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Abstract—Due to the concerns related to patient exposure to
X-ray, the dosage used in computed tomography must be reduced
(Low-dose Computed Tomography - LDCT). One of the effects of
LDCT is the degradation in the quality of the final reconstructed
image. In this work, we propose a method of filtering LDCT
sinograms that are subject to signal-dependent Poisson noise. To
filter this type of noise, we use a Bayesian approach, changing
the Non-local Means (NLM) algorithm to use geodesic stochastic
distances for Gamma distribution, the conjugate prior to Poisson,
as a similarity metric between each projection point. Among
the geodesic distances evaluated, we found a closed solution for
the Shannon entropy for Gamma distributions. We compare our
method with the following methods based on NLM: Poisson-
NLM, Stochastic Poisson NLM, Stochastic Gamma NLM and
the original NLM after Anscombe transform. We also compare
with BM3D after Anscombe transform. Comparisons are made
on the final images reconstructed by the Filtered-Back Projection
(FBP) and Projection onto Convex Sets (POCS) methods using
the metrics PSNR and SSIM.

I. INTRODUCTION

Computed tomography is a technique that uses ionizing
radiation, X-ray being the most common, to generate the
scanned object image cuts. Due to the concern with the amount
of radiation to which a patient is submitted, [1] and [2], low-
dose computed tomography (LDCT) techniques have been
developed to utilize the lowest radiation doses possible.

Tomographic projections are corrupted with signal-
dependent noise that can be modeled as Poisson noise, [2].
With the reduction in the number of photons, the degradation
by noise is accentuated.

Buades et al. (2005) presented a new denoising method,
Non-Local Means (NLM), for images corrupted by Gaussian
noise using an auto similarity concept.

This work modifies the Non-Local Means using a Bayesian
approach to filter Poisson noise. We evaluate our method by
filtering sinograms obtained by LDCT, comparing the results
with other methods.

II. NOISE

The X-ray emitter of a computed tomography scanner emits
a poly-energetic beam, [3]. Materials have different attenuation
coefficients for each energy band, [4], so the beam incident
on a receiver can be described as polychromatic, [5].
∗
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In computed tomography, the noise can be described by a
Compound Poisson distribution:

Y =

N∑
n=1

Φn (1)

where N represents the number of detected photons, which
obeys a Poisson distribution, and Φn are random variables,
equally distributed, that model the energy of each photon, the
probability distribution of Φn being derived from the incident
spectrum.

Without spectral information of the incident beam, it is
not possible to estimate the Compound Poisson distribution.
In this work, we consider the model in which the detection
process consists of counting the number of incident photons,
thus obeying a typical Poisson distribution.

Pr(yi = k|λi) =
e−yiλki
k!

(2)

where λi is the average rate of photons arriving at the detector
i and yi is the observed photon quantity. Pr(yi = k|λi) is the
probability of yi to assume the value k, k ∈ Z+, with a photon
rate of λi.

III. NON-LOCAL MEANS

Given an input noisy image Y , resulting from degradation of
an original, noise-free image X , the Non-Local Means (NLM)
method obtains an estimate X̂ , for the image X , where each
pixel x̂i is calculated by:

x̂i =
1

wi

∑
j∈B(i,r)

wijyj (3)

where 0 ≤ wij ≤ 1, wi =
∑
j∈B(i,r) wij , B(i, r) is the search

square window of size r, centered on i, and the weights wij
are:

wij = exp(
−1

σ2
‖yi − yj‖22,a) (4)

σ is a parameter that controls the intensity of the filter, yi and
yj are vectors representing the similarity window centered on
i and j respectively.



IV. THEORETICAL FOUNDATION

A. Bayesian Approach

Considering an ideal noise-free sinogram X and a given
sinogram Y corrupted by Poisson noise, we can obtain an
estimator of X through a Bayesian approach.

Pr(X|Y ) =
Pr(Y |X)Pr(X)

Pr(Y )
(5)

In this model, the likelihood Pr(Y |X) is the noise dis-
tribution, and the posterior distribution Pr(X|Y ) gives the
estimator for the filtered sinogram. Computing this posterior
distribution would require the usage of computationally ex-
pensive numerical techniques [6] [7]. Instead, we opted to
use conjugate prior distributions, a property that if the prior
distribution Pr(X) is conjugate to the likelihood distribution
Pr(Y |X), then the posterior distribution is of the same type
as the prior distribution.

In the case of Poisson likelihood, its conjugate is the
Gamma distribution. Thus, if we assume that a neighborhood
in the ideal sinogram obeys a Gamma distribution, then the
neighborhood in the estimated sinogram will also obey a
Gamma distribution. The Gamma distribution also has the
very convenient property of being defined on the non-negative
real line, assuring non-negative estimators for the rate of the
Poisson distribution.

The geodesic distances used will be calculated between
the a posteriori Gamma distributions, in the Bayesian model,
using the statistical model of the tomographic reconstruction
problem under Poisson noise.

1) Parameters Estimation: The posterior hyperparameters
α̂ and β̂ can be obtained from the corresponding hyperparame-
ters of the a priori distribution α and β. These prior parameters
are estimated from pre-filtering the sinogram with a 3×3 mean
filter.

With the method of moments, the parameters are estimated
from the mean (µ) and variance (σ2) calculated in a 3 × 3
window of the pre-filtered sinogram.

α =
µ2

σ2
(6a)

β =
µ

σ2
(6b)

The posterior parameters are also estimated through the
method of moments:

α̂ = α+

n∑
i=1

yi (7a)

β̂ = β + n (7b)

where
∑n
i=1 yi is the sum of the projection values in the noisy

sinogram window.

B. Geodesic distances

Geodesic distance is the minimum distance between two
points passing through a surface. A Riemannian manifold is a
generalization of a surface used for calculating these types of
distances.

Rao [8] described the parametric space of a probability
distribution family as a Riemannian manifold and derived
geodesic distances using the Kullback Leiber divergence.
These distances could then be used as similarity metrics
between two different distributions belonging to the same
probability family.

Menéndez et al. [9] proposed a general method for gen-
erating geodesic distances for (h, φ)-entropies, introduced by
Salicru et al. [10]. The parametric space manifold is given by:

Hh
φ = h

[ ∫
I

φ
(
fP (x; θ)

)
dx
]

(8)

where θ is the hyperparameter vector, fP (x; θ) the probability
density function and I its support range, (0,∞) for the Gamma
distributions.

The geodesic distance is then defined by:

d(θa, θb) =

∣∣∣∣∣
∫ θb

θa

[ M∑
i=1

M∑
j=1

gij(θ)dθidθj

] 1
2

∣∣∣∣∣ (9)

where θa and θb are the hyperparameter vectors and gij is the
Hessian of Hh

φ .

gij(θ) =

h′′
[ ∫

I
φ
(
fP (x; θ)

)
dx
] ∫

I
φ′
(
fP (x; θ)

)∂fP (x;θ)
∂θi

dx

×
∫
I
φ′
(
fP (x; θ)

)∂fP (x;θ)
∂θj

dx

+h′
[ ∫

I
φ
(
fP (x; θ)

)
dx
]

×
∫
I
φ′′
(
fP (x; θ)

)∂fP (x;θ)
∂θi

∂fP (x;θ)
∂θj

dx (10)

TABLE I
(h, φ)-ENTROPIES AND THEIR RESPECTIVE h(x), φ(x) FUNCTIONS

(h, φ)-entropy h(x) φ(x)

Arimoto (xs − 1)/(s− 1) x
1
s , s > 0, s 6= 1

Havrda-Charvát x (xs − x)/(s− 1), s > 0, s 6= 1

Rényi log(x)/(s− 1) xs, s > 0, s 6= 1

Shannon x −xlog(x)

Tsallis (x− 1)/(s− 1) xs, s > 0, s 6= 1

This work uses the (h, φ)-entropies described in the table I.
For the Tsallis entropy, the distances calculated were equiva-
lent to those obtained by the Havrda-Charvát entropy, despite
the different values of gij . Thus, the results are only presented
for the Havrda-Charvát entropy.

For the Gamma distribution, it was only possible to find a
closed-form solution for the geodesic distance using Shannon’s
entropy. For the other entropies, it was possible to calculate
the terms gij , so numerical integration was used to calculate
the final distance d(θa, θb).

The Shannon geodesic distance for the Gamma distribution
is given by:



d(θ1, θ2) =∣∣∣(β1 − 2α1 log(β1)− β1 log(β1) + log Γ(α1)
) 1

2

−
(
β2 − 2α2 log(β2)− β2 log(β2) + log Γ(α2)

) 1
2

∣∣∣ (11)

V. PROPOSED GEODESIC FILTERING METHOD

The proposed Poisson noise reduction filter is based on
Evangelista’s [11] approach. In our method, the NLM is
modified to use geodesic distances between Gamma distri-
butions, where the parameters are estimated for the posterior
distribution using the Bayesian approach.

The comparison between similarity windows is made by
calculating the geodesic distance between each element, with
the final distance being the sum of these distances. The weight
wij from equation 4 is replaced by:

wij = exp

(
−
∑
P d(θi−p, θj−p)

σ2

)
(12)

where P indexes all elements of the similarity window.

VI. EVALUATION

A. Data Set

(a) Shepp-Logan (b) Asymmetric

(c) Symmetric (d) Homogeneous

(e) Wood 1 (f) Wood 2

Fig. 1. Noise-Free Reference Images Set Reconstructed by Projection onto
Convex Sets (POCS)

The data set used in this work is composed of the Shepp-
Logan phantom (simulating a cut of the human brain) as well
as five real sinograms phantoms kindly provided by Prof. Dr.
Paulo Estevão Cruvinel from EMBRAPA-CNPDIA [12].

The noisy sinograms were acquired from 3 seconds expo-
sures per projection point, while phantoms considered noise-
free were acquired from 20 seconds exposures per projection
point.

The X-ray energy used was 59.5keV , the tomographic
scanning was performed in an angular rotation of 180◦ with
a translation of 1mm.

The noisy Shepp-Logan sinogram was simulated by calcu-
lating the Radon transform of the image, and Poisson noise
was introduced in the projections.

The Asymmetric phantom was acquired from a 96mm
diameter PEXIGLASS R© cylinder with ten holes filled with
air, with sizes ranging from 0.5mm to 5mm. The projection
matrix is 100× 100.

The Symmetrical phantom was acquired from a 76mm
diameter PEXIGLASS R© cylinder with four holes, two filled
with aluminum and 2 with air. The projection matrix is 80×80.

The Homogeneous phantom was acquired from a 2mm
thick and 76mm of diameter PEXIGLASS R© cylinder filled
with water. The projection matrix is 80× 80.

The Wood 1 phantom was acquired from scanning a 70mm
diameter Eucalyptus Saligna trunk. The projection matrix is
76× 76.

The Wood 2 phantom was acquired from a 50mm ×
50mm × 50mm Pinus Elliottii trunk. The projection matrix
is 62× 62.

B. Evaluated Methods

In this work, we evaluate the proposed method using the
geodesic distances for the following entropies:

1) Shannon, the comparison is made with the closed-form
solution for the distance.

2) Arimoto, the comparison is numeric and with the en-
tropy parameter s = 1.1.

3) Havrda-Charvát, the comparison is numeric with the
parameter s = 0.8.

4) Rényi, the comparison is numeric with the parameter
s = 0.1.

We compared the proposed method with the original NLM
applied in the Anscombe domain (NLM), the Poisson-NLM
method [13] (P-NLM), the SP-NLM method [14] (SP-NLM),
the stochastic Gamma NLM method [11] (G-NLM), and the
BM3D [15] method applied to the Anscombe domain (BM3D).

The Stochastic Poisson NLM (SP-NLM) is an algorithm
developed by Bindilatti and Mascarenhas [14] that modifies
the NLM by replacing the Euclidean distance with stochastic
distances between Poisson distributions. The distances used
are Bhattacharyya, Hellinger, Kullback–Leibler, and Rényi.
Evangelista [11] proposed an alteration to the SP-NLM, us-
ing a Bayesian approach by replacing stochastic distances
between Poisson distributions with stochastic distances be-
tween Gamma distributions, conjugate of the Poisson. The



distances used are Bhattacharyya, Hellinger, Kullback–Leibler,
and Rényi.

C. Filtering Parameters

The NLM based methods were evaluated with search win-
dows varying from 5× 5 to 11× 11. The similarity windows
vary from 5 × 5 up to the size of the search window being
used.

Except for Stochastic Poisson NLM, that calculates the σ
parameter automatically, in the other methods, the σ parameter
varied between 0.1 and 0.5. Except for the homogeneous and
Shepp-Logan phantoms that ranged between 0.2 and 0.6.

D. Reconstruction and Evaluation

The sinograms are reconstructed with both FBP and POCS
[16] methods. The resulting filtered images are compared with
the image obtained by the noise-free sinograms using two
similarity metrics, PSN and SSIM [17].

VII. RESULTS

The results presented in tables II through VII are the best
ones obtained by each method in each different metric, with
the best overall value presented in bold and the second-best in
italic. For SP-NLM and G-NLM, only the best performing
stochastic distance for each metric is considered. Figure 2
shows some of the filtered Shepp-Logan images.

The standard NLM in the Anscombe domain was not able
to achieve comparable results to the other evaluated methods.

The P-NLM method only outperformed the proposed
method, in all metrics, in the Symmetric phantom. While in
Shepp-Logan and Wood 2, it achieved best results only in one
metric each, PSNR in FBP and PSNR in POCS, respectively.

Except for the Homogeneous phantom, the proposed method
achieved best results than SP-NLM in virtually all metrics
(there was only one with the same result in the Asymmetric
phantom).

When comparing our method to the G-NLM, in the Asym-
metric phantom, both achieved similar results.

In the Shepp-Logan, our method had best results in the two
metrics under FBP, the G-NLM had a best PSNR in POCS,
and they had the same result in the last metric. While in the
Homogeneous phantom, the G-NLM achieved a superior result
in only one metric, PSNR in FBP, with the proposed method
having best results in the other three.

For the other three phantoms, Symmetric, Wood 1 and Wood
2, our method outperformed G-NLM in all four metrics.

In comparison to the BM3D, only in the Asymmetric
phantom, the BM3D outperformed the proposed method in
all metrics. While in the Homogeneous Phantom, our method
outperformed BM3D, also in all metrics.

When comparing the PSNR metric with FBP reconstruction,
our method achieved best results in five of the tests, having
an inferior result only in the Asymmetric phantom.

In the SSIM metric with FBP reconstruction, the BM3D
had best results in three phantoms, while our method had a
superior result in one phantom, the other two both had the
same results.

In POCS reconstruction, both had similar results, with each
surpassing the other in half the data set for the PSNR metric,
and in SSIM, each method achieved a best result twice and
having the same result in two phantoms.

TABLE II
SHEPP-LOGAN RESULTS

FBP POCS

Methods
PSNR
(dB)

SSIM
PSNR
(dB)

SSIM

Noisy 14.51 0.25 20.22 0.62

Shannon 20.98 0.76 22.11 0.89

Arimoto 21.14 0.81 22.14 0.90
Havrda Charvát 21.09 0.80 21.68 0.90

Rényi 21.07 0.80 21.67 0.90
NLM 20.36 0.61 21.86 0.86

P-NLM 21.20 0.72 21.77 0.88

SP-NLM 18.84 0.73 18.33 0.86

G-NLM 20.97 0.80 22.20 0.90
BM3D 21.00 0.81 21.30 0.89

TABLE III
ASYMMETRIC RESULTS

FBP POCS

Methods
PSNR
(dB)

SSIM
PSNR
(dB)

SSIM

Noisy 16.52 0.52 24.27 0.85

Shannon 20.89 0.69 28.85 0.91

Arimoto 21.18 0.70 29.11 0.91

Havrda Charvát 21.24 0.70 29.15 0.91

Rényi 21.16 0.70 29.15 0.91

NLM 20.10 0.67 26.91 0.90

P-NLM 20.81 0.68 28.85 0.90

SP-NLM 20.96 0.69 28.72 0.91

G-NLM 21.26 0.70 29.14 0.91

BM3D 21.46 0.72 29.67 0.92

VIII. CONCLUSION

We developed a method to denoise data corrupted by
Poisson noise. We used a Bayesian strategy to alter the Non-
Local Means replacing the Euclidean distance by a geodesic
statistical distances between a posteriori Gamma distributions.
Low-dose computed tomography data were used to evaluate
our method.

Due to mathematical simplicity, the proposed method as-
sumes that the original noise-free sinogram obeys a Gamma
distribution, since it is the conjugate to the Poisson distribution
(used to model the noise). The results obtained show that
the approach of using the combined Gamma and Poisson
distributions is feasible.

The usage of geodesic distances instead of stochastic ones
improved the overall results, obtaining, in general, the best



TABLE IV
SYMMETRIC RESULTS

FBP POCS

Methods
PSNR
(dB)

SSIM
PSNR
(dB)

SSIM

Noisy 20.54 0.45 27.51 0.80

Shannon 27.88 0.72 34.42 0.95
Arimoto 27.81 0.72 33.91 0.95

Havrda Charvát 27.70 0.71 34.42 0.94

Rényi 27.77 0.72 34.50 0.95
NLM 26.27 0.63 33.35 0.93

P-NLM 28.00 0.72 34.57 0.95
SP-NLM 25.27 0.67 32.37 0.92

G-NLM 27.81 0.72 34.43 0.95
BM3D 27.34 0.72 33.27 0.95

TABLE V
HOMOGENEOUS RESULTS

FBP POCS

Methods
PSNR
(dB)

SSIM
PSNR
(dB)

SSIM

Noisy 13.35 0.12 15.47 0.42

Shannon 18.62 0.32 19.98 0.66

Arimoto 18.92 0.33 20.00 0.66

Havrda Charvát 18.93 0.34 20.82 0.70

Rényi 18.84 0.32 20.69 0.68

NLM 17.35 0.21 18.54 0.57

P-NLM 18.35 0.29 19.56 0.64

SP-NLM 19.26 0.39 23.69 0.74
G-NLM 19.36 0.33 20.53 0.69

BM3D 16.53 0.29 19.12 0.66

TABLE VI
WOOD 1 RESULTS

FBP POCS

Methods
PSNR
(dB)

SSIM
PSNR
(dB)

SSIM

Noisy 21.91 0.68 34.08 0.91

Shannon 30.66 0.83 38.48 0.96

Arimoto 29.11 0.84 38.46 0.97
Havrda Charvát 30.69 0.84 38.12 0.97

Rényi 30.64 0.84 38.48 0.97
NLM 28.44 0.82 37.75 0.96

P-NLM 28.38 0.81 37.46 0.96

SP-NLM 23.32 0.70 21.38 0.92

G-NLM 30.58 0.83 38.05 0.96

BM3D 29.25 0.85 38.75 0.97

results among the methods based on NLM and close results
to BM3D.

Using Shannon’s entropy, we were able to find a closed-
form geodesic distance for the Gamma distribution. To our
knowledge, no previous work has published a similar solution

TABLE VII
WOOD 2 RESULTS

FBP POCS

Methods
PSNR
(dB)

SSIM
PSNR
(dB)

SSIM

Noisy 19.88 0.56 21.66 0.69

Shannon 26.33 0.68 30.05 0.91

Arimoto 26.21 0.67 30.00 0.91

Havrda Charvát 26.39 0.68 30.62 0.91

Rényi 26.23 0.67 30.45 0.90

NLM 24.64 0.68 28.55 0.88

P-NLM 25.76 0.67 30.79 0.91

SP-NLM 18.02 0.47 22.41 0.74

G-NLM 25.35 0.65 29.28 0.89

BM3D 24.80 0.72 31.43 0.92

for this model.
For the other entropies, in which it was not possible to

obtain a closed-form solution for the geodesic distance, numer-
ical integration was used to calculate the final distance, with
no perceived loss in the quality of the results when compared
to the distance using Shannon’s entropy.

It was observed that the quality of the results varies consid-
erably, depending on the value chosen for the σ parameter
(equation 12). As future work, there is the possibility of
automatically configuring this parameter. Another option is to
configure this parameter in an adaptive way, where σ assumes
different values for each pixel being filtered.

Using geodesic distances between conjugated distributions
to the noise model has the potential to be adapted for other
data domains, as synthetic aperture radar images and other
forms of medical images like magnetic resonance imaging.

The geodesic distance model proved to be effective when
comparing computed tomography sinogram patches. Thus,
these distances could be used in the design of descriptors for
pattern recognition applications in CT.

This work was published in Digital Signal Processing [18].
The proposed method code was published on the CodeO-

cean platform at the link:
https://doi.org/10.24433/CO.baa5e6c4-d046-4e20-8eb2-

9077c1ce0dee
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[10] M. Salicrú, M. Menéndez, D. Morales, and L. Pardo, “Asymptotic
distribution of (h, φ)-entropies,” Communications in Statistics - Theory
and Methods, vol. 22, no. 7, pp. 2015–2031, 1993.

[11] R. C. Evangelista, “Abordagens bayesianas não-locais para filtragem de
ruı́do poisson em imagens tomograficas com baixas taxas de contagem
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Fig. 2. Images from Shepp-Logan Results for FBP Reconstruction


