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Abstract—Chronic kidney diseases arise from acute or in-
termittent pathologies that have not been adequately treated,
such as minimal change disease (MCD) and focal segmental
glomerulosclerosis (FSGS). The accurate identification of these
two diseases is of paramount importance, because their treat-
ments and prognoses are different. Thus, we propose a method
that is capable of differentiating MCD from FSGS based on
images from pathological examinations. In the proposed method,
we use four pre-trained convolutional neural networks and
geostatistical functions to extract image features. Of the 8,720
extracted features, we selected 94 based on mutual information
criteria, and in the classification step, we used a random forest
classifier. The proposed method obtained an accuracy of 94.3%
and Kappa index of 87.9%, a level that is regarded as ‘“‘almost
perfect”, confirming that our method is very promising.

I. INTRODUCTION

Glomerulopathies are kidney diseases with different
histopathological subtypes. Microscopic evaluation is crucial
for diagnosis, since it provides prognostic data and guidance
for treatment. In Brazil, glomerulopathies are among the lead-
ing causes of end-stage kidney disease (ESKD), and account
for 11% of patients on dialysis [1]. In 2016, nearly 125,000
people in the USA started treatment for ESKD [2].

Nephrotic syndrome is one of the primary forms of glomeru-
lar disease, and when symptoms are persistent, is associated
with a progression to chronic kidney disease (CKD). A pub-
lication by [2] from the US Department of Health & Human
Services reports that 15% of US adults (37 million people) are
estimated to have CKD.

Several histological abnormalities may lead to the develop-
ment of nephrotic syndrome. Common causes of idiopathic
nephrotic syndrome are minimal change disease (MCD) and
focal segmental glomerulosclerosis (FSGS). In children, MCD
is the cause of nephrotic syndrome in 90% of patients, while in
adults, primary glomerular diseases such as FSGS and MCD
are the cause of nephrotic syndrome in 70% of cases. When
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considering only the adult population, FSGS is the leading
cause of nephrotic syndrome in several countries [3].

It is essential to understand the differences between these
two glomerulopathies (MCD and FSGS). From a therapeutic
point of view, there are differences in the treatments, at least
with regard to the duration of the attack phase in the case of
corticosteroids, as well as in the rates of response to treatment
and the prognoses of these two diseases [3].

Given the importance of differentiating between these two
types of kidney disease, this article proposes a computational
method of classification that is capable of distinguishing
between them based on biopsy images. To achieve this goal,
we use geostatistical texture descriptors and transfer learning
(TL) techniques in convolutional neural networks (CNNs) and
supervised classifiers.

This article is organized as follows. Section [II| presents
related works; Section describes the materials, techniques
and the proposed method; Section presents the obtained
results and a discussion; and finally, we present a conclusion
and future work in Section [V

II. RELATED WORK

Transfer learning (TL) techniques that use medical images
as input are widely used in computer-aided-diagnosis (CAD)
systems. Other approaches perform segmentation and identifi-
cation of kidney structures in images, especially those related
to the glomerulus. Zhao et al. [4] proposed an automated
glomerulus extraction framework based on a micrograph of the
entire kidney. The results showed that 110 of 140 glomeruli
from five whole-slide images were correctly extracted, with
an average completeness of over 90%.

Sarder, Ginley and Tomaszewski [3] estimated the location
of the glomerulus in 15 images of kidney biopsies, achieving
an accuracy of 88%. Their methodology was to extract 148
smaller regions containing a single glomerulus, and to use
them to segment the glomerular boundary. The accuracy of
this process was 86%. In another experiment, 50 images were



sampled for nuclei segmentation per glomerulus, giving an
accuracy of 92%.

In another work [6], they applied an integrated approach
using Gabor filtering and Gaussian blurring to label glomeru-
lar textural boundaries. The best result from 400 individual
glomerulus images was an accuracy of 89%.

Barros et al. [7] proposed a computer system for the
detection of proliferative glomerular lesions (PGL) that could
differentiate them from healthy images. They used image
preprocessing, segmentation and pattern recognition methods,
and the k-nearest neighbor (KNN) algorithm [8]] was used as a
classifier. The accuracy achieved in this work was 88.343.6%.

Aratjo et al. [9] used images of single glomeruli to detect
segmental glomerulosclerosis. Their architecture had the typi-
cal structure, consisting of a digital image processing and pat-
tern recognition system. Three feature vectors were extracted
and supplied to four classifiers: KNN, support vector machine
(SVM) [10]], a neural network, and naive Bayes. These authors
achieved an accuracy of 84.8% for hematoxylin-eosin (H&E)
stained samples and 81.3% for periodic acid-Schiff (PAS)
stained samples.

Ginley et al. [11] proposed an approach to defining the struc-
tural progression of human glomeruli in diabetic nephropathy.
The authors segmented glomerular compartment boundaries
and quantified 47 features from each glomerulus, using texture
analysis, morphological, distance, and handcrafted features.
They used a naive Bayesian classifier on the feature set, and
reported that this method was able to distinguish pathological
stage Ila from stage III with sensitivity/specificity 0.89/0.93,
and stage IIb from stage III with sensitivity/specificity 0.7/0.8,
for 514 glomeruli taken from 13 human biopsies with diag-
nosed diabetic nephropathy, and five human renal tissues with
no histological abnormalities.

Sheehan and Korstanje [12] developed a method for iden-
tifying and collecting quantitative data from glomeruli. This
approach was semi-automatic, since it required intervention
from a specialist. The authors used contrast enhancement and
Gaussian blurring, followed by a size filter to identify regions
of interest corresponding to glomeruli tufts. Three features
were extracted: mesangial matrix expansion (MME) [13]],
the number of nuclei, and capillary openness, which were
classified using a random forest (RF) approach [[14]. A strong
correlation was reported between MME and the analyzed
phenotypes.

Marsh et al. [[15] described the development of a deep
learning model that identifies and classifies non-sclerosed and
sclerosed glomeruli in whole-slide images of frozen biopsy
sections of donor kidneys. This differentiation is meaningful
because the criterion for accepting or rejecting the donor
kidneys relies heavily on the pathologist’s determination of the
percentages of glomeruli that are normal and sclerotic. The
proposed approach fine-tuned the VGG-16 [16] convolution
neural network using 48 whole-slide images. According to
the authors, the model achieved a precision of 81.28% in
the identification of non-sclerosed glomeruli. They concluded
that the method outperformed another model trained on image

patches of isolated glomeruli, in terms of accuracy and speed.

Chagas et al. [17], like in [7]], also worked on PGL de-
tection, but their proposal did more than binary classification
(lesioned or healthy), also performing classification in specific
PGL subcategories: endocapillary, mesangial, and, both. These
authors built a CNN-based architecture to extract features from
glomerulus images, and these features were then supplied to
an SVM classifier. In the classification task, their proposed
method achieved an accuracy of 82%.

Other works use renal biopsy image databases, but with
different purposes such as segmentation [[18]], or classification
between global or local sclerosis [19]. But to the best of
our knowledge, there are no databases or works that use
computational methods to differentiate between FSGS and
MCD. This is, therefore, the main scientific contribution of
the current article.

III. MATERIALS AND METHODS

In this section, we present a method that is capable of
differentiating between kidney biopsy images with FSGS vs.
MCD. We performed experiments using texture as the Haralick
features [20] and geostatistical, pre-trained CNNs such as
VGG-16, VGG-19 [16], Xception [21]], and ResNet50 [22].

We evaluated the potential individual description of each
of these approaches, and concluded that a combination of
different characteristics would lead to better classification
rates. We therefore formed a new image representation using
a set of features.

A. Proposed Method

Figure [I] presents an overview of the proposed method. It
can be see that it contains four steps: pre-processing, feature
extraction, feature selection and classification.

From performing a set of experiments, we observed that
a concatenation of the geostatistical functions with the last
fully connected layer in the VGG-16, Xception, and ResNet50
CNNs produced the best results. In the CNN feature extrac-
tion process, only resizing was done at the pre-processing
step, whereas in the extraction by geostatistical functions, we
computed the local binary patterns (LBPs) [23]] of the image
channels. We applied the mutual information (MI) algorithm
to rank the features from the most to the least significant, and
performed feature selection. Finally, the RF classifier was used
to determine whether the image contained MCD or FSGS.

1) Pre-processing: In the pre-processing step, the images
were resized to the default input dimensions for the CNNs:
224 %224 for VGG-16, VGG-19 and ResNet50, and 299 %299
for Xception. This was performed without border cutout or
addition of padding, although this occasionally changed the
original aspect ratio of the input image. In order to extract
texture information with the geostatistical functions, the im-
ages were also resized to 299x299, due to hardware and time
issues, and then represented in the form of LBPs for each
color channel. To extract Haralick features, the images were
used in their original sizes and smoothed via the application
of a median filter with a 9x9-sized window looking for a
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Fig. 1. Flowchart for the proposed method of automatic differentiation between MCD and FSGS in biopsy images.

manual inspected trade-off between noise reduction and details
retaining.

2) Feature Extraction: Geostatistics are statistics about
a population with a known address (i.e., coordinates). The
fundamental theory of geostatistics is based on the assumption
that on average, samples that are near to each other in time
and space are more similar than those that are distant [[24]].

In this work, we use four geostatistical functions: a semivar-
iogram, a semimadogram, a covariogram and a correlogram.
These functions summarize the strengths of the associations
between responses as a function of distance and possibly
direction [25]], and can describe the texture of a given image
through the degree of spatial association between spatially
referenced pixels of the input image as follows [26]:

We use vectors (h) obtained from a combination of four
directions (0°, 45°, 90° or 135°) and 11 distances, of which
six are fixed (1, 2, 5, 10, 15, 20) and five are proportional to
the image width (1.25%, 2%, 5%, 10%, and 20%). Thus, by
combining the 44 distance vectors (h) with the four geostatis-
tical functions and applying these to the R, G, and B image
channels, the resulting vector contains 528 characteristics.

The Haralick features are calculated based on the gray-
level co-occurrence matrix (GLCM), a texture descriptor that
analyzes the co-occurrences between pairs of pixels and stores
their relative intensities in a square matrix, with dimensions
equal to the number of levels of gray (i.e. 256 in the case of
8-bit image levels).The probabilities of co-occurrences (P; ;)
are calculated between two levels of gray, ¢ and j, using a
angle 6 (0°, 45°, 90° or 135°) and a distance called the pixel
pair spacing. For this purpose, we use 11 distance values:
six of which are fixed (1, 2, 5, 10, 15, 20) and five that are
proportional to the image width (1.25%, 2%, 5%, 10%, and
20%).

Although we can define several characteristics based on the
GLCM, the most important of these are contrast, dissimilarity,
homogeneity, angular second moment (ASM), and correlation.
We extract the texture feature using the three channels from
the RGB image. Thus, for the Haralick vector, we have 660
attributes for each image:

CNNs are commonly applied in the field of machine learn-
ing for image classification. A significant advantage of these
techniques is their ability to automatically detect essential

features, since their deep architectures allow us to extract a set
of characteristics at multiple levels of abstraction [27]. CNNs
have been proposed to aid in diagnosis, and have outperformed
conventional methods of extracting features, obtaining better
accuracy rates [28]].

The architecture of a CNN typically includes two sections.
The first is formed of a sequence of convolution operations
followed by pooling operations, and the second is composed
of fully connected layers.

After the sequence of convolutions and pooling, the gener-
ated feature map forms the input for the fully connected layers.
In this step, the architecture and mechanism of operation are
similar to those of a traditional neural network, and the last
layer generates the output data (classification).

The training of a CNN is a task with high computational
cost, and requires a large amount of data to achieve satisfactory
results in terms of the power of generalization. To avoid
the training stage, we use TL, which allows the domains,
tasks, and distributions used in training and testing to be
different [29]. That is, the goal is to reuse the knowledge
learned in one field and to apply it to another correlate [27].

We apply TL in feature extraction by taking the output
vectors of the last fully connected layer (before the classi-
fication layer) of four CNNs: VGG-16, VGG-19, Xception
and ResNet50. All CNNs were pre-trained on the ImageNet
database [30], which contains more than 1.2 million images
and 1,000 classes.

Table [I] shows a summary of all the individual feature
vectors extracted. In addition to these six individual vectors,
we also evaluated all of their combinations, giving 63 vectors
in total.

In some of the sections below, we use the following ab-
breviations to refer the feature vectors to improve comprehen-
sion and layout: v16=VGG-16, v19=VGG-19, xce=Xception,
rsnet=ResNet50, hrlk:Haralick and geo=geostatistics.

3) Feature Selection: We performed a feature selection
process for each of the 63 feature vectors obtained in the
previous step, sorting the features in the vector in descending
order of relevance. We used the F statistic of variance analysis
(ANOVA-F) and mutual information (MI) to calculate the
relevance of each feature [31]].



TABLE I
SUMMARY OF THE FEATURES EVALUATED IN THIS WORK
Number of
Type Method Features features
Geostatistic ~ Semivariogram, 528
semimadogram,
covariogram and
Texture - correlogram ———
Haralick Contrast, dissimilarity, 660
homogeneity,  angular
second moment and
correlation
VGG-16 4,096
features Xception laver y 2,048
ResNet50 Y 2,048
TOTAL 13,476

4) Classification: We performed empirical tests to define
the dimensionality of the final feature vector, always searching
for a trade-off between better results and vector size. We
used the ranked features (from ANOVA-F and MI), starting
from the one with the highest relevance and adding the others
incrementally to complete all features. We used a random
forest approach in our proposed method, but also evaluated
other two classifiers, SVM and KNN.

The initial parameters used in the SVM were a penalty of
1.0, and a radial basis function (RBF) kernel with a gamma
coefficient of 1/number of features. For KNN, we chose K =5
and the Euclidian distance. Finally, for RF, we used 100 trees,
and no limit in-depth grow. After analyzing the classification
results, we chose the five best results and performed a search
for the best set of classifier hyperparameters.

In order to evaluate the selected classifiers, the input images
were grouped into training and test sets using the stratified
cross-validation technique (k = 5). We computed a confusion
matrix for each fold, and from this, the accuracy and kappa
metrics were calculated. We computed the arithmetic mean of
the five values achieved from each classifier studied.

B. Evaluation Metrics

The confusion matrix confronts the classifier predicted
results and the actual results for the same set of tests. In our
case, we have two classes, FSGS and MCD, and our approach
is therefore a binary classifier. Thus, there are four values in
this matrix: the true positive (TP), which indicates the quantity
of images correctly classified as MCD; the true negative (TN),
corresponding to the number of correct FSGS classifications;
the false positive (FP), representing the number of images
classified as MCD, but which are actually FSGS; and finally,
the false negative (FN), which refers to the number of images
erroneously classified as FSGS.

The results in this work were analysed using four metrics
from the literature: accuracy, precision, recall and kappa (k)
(32] .

We used Cohen’s kappa [32] as the primary evaluation met-
ric. This gives a value that represents the degree of agreement
between nominal classifications performed by two evaluators

TABLE II
CHARACTERISTICS OF THE IMAGES USED.

. . Ratio  Number of images
Width  Height HW ~FSGS MCD

1024 768 0.75 17 40
2048 1644 0.80 6 0
3264 2448 0.75 2 0
4456 2976 0.67 1 0
4096 3288 0.80 0 12
5312 2988 0.56 7 2

Total 33 54

— in the present case, those predicted by the classifier and
those annotated by the pathologist. It can be calculated based
on Equation

. (observed — expected) X 100 0
1 — expected

The maximum value of kappa is 100%, which indicates
perfect agreement among the evaluators. The result is qualified
according to the value of x as follows: x < 20%: Slight; 20%
< Kk < 40%: Fair; 40% < k < 60%: Moderate; 60% < K
< 80%: Substantial e x > 80%: Almost Perfect.

C. Image Database

The image database used in this work was composed of
87 colored images, of which a specialist had classified 33 as
FSGS and 54 as MCD.

We obtained the images using microscopes Nikon €220,
and a Nikon €200 adapted with immunofluorescence, using
different objective lenses and consequently different magni-
fication rates. Pigmentation was applied to the slides using
the following dyes: H&E, Masson’s trichrome, PAS and silver
methenamine. The resolutions and aspect ratios of the acquired
images were heterogeneous, as indicated in Table [[I, but all
were larger than the input image size of the CNNs used.

Figure [2] shows examples of these images. In many cases,
visual heterogeneity is observed between images belonging to
the same class, as well as similarity between images in distinct
classes, which is always very challenging for classification.

IV. RESULTS AND DISCUSSION

In this study, we evaluated 378 combinations of tests (63
feature vectors, two selectors and three classifiers). We applied
a incremental feature selection methodology by computing
the importance of each feature using the MI and ANOVA-F
algorithms.

To define the best scenario, we calculated the highest
mean kappa reached for each of the 378 tested models using
the incremental attribute selection approach. As an example,
Figure [3] shows the mean values of accuracy and kappa for the
five runs of the stratified k-fold achieved with the RF classifier,
using the attributes of the concatenated v16+xce+rsnet+geo
vector, selected based on mutual information.

Tables and [V] show the 5 best classification results
from the SVM, KNN and RF classifiers, respectively. These



Fig. 2. Samples of images from the database. a-c: focal segmental glomeru-
losclerosis images; d-f: minimal change disease images.

TABLE III
FIVE BEST RESULTS ACHIEVED FOR KAPPA WITH SVM CLASSIFIER
(RESULTS OBTAINED WITH MI).

Vector #F accuracy kappa precision recall

v19+rsnet 101 91.0+7.5  80.6£15.8 90.0+£6.3 96.4+7.3
v16+v19+rsnet 136  91.0+7.5  80.6£15.8 90.0+£6.3 96.4+7.3
rsnet 52 91.0+45 80.6+9.8  91.5+4.9 94.5+45
hrik+rsnet 59 91.0+4.5 80.6+9.8 91.5+4.9 945445
v19+xce+rsnet 257  91.0+7.5  80.6t£15.7 89.8+6.3 96.4+7.3

-Best results are in bold.

results were obtained using MI to select the features (in these
tables, column #F indicates the number of selected features).
From analyzing the results in Tables [I[TT} [V]and [V] it can be
seen that the 5 highest kappa values were achieved using the
features selected by mutual information and classified using
the RF classifier.
To improve the classification results, we calculated the five

TABLE IV
FIVE BEST RESULTS ACHIEVED FOR KAPPA USING THE KNN CLASSIFIER
(RESULTS OBTAINED WITH MI).

Vector #F  accuracy kappa precision recall
v16+v19+xce 68  92.1+7.5 83.3+15.8 93.0+6.7 94.4+7.4
v19+xce+rsnet 181  91.0£7.5 81.1+158 92.9+6.8 92.74+6.8
vl6+xce+rsnet 165  91.0£5.6  81.1+11.5 92.5£3.7 92.7+6.8
v16+v19+rsnet 406 91.0£7.5 80.6+15.7 89.8+£6.3 96.4+7.3
v16+rsnet 169 89.9+55 784+114 91.3+49 92.74+6.8
-Best results are in bold.
TABLE V

FIVE BEST RESULTS ACHIEVED FOR KAPPA USING THE RF CLASSIFIER
(RESULTS OBTAINED WITH MI).

Vector #F  accuracy kappa precision recall
VI6tvI9+xce 62 93.3%6.5 855+141 919472 98.213.6
VISR 216 933465 8554141 919472 98.243.6
hrlk+geo

v16+vi9+geo 434 933465 85.5+141 919472 982436
vi6+xcetgeo 61 932441 854490 933459  96.4+45
Vi6+xce+ 94 932441 852489  91.6+49 98243.6
rsnet+geo

-Best results are in bold.

TABLE VI
COMPARISON OF CLASSIFICATION RESULTS BEFORE AND AFTER
HYPERPARAMETER TUNING USING V16+XCE+GEO AND
V164+XCE+RSNET+GEO DESCRIPTORS.

Vector Metric Before After
accuracy  93.2+4.1%  94.2+3.5%

V16+xce+geo kappa 854+9.0%  87.4+7.8%
precision  93.3£59%  93.4£5.9%
recall 96.4+£4.5%  98.2+3.6%
accuracy  93.2+4.1%  94.3+3.5%

V16+xce+rsnet+geo kappa 852+89%  87.9+t7.4%
precision  91.6£4.9%  94.7+4.3%
recall 98.2+£3.6%  96.4+4.5%

-Best results are in bold.

best results and performed a search for the best hyperparame-
ters of the RF classifier. For this, we used the same validation
criterion (stratified 5-fold cross-validation) and used the set
of selected features as input. We evaluated a total of 211,200
hyperparameter configurations using the RF classifier.

The hyperparameter tuning, when was performed on the
top three kappa results (first three lines of Table [V) did not
lead to better results, but for the fourth and fifth positions,
the results were improved. Table allows for a comparison
between the results reached before and after the RF tuning,
using v16+xce+geo and v16+xce+rsnet+geo descriptors. It can
be seen that almost all metrics were improved, and the standard
deviation decreased in most cases.

Finally, after tuning, we defined the best feature vector:
v16+xce+rsnet+geo. This vector was formed from the 94
features selected based on MI and classified using the RF
classifier. Figure [] shows the number of features chosen from
each descriptor and their distributions along the positions
of the vector, sorted by the mutual information algorithm
applied to the v16+xce+rsnet+geo feature vector. It is notable
that the geostatistical features, which had only 528 attributes
(compared with at least 2048 for the CNNs), obtained a
significant rate on the essential characteristics subset.

We evaluated 211,200 parameters combination and the best
parameters found from the tuning process of the RF classifier
were number of trees: 30; minimum number of samples
required to split an internal node: 5; Minimum number of
samples required to be at a leaf node: 1; grow limit in the depth
way: unlimited; split quality measure function: gini impurity;
amount of features to consider when looking for the best split:
loga(N), where N is number of features; value which grow
trees in best-first fashion: unlimited.

V. CONCLUSION AND FUTURE WORK

Glomerulopathies can lead to end-stage kidney disease. Mi-
croscopic evaluation is crucial in diagnosis, as this can provide
prognostic data and guidance for treatment. Several histolog-
ical abnormalities may lead to the development of nephrotic
syndrome, and of these, MCD and FSGS are highlighted as
causes of idiopathic nephrotic syndrome. Differentiating MCD
from FSGS is essential to determine drug regimens, as these
are strongly dependent on the diagnosis.
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This article has proposed a computer vision method to
differentiate between MCD and FSGS in microscopic images.
The tests performed to define the final approach included
feature extraction based on traditional texture features, i.e.
Haralick features, geostatistical functions, and deep features
from pretrained CNNs. These features were then selected using
two criteria: mutual information and ANOVA-F. We then used
these as input for three supervised classifiers: SVM, KNN, and
RF.

The results indicate that the use of a concatenated feature
vector of VGG-16, Xception, ResNet50, and geostatistics gave
the best scores, followed by feature selection based on mutual
information and classification using a random forest classifier.
This model gave results that indicate near-perfect agreement
with the pathologist’s diagnosis.

The characterization of the image using a single type of

descriptor shows little power of representation. On the other
hand, creating a mixed descriptor, such as deep features and
texture, can extract attributes from the image in a more
productive manner.

The feature selection is significant, not only because it re-
duces the dimensionality of the descriptors, and consequently
relieves the hardware, but also because it removes attributes
that have little relevance to the classification that may hinder
the classifier’s task. In this sense, the selection using the
Mutual Information criterion is better than ANOVA-F in the
task proposed here.

The Random Forest classifier proves to be superior to the
others tested, due to its nature of being a committee of decision
trees internally, and even more resistant to overfitting due to
the formed trees considering different subsets of attributes.

As future work, we intend to evaluate methods that use
learning transfer, but in the form of fine-tunning in convo-
lutional neural networks. This technique takes a pre-trained
CNN on a large database and re-trains some network layers
over a specific dataset with a low learning rate doing an adjust
in their weights.

VI. PUBLICATIONS

o Classificacio de Imagens de Bidpsias Renais com
Glomeruloesclerose Segmentar e Focal ou com Lesdes
Minimas Utilizando Transfer Learning em CNN. On-
line version: https://sol.sbc.org.br/index.php/sbcas/article/
view/6244.

o A Hybrid deep feature space to differentiate focal seg-
mental glomerulosclerosis from minimal change disease
in kidney biopsy images (submitted paper to Computers
in Biology and Medicine).
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