues previously mentioned, we present
a new general and scalable solution for broad phase collision
detection and a new methodology for comparative analysis
of algorithms, named Broadmark, whose open-source code is
publicly available, with the goal of transferring knowledge to
academia, industry, and society, so far lacking in the scientific
literature. Thus, by doing so, we aim to contribute to the
generation of robust and multi-faceted solutions applied to
various scenarios and, consequently, to greater transparency, ease
of modification/extension and reproducibility of results.1

I. INTRODUCTION

Collision detection can be seen as a generalization of the
k-Nearest Neighbour problem for dynamic scenes with non-
punctiform objects, introducing complexities such as the shape
and behavior of objects [1]. Although collision detection has
been studied for many years, the field still features relevant
and active research that has not yet been resolved, introducing
additional challenging problems, such as simulation of massive
dynamic scenes, deformable bodies, solid-liquid coupling, and
robust constraint solving, among others [2], [3]. As a whole,
despite its large success, the task is known to be unstable at
massive scales and to vary widely in performance whenever
scenes deviate from their expected states [4].

Over the years, several efficient solutions have been pro-
posed [5]–[8], however, most works employ a limited set of
scenes and algorithms for their comparisons, failing to provide
a strong foundation to support their claims. Collectively,
these works lack a shared representative methodology, an
effort attempted only by Woulfe and Manzke [9], to limited
success. On top of that, many authors sacrifice generality over
scalability, narrowing their solution to either the static case, in
which only a fraction of objects moves, or the dynamic one,

1M.Sc. dissertation.

in which all of them do. Combined, these problems reveal
how challenging it is to weigh the strengths of each work and
to faithfully reproduce their results, concerns of paramount
importance given the current reproducibility crisis [10].

This work addresses the main research questions fully
detailed in the M.Sc dissertation [11] available at
〈https://1drv.ms/b/s!Aq35PBOZWmsjhppQxK3ut ILqDvLfA〉:

1) To propose an open and extensible standard methodology,
yet non-existing, to the development and study of broad phase
collision detection algorithms [12],

2) To create a both general-purpose and scalable novel algo-
rithmic solution to the broad phase collision detection field
[4], and

3) To make all source code of the developed tools, necessary for
this research and evaluation of algorithms, publicly available
on the GitHub repository 〈https://github.com/ppgia-unifor/
Broadmark〉, so that anyone interested can inspect, learn from
it, test it, develop it, and build on it, thus, in an effort also
contributing to the transfer of the knowledge base to the
academy, industry and society.

More specifically, we have developed the Broadmark method-
ology [12], a research development environment containing 12 al-
gorithm implementations, plus variants, for both CPU and GPU
(Table I), as well as three standardized testing scenarios (Figure 1),
representatives of the static, dynamic, and uniform cases, with either
same sized or randomly sized objects [12]. As part of this system, we
have also developed a novel hybrid and adaptive solution based on
KD-trees, the Sweep-and-Prune (SAP) algorithm, and the incremental
detection paradigm, competitive on all tested scenarios [4].

II. RELATED WORK

To date, the dominating approach for assessing collision detection
algorithms is to design your own environment. This includes defining
the test cases, searching for baseline algorithms and timing each
solution [5]–[8], [13]–[21]. This methodology has a number of flaws,
to name a few, results are difficult to reproduce, baselines are not
state-of-the-art, and no external guarantees of fairness are given.
For instance, the solutions proposed by Lo et al. [13], Avril et al.
[17] and Liu et al. [6], although similar and contemporary, share
almost nothing in their validation strategies. This problem is relevant
even within a same institution [17]–[20]. Regarding fairness, it is
not uncommon for results to be presented under favorable situations,
such as grid-based algorithms on homogeneously distributed scenes
[6], [13] or temporal-optimized algorithms on nearly static scenes [5],
[6], [16]. Conversely, algorithms devoid of temporal optimizations
are usually tested on fully dynamic scenes only [13], [21], [22]. The
work of Woulfe and Manzke [9], presented in 2009, is the most recent
attempt to introduce an open space for collision detection research.

https://1drv.ms/b/s!Aq35PBOZWmsjhppQxK3ut_ILqDvLfA
https://github.com/ppgia-unifor/Broadmark
https://github.com/ppgia-unifor/Broadmark

(a) Free Fall. (b) Brownian. (c) Gravity.

Figure 1: In (a), (b) e (c), respectively, created scenes using the Broadmark [12] framework, representatives of the nearly-static,
uniformly-distributed, and fully dynamic cases.

However, it did not get traction within the community and, as of
writing, is unfortunately no longer available.

In this context, the Broadmark system [12], presented in the
M.Sc. dissertation, is meant to (1) reduce the barrier-of-entry to the
field by exposing a set of ready-to-use tools, (2) be a repository
of state-of-the-art collision detection algorithms, and (3) benchmark
a wide range of solutions on a representative set of scenes. As of
writing, the system includes algorithms from five different sources
that span single and multi-threaded algorithms on both CPU and
GPU, shown in Table I. Additionally, representative scenes of the
most frequently seen setups in the literature are also bundled: the
nearly static (Figure 1.a), the uniformly distributed (Figure 1.b) and
the fully dynamic (Figure 1.c), up to a million objects. Finally,
the system is designed towards extensibility, featuring a common
interface for all new algorithms and a Unity [23] based editor for
authoring new massive scenes.

The Broadmark framework, in its early stages, revealed that most
solutions are biased towards one of the three developed scenarios,
with none being significantly competitive on all three simultaneously
[4]. For a solution to be efficient on all these three scenes, we
hypothesized that it had to (1) have temporal optimizations, for the
static case; (2) not be impaired by these optimizations on dynamic
scenes; and (3) be flexible enough to handle uniformly and non-
uniformly distributed objects similarly.

To jointly address these three propositions, we have developed
an adaptive hybrid algorithm based on an efficient KD-tree with a
SIMD-optimized SAP implementation. Both algorithms run under the
incremental detection regime, for the temporal optimization, but can
be adaptively toggled to perform the full detection when a specified
threshold is met. While KD-trees, SAP and incremental detection, in
isolation, are well-established techniques, the synergy between them
had not yet been explored in the literature. In the series of tests we
carried out, our solution out-performed well-known state-of-the-art
algorithms [6], [7], [14], [22] in all three scenarios, being competitive
among multi-core and GPUs in several instances.

III. BROADMARK

The Broadmark system is composed of two independent modules:
(1) the simulation generator, developed using the Unity game engine,
and (2) the algorithm runner, developed purely using the C++
language. The former is accessible either via a pre-compiled wizard,
designed for those with no Unity expertise, or via the Unity project
itself, through the engine’s editor, while the latter is a command-
line tool, for maximum flexibility. As an extra convenience, we also
provide a Python tool to design large benchmark schedules.

A. The Simulation Generation
The simulation generation tool was designed using Unity to ease

the creation and maintenance of massive scenes with beautiful real-
time visualizations. When ran, simulations are baked to disk in

binary format, completely decoupling the scene generation from the
benchmark. Thus, the time spent on generating scenes is constant with
regard to the number of algorithms. Moreover, it ensures that each
test uses the exact same Axis-Aligned Bounding Boxes (AABBs),
improving fairness. Finally, we have designed the system to modulate
each physical aspect of the scene to the number of objects used.
This way, the ratio between the scene volume and the total volume
occupied by objects is constant, regardless of how many objects are
used.

Within this system, three scenes have been developed: Free Fall,
Brownian, and Gravity, representatives of the static, uniform and dy-
namic cases, respectively, and designed to be run from one thousand
objects to a million. Figure 1 shows the three scenarios with four
thousand same sized objects (left half, in green) and varied-sized
objects (right half, in assorted-colors).

B. The Algorithm Runner
In the second module, we have included everything related to

running and analyzing the algorithms, as well as the scene reader
and the logging functionality. Within this module, we gathered 12
sets of algorithms, including original implementations and known
algorithms from the literature and industry, spanning serial, parallel,
CPU, and GPU algorithms [4], [6], [7], [14], [22]. Table I enumerates
each set of algorithms and their most important features. While some
sets have only one algorithm, others, such as BF and SAP, include
several variants, for instance, SIMD, parallel, and SIMD + parallel
implementations. Other families, such as the DBVT family, have
unique features, such as being able to run on a forward pass (DBVT
F) or in deferred mode (DBVT D), respectively, optimized for the
static and dynamic cases.

IV. HYBRID ALGORITHM

To jointly satisfy the criteria of generality and efficiency, we
hypothesized that three properties are needed: flexibility, to be
versatile enough to handle different object distributions; efficiency,
to be able to prune huge portions of the search space quickly; and
adaptivity, to avoid worst-case scenarios and bias towards one kind
of simulation over another. In practical terms, to be simultaneously
efficient on both static and dynamic scenes.

For the first and second concerns, we have developed a two-tier
approach based on the KD-trees and the SAP technique. The former
is responsible for dividing the set of objects into smaller, independent,
groups, and the latter for processing each individual subproblem using
sorting, yielding the set of colliding objects for each sub-problem.
Both algorithms complement each other, as the KD-tree is allowed to
be shallower, mitigating its overhead, and the SAP is performed over
smaller sets, reducing its O(n

5
3) time complexity. To efficiently build

and update this structure, we have developed an update algorithm
which runs in linearithmic time, is idempotent, and is able to work
efficiently for both minor adjustments and major tree changes, thus,

Table I: Bundled algorithms within the Broadmark system. Time complexity derived for the uniformly distributed case [11].

IMPLEMENTATION COMPLEXITY
Algorithms Principle Optimizations Temporal Remarks Source Time Space

BF BF SIMD + Parallel - Naive Original O(n2) O(1)

SAP SAP SIMD + Parallel - STL Sort Original O(n5/3) O(1)
Grid BF Grid Parallel - T objects/cell Original O(n2/t) O(nt)

Grid SAP Grid + SAP Parallel - T objects/cell Original O(n2/t) O(nt)
AxisSweep iSAP - Yes Insertion Sort Bullet 2 O(n+ s) O(n)

DBVT BVH - Optional Persistent Tree Bullet 2 O(nlog(n)) O(n)
CGAL Tree + SAP - - Stateless CGAL O(nlog3(n)) O(n)
Tracy Grid + iSAP Parallel Yes Insertion Sort Authors O(n+ s) O(n)

KD-Tree Tree + SAP SIMD Adaptive Adaptive, Persistent Tree M.Sc Dissertation O(nlog(n)) O(n)
GPU Grid Grid GPU - OpenCL Bullet 3 N/A N/A

GPU LBVH BVH GPU - OpenCL Bullet 3 N/A N/A
GPU SAP SAP GPU - OpenCL Bullet 3 N/A N/A

being optimized for both static and dynamic scenes. Orthogonal to
these developments, we explored the use of SIMD instructions to
accelerate the SAP algorithm and an efficient memory layout custom-
tailored to reduce the costs of the most expensive operations carried
out during the tree update algorithm.

To efficiently cope with static scenes, it is paramount to have
algorithms whose time complexity is dependant on the number
of dynamic objects, instead of the total. To introduce reasoning
within our algorithm, we employ the incremental detection, which
consists in detecting only new collisions and ceased collisions. For
this to work, we start from the set of collisions from the previous
frame, which are screened to remove ceased collisions. Afterwards,
we only need to check collisions that involve dynamic objects.
In other words, all static-static pairs can be safely pruned from
testing. Finally, we label objects with speed below/above 0.05, in any
direction, as static/dynamic, respectively. Empirically, we found that
the incremental detection is faster than the plain algorithm whenever
more than half of the objects are static. To have the best of both
worlds regarding temporal optimizations and the lack of thereof, we
alternate between both approaches in run-time based simply on the
number of static objects labeled on the current frame.

In the full text of the M.Sc. dissertation, detailed analyses of the
empirical observations used to guide the design of our solution are
presented, as well as the technical and implementation details of each
algorithm used.

V. TESTS AND RESULTS

All implemented algorithms were tested and their average time
per frame from one thousand to one million objects, as presented
numerically in Table II, and graphically in Figure 2. For brevity, we
show the results for same-sized objects only and the worst and best
variants of each family, when more than one algorithm is available.
To scope our analysis to the best solutions available, we chose 0.5
seconds per frame as a cutoff threshold. More results and their
detailed descriptions are provided in the M.Sc. dissertation [11].

In the following, we summarise the findings and contributions
made. To the best of our knowledge, this is the most extensive and up-
to-date comparative study, in both depth and breadth, published in the
field using the same hardware/software setup and test scenes [4], [12].
In a nutshell, on the Brownian scene (Figure 1.b), solutions based
on grids are favored, on Free Fall (Figure (1.a), temporal optimized
solutions dominate and, finally, on the Gravity scene (Figure 1.c),
the best results are obtained by solutions optimized for the dynamic
case. In all three, the developed solutions during the M.Sc (KD-tree)
performed comparably or better to the best state-of-the-art solutions
for each case. In special, our solution is the fastest for the static
case (Free Fall), surpassing both multi-core CPU and GPU solutions,
performs similarly as the best CPU parallel solutions on the dynamic
case (Gravity), and is on par with the best grid-based serial solutions

on the uniform case (Brownian), all that being a single-threaded CPU
algorithm.

VI. CONCLUSION AND FUTURE WORK

We are confident that this work may improve knowledge in the
broad phase collision detection area.

In the M.Sc. dissertation [11] we answer the, until then, open
question “is it possible to have a solution that is both general and
scalable for the broad phase collision detection problem?”.

In addition, we contribute to the advancement of the field by
releasing the Broadmark methodology as an open-source tool for
the community.

With these initiatives, this work may have many implications for
research into the collision detection area. More specifically, we hope
for new research to be developed using the framework and that, in
turn, for their results to be more easily reproducible and validated by
others, increasing both the significance and impact of each individual
contribution. Moreover, with Broadmark, we hope to contribute with
lowering the barrier of entry for new researchers to the field, to raise
the quality of following comparatives and to encourage the research
for novel, general-purpose, solutions.

Finally, in the near future, we plan to investigate novel parallel
CPU and GPU solutions while retaining the joint focus on generality
and speed, and to further develop the Broadmark framework to
include new algorithms and scenes, as well as to support other related
tasks, such as collision queries and continuous detection. Related
to the topic, we are interested in applying deep learning models
to collision detection research, on topics such as cloth and volume
deformations.

VII. AWARDS AND PUBLICATIONS

The two main results of this work, i.e., the new general and
scalable solution for broad phase collision detection and the new
methodology for the comparative analysis of algorithms named
Broadmark, have been individually published in the Computer
Graphics Forum (CGF) journal [4], [12] (Qualis A1), and come from
the exclusive effort of the student and advisor, not being part of an
overarching project.

In addition, during the M.Sc, two other journal publications related
to this work have been published in the Computers in Entertainment
[24] (Qualis B1) and ACM Entertainment Computing [25] (Qualis
B1) journals.

Moreover, the authors have been formally invited by the program
Co-Chairs of the ACM SIGGRAPH / Eurographics Symposium on
Computer Animation (SCA’19) (Google Scholar h5-index 20) to
present the results published on the CGF journal [4] as a journal
first entry at UCLA – University of California, in Los Angeles, USA,
testifying the quality and relevance of the research to the scientific
community.

Table II: Results for each algorithm and their variants (s/frame) [11].

BROWNIAN

BF SAP Grid BF Grid SAP Axis DBVT Tracy GPU

objects ST MT ST MT ST MT ST MT Sweep F D ST MT CGAL KD SAP LBVH Grid

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.11 0.00 0.01 0.00 0.02 0.01 0.00 0.00 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00

16 0.42 0.01 0.02 0.00 0.03 0.01 0.00 0.00 0.06 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.00
32 1.60 0.04 0.06 0.01 0.04 0.02 0.01 0.00 0.23 0.04 0.02 0.05 0.02 0.03 0.01 0.00 0.00 0.00
64 0.16 0.18 0.02 0.09 0.04 0.02 0.01 1.09 0.09 0.05 0.12 0.05 0.08 0.01 0.01 0.00 0.00

128 0.60 0.57 0.04 0.17 0.07 0.03 0.02 0.25 0.14 0.26 0.11 0.18 0.03 0.02 0.01 0.01
256 0.13 0.36 0.13 0.06 0.03 1.42 0.44 0.70 0.31 0.41 0.06 0.06 0.02 0.01
512 0.34 0.78 0.23 0.14 0.08 1.04 1.19 0.95 0.13 0.19 0.05 0.04
768 0.63 0.32 0.21 0.14 0.20 N/A 0.08 0.07

1,024 0.39 0.28 0.19 0.28 0.10 0.08

FREE FALL

BF SAP Grid BF Grid SAP Axis DBVT Tracy GPU

objects ST MT ST MT ST MT ST MT Sweep F D ST MT CGAL KD SAP LBVH Grid

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.11 0.00 0.01 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

16 0.42 0.01 0.01 0.00 0.07 0.02 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.00
32 1.65 0.05 0.04 0.00 0.15 0.05 0.02 0.01 0.04 0.01 0.03 0.01 0.01 0.05 0.00 0.01 0.00 0.00
64 0.16 0.14 0.01 0.41 0.14 0.05 0.02 0.18 0.02 0.08 0.04 0.02 0.12 0.00 0.01 0.01 0.01

128 0.68 0.41 0.04 1.05 0.37 0.10 0.05 1.09 0.05 0.18 0.09 0.05 0.30 0.01 0.03 0.02 0.01
256 1.30 0.10 0.94 0.24 0.11 0.10 0.42 0.23 0.12 0.65 0.03 0.06 0.04 0.03
512 0.24 0.60 0.22 0.22 1.09 0.57 0.29 0.06 0.16 0.08 0.07
768 0.46 0.35 0.36 0.47 0.08 N/A 0.12 0.10

1,024 0.85 0.51 0.52 0.71 0.11 0.15 0.14

GRAVITY

BF SAP Grid BF Grid SAP Axis DBVT Tracy GPU

objects ST MT ST MT ST MT ST MT Sweep F D ST MT CGAL KD SAP LBVH Grid

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.13 0.00 0.01 0.00 0.07 0.01 0.01 0.00 0.09 0.02 0.01 0.01 0.08 0.01 0.00 0.00 0.00 0.00

16 0.51 0.01 0.02 0.00 0.14 0.06 0.02 0.01 0.36 0.04 0.02 0.03 0.15 0.02 0.01 0.00 0.00 0.00
32 0.05 0.05 0.01 0.34 0.15 0.03 0.02 0.89 0.15 0.05 0.29 0.52 0.04 0.01 0.01 0.00 0.00
64 0.17 0.16 0.01 0.84 0.36 0.08 0.03 0.57 0.15 2.90 0.09 0.03 0.01 0.01 0.01

128 0.63 0.51 0.04 0.76 0.17 0.06 0.44 0.22 0.06 0.03 0.01 0.01
256 0.11 0.37 0.14 0.99 0.51 0.14 0.06 0.02 0.03
512 0.27 0.82 0.33 0.31 0.17 0.05 0.06
768 0.48 0.51 0.49 N/A 0.09 0.09

1,024 0.72 0.68 0.13 0.12

The SCA’19 program schedule and invitation letter can be found,
respectively, at 〈https://sca2019.kaist.ac.kr/wordpress/program/〉 and
〈https://1drv.ms/b/s!Aq35PBOZWmsjhsUyoq9eevMYa5pD-w〉.

In parallel, still in 2019, the field of artificial intelligence started
to be studied as a complementary tool. This study led to other
two scientific contributions: the presentation of a tutorial on the
Conference on Graphics, Patterns and Images (SIBGRAPI’19) [26],
and a First Place Award-Winning full paper in the Computing Track
of the Brazilian Symposium on Games and Digital Entertainment
(SBGAMES’19) [27].

Finally, this work has also recently won a prestigious award from
the XXXIII Concurso de Teses e Dissertações (CTD) of the XL
Congresso da Sociedade Brasileira de Computação (CSBC): It is
among the Top 10 finalists chosen from 73 M.Sc. dissertations in the
Computing area in Brazil, concluded in 2019. The 3 winners will be
announced next November, during the CSBC conference, after online
presentation of the 10 finalist works.

REFERENCES

[1] D. M. Ming C. Lin and Y. J. Kim, “Collision and proximity queries,”
in Handbook of Discrete and Computational Geometry, 3rd ed. CRC
Press, 2017, ch. 39.

[2] C. Ericson, Real-time Collision Detection. CRC Press, 2004.
[3] D. H. Eberly, Game physics. CRC Press, 2010.
[4] Y. R. Serpa and M. A. F. Rodrigues, “Flexible use of temporal and spatial

reasoning for fast and scalable CPU broad-phase collision detection
using KD-Trees,” Computer Graphics Forum (CGF), vol. 38, no. 1,
pp. 1–14, 2017.

[5] G. Capannini and T. Larsson, “Adaptive collision culling for massive
simulations by a parallel and context-aware Sweep and Prune algorithm,”
TVCG, vol. 24, no. 7, pp. 2064–2077, 2018.

[6] F. Liu, T. Harada, Y. Lee, and Y. J. Kim, “Real-time collision culling of
a million bodies on graphics processing units,” ACM Trans. on Graphics
(TOG), vol. 29, no. 6, pp. 1–8, 2010.

[7] L. Kettner, A. Meyer, and A. Zomorodian, “Intersecting sequences of
dD iso-oriented boxes,” in CGAL User and Reference Manual, 5.0 ed.,
2019.

[8] R. G. Luque, J. a. L. D. Comba, and C. M. D. S. Freitas, “Broad-phase
collision detection using semi-adjusting BSP-trees,” in Proceedings of
the 2005 Symposium on Interactive 3D Graphics and Games (I3D).
ACM, 2005, pp. 179–186.

[9] M. Woulfe and M. Manzke, “A framework for benchmarking interactive
collision detection,” in Proc. of the 25th Conf. on Computer Graphics.
ACM, 2009, pp. 205–212.

[10] M. Baker, “Reproducibility crisis?” Nature, vol. 533, no. 26, pp. 353–66,
2016.

https://sca2019.kaist.ac.kr/wordpress/program/
https://1drv.ms/b/s!Aq35PBOZWmsjhsUyoq9eevMYa5pD-w

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0 256 512 768 1024 1 256 512 768 1024 1 256 512 768 1024

A
ve

ra
g

e
T

im
e

pe
r

F
ra

m
e

 (
s)

Number of Objects (x10³)

BF AVX MT

SAP AVX MT
Grid BF MT

Grid SAP MT
AxisSweep

DBVT F
DBVT D

Tracy MT
CGAL
KD-Tree

GPU LBVH
GPU Grid

Brownian Free Fall Gravity

Figure 2: Scalability analysis up to one million objects.

[11] Y. R. Serpa, “Detecção de colisão broad phase: Nova solução e
metodologia implementadas para análise padronizada de algoritmos,”
Master’s thesis, Programa de Pós-Graduação em Informática Aplicada
(PPGIA). Universidade de Fortaleza (UNIFOR). Defesa: 19/12/2019,
2019.

[12] Y. R. Serpa and M. A. F. Rodrigues, “Broadmark: A testing framework
for broad-phase collision detection algorithms,” Computer Graphics
Forum (CGF), vol. 39, no. 1, pp. 436–449, 2019.

[13] S.-H. Lo, C.-R. Lee, I.-H. Chung, and Y.-C. Chung, “Optimizing
pairwise box intersection checking on GPUs for large-scale simulations,”
ACM Transactions on Modeling and Computer Simulation (TOMACS),
vol. 23, no. 3, pp. 1–22, 2013.

[14] D. J. Tracy, S. R. Buss, and B. M. Woods, “Efficient large-scale Sweep
and Prune methods with AABB insertion and removal,” in Proceedings
of the 2009 IEEE Virtual Reality Conference (VR). Lafayette, LA,
USA: IEEE, 2009, pp. 191–198.

[15] G. Capannini and T. Larsson, “Efficient collision culling by a succinct
bi-dimensional Sweep and Prune algorithm,” in Proceedings of the 32nd

Spring Conference on Computer Graphics (SCCG). Smolenice castle,
Slovakia: ACM, 2016, pp. 25–32.

[16] D. J. Tracy and S. Brown, “Accelerating physics in large, continuous
virtual environments,” Concurrency and Computation: Practice & Ex-
perience, vol. 24, no. 2, pp. 125–134, 2012.

[17] Q. Avril, V. Gouranton, and B. Arnaldi, “Fast collision culling in large-
scale environments using GPU mapping function,” in Proc. of the 2012
Eurographics Symposium (EG). Cagliari, Italy: The Eurographics
Association, 2012, pp. 71–80.

[18] ——, “Collision detection: broad phase adaptation from multi-core to
multi-GPU architecture,” Journal of Virtual Reality and Broadcasting,
vol. 6, no. 11, pp. 1–13, 2014.

[19] ——, “Dynamic adaptation of broad phase collision detection algo-
rithms,” in 2011 IEEE International Symposium on VR Innovation,
March 2011, pp. 41–47.

[20] ——, “Synchronization-free parallel collision detection pipeline,” in
Proceedings of the 20th International Conference on Artificial Reality
and Telexistence, Adelaide, Australia, Dec. 2010, pp. 1–7.

[21] A. Zomorodian and H. Edelsbrunner, “Fast software for box intersec-
tions,” in Proceedings of the 16th Annual Symposium on Computational
Geometry (SoCG). Clear Water Bay, Hong Kong: ACM, 2000, pp. 129–
138.

[22] E. Coumans, “Bullet Physics,” github.com/bulletphysics/bullet3, 2018.
[23] Unity Technologies, “Unity 2019.2,” unity.com, 2019.
[24] D. V. Macedo, Y. R. Serpa, and M. A. F. Rodrigues, “Fast and

realistic reflections using screen space and GPU ray tracing—a case
study on rigid and deformable body simulations,” ACM Computers in
Entertainment (CIE), vol. 16, no. 4, p. 5, 2018.

[25] Y. R. Serpa, M. B. Nogueira, H. Rocha, D. V. Macedo, and M. A. F.
Rodrigues, “An interactive simulation-based game of a manufactur-
ing process in heavy industry,” Entertainment Computing (ENTCOM),
vol. 34, pp. 1–11, 2020.

[26] Y. R. Serpa, L. A. Pires, and M. A. F. Rodrigues, “Milestones and new
frontiers in deep learning,” in Proceedings of the SIBGRAPI-T 2019.
IEEE, 2019, pp. 22–35.

[27] Y. R. Serpa and M. A. F. Rodrigues, “Towards machine-learning assisted

asset generation for games: A study on pixel art sprite sheets,” in Anais
do SBGames’19. IEEE, 2019, pp. 182–191.

github.com/bulletphysics/bullet3
unity.com

	Introduction
	Related Work
	Broadmark
	The Simulation Generation
	The Algorithm Runner

	Hybrid Algorithm
	Tests and Results
	Conclusion and Future Work
	Awards and Publications
	References

