Low-Dose Computed Tomography Filtering Using Geodesic Distances

Daniel A. Góes * 
Centro Universitário Campo Limpo Paulista - UNIFACCAMP 
Programa de Mestrado em Ciência da Computação

Nelson D. A. Mascarenhas 
Universidade Federal de São Carlos - UFSCar 
Departamento de Computação 
Centro Universitário Campo Limpo Paulista - UNIFACCAMP 
Programa de Mestrado em Ciência da Computação

Abstract—Due to the concerns related to patient exposure to X-ray, the dosage used in computed tomography must be reduced (Low-dose Computed Tomography - LDCT). One of the effects of LDCT is the degradation in the quality of the final reconstructed image. In this work, we propose a method of filtering LDCT sinograms that are subject to signal-dependent Poisson noise. To filter this type of noise, we use a Bayesian approach, changing the Non-local Means (NLM) algorithm to use geodesic stochastic distances for Gamma distribution, the conjugate prior to Poisson, as a similarity metric between each projection point. Among the geodesic distances evaluated, we found a closed solution for distances for Gamma distribution, the conjugate prior to Poisson, the Non-local Means (NLM) algorithm to use geodesic stochastic filter this type of noise, we use a Bayesian approach, changing the parameters for each energy band, so the beam incident on a receiver can be described as polychromatic, [5].

* During the development of this work, D. A. Góes was with the Master’s Program in Computer Science, UNIFACCAMP

In computed tomography, the noise can be described by a Compound Poisson distribution:

\[ Y = \sum_{n=1}^{N} \Phi_n \]  \hspace{1cm} (1)

where \( N \) represents the number of detected photons, which obeys a Poisson distribution, and \( \Phi_n \) are random variables, equally distributed, that model the energy of each photon, the probability distribution of \( \Phi_n \) being derived from the incident spectrum.

Without spectral information of the incident beam, it is not possible to estimate the Compound Poisson distribution. In this work, we consider the model in which the detection process consists of counting the number of incident photons, thus obeying a typical Poisson distribution.

\[ Pr(y_i = k|\lambda_i) = \frac{e^{-\lambda_i} \lambda_i^k}{k!} \]  \hspace{1cm} (2)

where \( \lambda_i \) is the average rate of photons arriving at the detector \( i \) and \( y_i \) is the observed photon quantity. \( Pr(y_i = k|\lambda_i) \) is the probability of \( y_i \) to assume the value \( k \), \( k \in \mathbb{Z}^+ \), with a photon rate of \( \lambda_i \).

III. NON-LOCAL MEANS

Given an input noisy image \( Y \), resulting from degradation of an original, noise-free image \( X \), the Non-Local Means (NLM) method obtains an estimate \( \hat{X} \), for the image \( X \), where each pixel \( \hat{x}_i \) is calculated by:

\[ \hat{x}_i = \frac{1}{w_i} \sum_{j \in B(i,r)} w_{ij} y_j \]  \hspace{1cm} (3)

where \( 0 \leq w_{ij} \leq 1 \), \( w_i = \sum_{j \in B(i,r)} w_{ij} \), \( B(i,r) \) is the search square window of size \( r \), centered on \( i \), and the weights \( w_{ij} \) are:

\[ w_{ij} = \exp\left( -\frac{1}{\sigma^2} \|y_i - y_j\|_2^2 \right) \]  \hspace{1cm} (4)

\( \sigma \) is a parameter that controls the intensity of the filter, \( y_i \) and \( y_j \) are vectors representing the similarity window centered on \( i \) and \( j \) respectively.
IV. THEORETICAL FOUNDATION

A. Bayesian Approach

Considering an ideal noise-free sinogram $X$ and a given sinogram $Y$ corrupted by Poisson noise, we can obtain an estimator of $X$ through a Bayesian approach.

$$Pr(X|Y) = \frac{Pr(Y|X)Pr(X)}{Pr(Y)} \quad (5)$$

In this model, the likelihood $Pr(Y|X)$ is the noise distribution, and the posterior distribution $Pr(X|Y)$ gives the estimator for the filtered sinogram. Computing this posterior distribution would require the usage of computationally expensive numerical techniques [6] [7]. Instead, we opted to use conjugate prior distributions, a property that if the prior distribution $Pr(X)$ is conjugate to the likelihood distribution $Pr(Y|X)$, then the posterior distribution is of the same type as the prior distribution.

In the case of Poisson likelihood, its conjugate is the Gamma distribution. Thus, if we assume that a neighborhood of the a priori distribution $\alpha$ and $\beta$ is estimated from pre-filtering the sinogram with a $3 \times 3$ mean filter.

With the method of moments, the parameters are estimated from the mean ($\mu$) and variance ($\sigma^2$) calculated in a $3 \times 3$ window of the pre-filtered sinogram.

$$\alpha = \frac{\mu^2}{\sigma^2} \quad (6a)$$

$$\beta = \frac{\mu}{\sigma^2} \quad (6b)$$

The posterior parameters are also estimated through the method of moments:

$$\hat{\alpha} = \alpha + \frac{1}{n} \sum_{i=1}^{n} y_i \quad (7a)$$

$$\hat{\beta} = \beta + 1 \quad (7b)$$

where $\sum_{i=1}^{n} y_i$ is the sum of the projection values in the noisy sinogram window.

B. Geodesic distances

Geodesic distance is the minimum distance between two points passing through a surface. A Riemannian manifold is a generalization of a surface used for calculating these types of distances.

Rao [8] described the parametric space of a probability distribution family as a Riemannian manifold and derived geodesic distances using the Kullback Leiber divergence. These distances could then be used as similarity metrics between two different distributions belonging to the same probability family.

Menéndez et al. [9] proposed a general method for generating geodesic distances for $(h, \phi)$-entropies, introduced by Salicru et al. [10]. The parametric space manifold is given by:

$$H^h_{\phi} = h \left[ \int f_p(x; \theta) dx \right] \quad (8)$$

where $\theta$ is the hyperparameter vector, $f_p(x; \theta)$ the probability density function and $I$ its support range, $(0, \infty)$ for the Gamma distributions.

The geodesic distance is then defined by:

$$d(\theta_a, \theta_b) = \left| \int_{\theta_a}^{\theta_b} \left[ \sum_{i=1}^{M} \sum_{j=1}^{M} g_{ij}(\theta) d\theta_i d\theta_j \right] \right|^\frac{1}{2} \quad (9)$$

where $\theta_a$ and $\theta_b$ are the hyperparameter vectors and $g_{ij}$ is the Hessian of $H^h_{\phi}$.

$$g_{ij}(\theta) = \sum_{i=1}^{M} \sum_{j=1}^{M} \frac{\partial^2 f_p(x; \theta)}{\partial \theta_i \partial \theta_j} \left| \int f_p(x; \theta) dx \right| \quad (10)$$

<table>
<thead>
<tr>
<th>$(h, \phi)$-entropy</th>
<th>$h(x)$</th>
<th>$\phi(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arimoto</td>
<td>$(x^s - 1)/(s - 1)$</td>
<td>$x^s, s &gt; 0, s \neq 1$</td>
</tr>
<tr>
<td>Havrda-Charvát</td>
<td>$x$</td>
<td>$(x^s - 1)/(s - 1), s &gt; 0, s \neq 1$</td>
</tr>
<tr>
<td>Rényi</td>
<td>$log(x)/(s - 1)$</td>
<td>$x^s, s &gt; 0, s \neq 1$</td>
</tr>
<tr>
<td>Shannon</td>
<td>$x$</td>
<td>$-xlog(x)$</td>
</tr>
<tr>
<td>Tsallis</td>
<td>$(x - 1)/(s - 1)$</td>
<td>$x^s, s &gt; 0, s \neq 1$</td>
</tr>
</tbody>
</table>

This work uses the $(h, \phi)$-entropies described in the table I. For the Tsallis entropy, the distances calculated were equivalent to those obtained by the Havrda-Charvát entropy, despite the different values of $g_{ij}$. Thus, the results are only presented for the Havrda-Charvát entropy.

For the Gamma distribution, it was only possible to find a closed-form solution for the geodesic distance using Shannon’s entropy. For the other entropies, it was possible to calculate the terms $g_{ij}$, so numerical integration was used to calculate the final distance $d(\theta_a, \theta_b)$.

The Shannon geodesic distance for the Gamma distribution is given by:
\[ d(\theta_1, \theta_2) = \left| \left( \beta_1 - 2\alpha_1 \log(\beta_1) - \beta_1 \log(\beta_1) + \log(\Gamma(\alpha_1)) \right)^{\frac{1}{2}} \right| \]

\[ -\left( \beta_2 - 2\alpha_2 \log(\beta_2) - \beta_2 \log(\beta_2) + \log(\Gamma(\alpha_2)) \right)^{\frac{1}{2}} \quad (11) \]

V. PROPOSED GEODESIC FILTERING METHOD

The proposed Poisson noise reduction filter is based on Evangelista’s [11] approach. In our method, the NLM is modified to use geodesic distances between Gamma distributions, where the parameters are estimated for the posterior distribution using the Bayesian approach.

The comparison between similarity windows is made by calculating the geodesic distance between each element, with the final distance being the sum of these distances. The weight \( w_{ij} \) from equation 4 is replaced by:

\[ w_{ij} = \exp \left( -\frac{\sum_P d(\theta_{i,p}, \theta_{j,p})}{\sigma^2} \right) \quad (12) \]

where \( P \) indexes all elements of the similarity window.

VI. EVALUATION

A. Data Set

![Shepp-Logan](image1)

![Asymmetric](image2)

![Symmetric](image3)

![Homogeneous](image4)

![Wood 1](image5)

![Wood 2](image6)

Fig. 1. Noise-Free Reference Images Set Reconstructed by Projection onto Convex Sets (POCS)

B. Evaluated Methods

In this work, we evaluate the proposed method using the geodesic distances for the following entropies:

1) Shannon, the comparison is made with the closed-form solution for the distance.
2) Arimoto, the comparison is numeric with the entropy parameter \( s = 1.1 \).
3) Havrda-Charvát, the comparison is numeric with the parameter \( s = 0.8 \).
4) Rényi, the comparison is numeric with the parameter \( s = 0.1 \).

We compared the proposed method with the original NLM applied in the Anscombe domain (NLM), the Poisson-NLM method [13] (P-NLM), the SP-NLM method [14] (SP-NLM), the stochastic Gamma NLM method [11] (G-NLM), and the BM3D [15] method applied to the Anscombe domain (BM3D).

The Stochastic Poisson NLM (SP-NLM) is an algorithm developed by Bindilatti and Mascarenhas [14] that modifies the NLM by replacing the Euclidean distance with stochastic distances between Poisson distributions. The distances used are Bhattacharyya, Hellinger, Kullback–Leibler, and Rényi. Evangelista [11] proposed an alteration to the SP-NLM, using a Bayesian approach by replacing stochastic distances between Poisson distributions with stochastic distances between Gamma distributions, conjugate of the Poisson. The
distances used are Bhattacharyya, Hellinger, Kullback–Leibler, and Rényi.

C. Filtering Parameters

The NLM based methods were evaluated with search windows varying from $5 \times 5$ to $11 \times 11$. The similarity windows vary from $5 \times 5$ up to the size of the search window being used.

Except for Stochastic Poisson NLM, that calculates the $\sigma$ parameter automatically, in the other methods, the $\sigma$ parameter varied between 0.1 and 0.5. Except for the homogeneous and Shepp-Logan phantoms that ranged between 0.2 and 0.6.

D. Reconstruction and Evaluation

The sinograms are reconstructed with both FBP and POCS [16] methods. The resulting filtered images are compared with the image obtained by the noise-free sinograms using two similarity metrics, PSN and SSIM [17].

VII. Results

The results presented in tables II through VII are the best ones obtained by each method in each different metric, with the best overall value presented in bold and the second-best in italic. For SP-NLM and G-NLM, only the best performing stochastic distance for each metric is considered. Figure 2 shows some of the filtered Shepp-Logan images.

The standard NLM in the Anscombe domain was not able to achieve comparable results to the other evaluated methods.

The P-NLM method only outperformed the proposed method, in all metrics, in the Symmetric phantom. While in Shepp-Logan and Wood 2, it achieved best results only in one metric each, PSNR in FBP and PSNR in POCS, respectively.

Except for the Homogeneous phantom, the proposed method achieved best results than SP-NLM in virtually all metrics (there was only one with the same result in the Asymmetric phantom).

When comparing our method to the G-NLM, in the Asymmetric phantom, both achieved similar results.

In the Shepp-Logan, our method had best results in the two metrics under FBP, the G-NLM had a best PSNR in POCS, and they had the same result in the last metric. While in the Homogeneous phantom, the G-NLM achieved a superior result in only one metric, PSNR in FBP, with the proposed method having best results in the other three.

For the other three phantoms, Symmetric, Wood 1 and Wood 2, our method outperformed G-NLM in all four metrics.

In comparison to the BM3D, only in the Asymmetric phantom, the BM3D outperformed the proposed method in all metrics. While in the Homogeneous Phantom, our method outperformed BM3D, also in all metrics.

When comparing the PSNR metric with FBP reconstruction, our method achieved best results in five of the tests, having an inferior result only in the Asymmetric phantom.

In the SSIM metric with FBP reconstruction, the BM3D had best results in three phantoms, while our method had a superior result in one phantom, the other two both had the same results.

In POCS reconstruction, both had similar results, with each surpassing the other in half the data set for the PSNR metric, and in SSIM, each method achieved a best result twice and having the same result in two phantoms.

VIII. Conclusion

We developed a method to denoise data corrupted by Poisson noise. We used a Bayesian strategy to alter the Non-Local Means replacing the Euclidean distance by a geodesic statistical distances between a posteriori Gamma distributions.

Low-dose computed tomography data were used to evaluate our method.

Due to mathematical simplicity, the proposed method assumes that the original noise-free sinogram obeys a Gamma distribution, since it is the conjugate to the Poisson distribution (used to model the noise). The results obtained show that the approach of using the combined Gamma and Poisson distributions is feasible.

The usage of geodesic distances instead of stochastic ones improved the overall results, obtaining, in general, the best
TABLE IV
SYMMETRIC RESULTS

<table>
<thead>
<tr>
<th>Methods</th>
<th>FBP</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSNR (dB)</td>
<td>SSIM</td>
<td>PSNR (dB)</td>
<td>SSIM</td>
<td></td>
</tr>
<tr>
<td>Noisy</td>
<td>20.54</td>
<td>0.45</td>
<td>27.51</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Shannon</td>
<td>27.88</td>
<td>0.72</td>
<td>34.42</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Arimoto</td>
<td>27.81</td>
<td>0.72</td>
<td>33.91</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Havrda Charvát</td>
<td>27.70</td>
<td>0.71</td>
<td>34.42</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Rényi</td>
<td>27.77</td>
<td>0.72</td>
<td>34.50</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>NLM</td>
<td>26.27</td>
<td>0.63</td>
<td>33.35</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>F-P-NLM</td>
<td>28.00</td>
<td>0.72</td>
<td>34.57</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>SP-NLM</td>
<td>25.27</td>
<td>0.67</td>
<td>32.37</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>G-NLM</td>
<td>27.81</td>
<td>0.72</td>
<td>34.43</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>BM3D</td>
<td>27.34</td>
<td>0.72</td>
<td>33.27</td>
<td>0.95</td>
<td></td>
</tr>
</tbody>
</table>

TABLE V
HOMOGENEOUS RESULTS

<table>
<thead>
<tr>
<th>Methods</th>
<th>FBP</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSNR (dB)</td>
<td>SSIM</td>
<td>PSNR (dB)</td>
<td>SSIM</td>
<td></td>
</tr>
<tr>
<td>Noisy</td>
<td>13.35</td>
<td>0.12</td>
<td>15.47</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Shannon</td>
<td>18.62</td>
<td>0.32</td>
<td>19.98</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Arimoto</td>
<td>18.92</td>
<td>0.33</td>
<td>20.00</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Havrda Charvát</td>
<td>18.93</td>
<td>0.34</td>
<td>20.82</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Rényi</td>
<td>18.84</td>
<td>0.32</td>
<td>20.69</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>NLM</td>
<td>17.55</td>
<td>0.21</td>
<td>18.54</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>F-P-NLM</td>
<td>18.35</td>
<td>0.29</td>
<td>19.56</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>SP-NLM</td>
<td>19.26</td>
<td>0.39</td>
<td>23.69</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>G-NLM</td>
<td>19.36</td>
<td>0.33</td>
<td>20.53</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>BM3D</td>
<td>16.53</td>
<td>0.29</td>
<td>19.12</td>
<td>0.66</td>
<td></td>
</tr>
</tbody>
</table>

TABLE VI
WOOD 1 RESULTS

<table>
<thead>
<tr>
<th>Methods</th>
<th>FBP</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSNR (dB)</td>
<td>SSIM</td>
<td>PSNR (dB)</td>
<td>SSIM</td>
<td></td>
</tr>
<tr>
<td>Noisy</td>
<td>21.91</td>
<td>0.68</td>
<td>34.08</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>Shannon</td>
<td>30.66</td>
<td>0.83</td>
<td>38.48</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>Arimoto</td>
<td>29.11</td>
<td>0.84</td>
<td>38.46</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>Havrda Charvát</td>
<td>30.69</td>
<td>0.84</td>
<td>38.12</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>Rényi</td>
<td>30.64</td>
<td>0.84</td>
<td>38.48</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>NLM</td>
<td>28.44</td>
<td>0.82</td>
<td>37.75</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>F-P-NLM</td>
<td>28.38</td>
<td>0.81</td>
<td>37.46</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>SP-NLM</td>
<td>23.32</td>
<td>0.70</td>
<td>21.38</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>G-NLM</td>
<td>30.58</td>
<td>0.83</td>
<td>38.05</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>BM3D</td>
<td>29.25</td>
<td>0.85</td>
<td>38.75</td>
<td>0.97</td>
<td></td>
</tr>
</tbody>
</table>

results among the methods based on NLM and close results to BM3D.

Using Shannon’s entropy, we were able to find a closed-form geodesic distance for the Gamma distribution. To our knowledge, no previous work has published a similar solution for this model.

For the other entropies, in which it was not possible to obtain a closed-form solution for the geodesic distance, numerical integration was used to calculate the final distance, with no perceived loss in the quality of the results when compared to the distance using Shannon’s entropy.

It was observed that the quality of the results varies considerably, depending on the value chosen for the $\sigma$ parameter (equation 12). As future work, there is the possibility of automatically configuring this parameter. Another option is to configure this parameter in an adaptive way, where $\sigma$ assumes different values for each pixel being filtered.

Using geodesic distances between conjugated distributions to the noise model has the potential to be adapted for other data domains, as synthetic aperture radar images and other forms of medical images like magnetic resonance imaging.

The geodesic distance model proved to be effective when comparing computed tomography sinogram patches. Thus, these distances could be used in the design of descriptors for pattern recognition applications in CT.

This work was published in Digital Signal Processing [18]. The proposed method code was published on the CodeOcean platform at the link:

https://doi.org/10.24433/CO.baa5e6c4-d046-4e20-8eb2-9077c1ce0dee

ACKNOWLEDGMENT

This work was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

We thank Dr. Paulo Estevão Cruvinel of EMBRAPA-CNPDIA who provided the real phantoms data used in this work.

The work of N. D. A. Mascarenhas was supported by CNPq, Brazil, through a scholarship under Grant Process 306742/2017-9.
REFERENCES


