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Abstract—The development of computational vision ap-
proaches that exploit satellite imagery is relatively recent, mainly
due to the limited availability of this type of image. In the
area of remote sensing, applications that employ computational
vision techniques are modeled for classification in closed set
scenarios. However, the world is not purely closed set, many
scenarios present classes that are not previously known by the
algorithm, an open set scenario. Thus, the main objective of this
paper is the study and development of semantic segmentation
techniques considering the open set scenario applied to remote
sensing images. Focusing on this problem, this is the first work
to study and develop semantic segmentation techniques for
open set scenarios applied to remote sensing images. The main
contributions of this paper are: 1) a discussion of related works
in open set semantic segmentation, showing evidence that these
techniques can be adapted for open set remote sensing tasks;
2) the development and evaluation of four novel approaches for
open set semantic segmentation. Our methods yielded competitive
results when compared to closed set methods for the same dataset.

Open Set, Deep Learning, Semantic Segmentation, Remote
Sensing

I. INTRODUCTION

A source of data exploited by the computer vision domain is
satellite or aerial images, which may be comprised of beyond
the visible spectrum channels. However, satellite imagery has
not been widely used mainly due to its limited availability
given that, until recently, they were of exclusive military use.

Within the area of remote sensing, most applications work
with closed set scenario-based computer vision techniques,
wherein models are conceived to learn and predict the same
set of classes, ignoring new unknown labels that may arise.
However, the world is not purely closed set, since many sce-
narios present objects that were not previously known by the
model. These other scenarios would be better explored using
open set algorithms [1], which are capable of distinguishing
new unknown classes from the ones used during training.

Formally, open set classification can be described as a task
wherein an image can be labeled as belonging to one of the
classes learned by the algorithm or as an unknown class if it
belongs to any class not learned.

Even with a variety of possible uses for open set scenario
algorithms, this area is not so explored, mainly when compared
to the enormous number of closed set methods.

Semantic Segmentation is a task that aims to classify not
only the whole image but every pixel in an image accordingly
to the classes learned by the algorithm.

*This work relates to an M.Sc. dissertation

Therefore, open set semantic segmentation can be described
as a set of techniques that receive an image as input and
outputs a prediction for all pixels, either labeling them within a
known class or as belonging to an unknown class. In this work,
we evolve on the concept of open set semantic segmentation in
remote sensing and propose two deep learning methods based
on it.

In practice, the main contributions of this work are: (i) first
evidences demonstrating the feasibility of combining semantic
segmentation and open set concepts; (ii) a new method, called
OpenPixel, for open set semantic segmentation based on the
Pixelwise network [2]; and (iii) an adaptation of the proposed
OpenPixel method, applying a morphological filter; (iv) a
new method for open set semantic segmentation based on the
Openmax method [3], called OpenFCN and (v) an adaptation
of the proposed OpenFCN method, applying a Super Pixel as
a preprocessing technique.

Following sections in this paper are organized as follows.
Section III explains the methodology adopted in this paper for
achieving the objectives previously defined. All experimental
configuration and some assumptions needed to reproduce this
work are contained in Section IV. Section V reports the results
found using the proposed methods and discusses them. Finally,
Section VI presents our final remarks and future works.

II. RELATED WORK

This section presents background knowledge and a literature
review on open set and semantic segmentation methods for
image classification and semantic segmentation. Most of the
open set techniques developed today are adaptations form
closed set methods.

A. Open Set Classification

In [1] the authors describe an open set version of the well-
known Support Vector Machine (SVM) algorithm developed
to classify scenes. The choice of using SVM was made
because it has various alluring characteristics that can help
in this scenario: its answers are global and unique; it has
a basic geometric understanding, and it does not rely upon
the dimensionality of the information space. [4] present and
develop a technique for an “open world”, a recognition system
that should update new object categories and be robust to these
unseen groups, in addition, to have minimum downtime. [4]
propose the Nearest Non-Outlier (NNO) algorithm that evolves



a model efficiently by adding object categories incrementally
while detecting outliers and managing open space risk.

Looking for a deep learning solution, [3] show a new model,
called OpenMax, that represents an alternative for the SoftMax
function as the final layer of the network, which estimates
the probability of an input being from an unknown class.
Reducing the number of errors made by a deep network when
given fooling generated images. Using a shallow approach,
[5] propose a method named Open-Set NN (OSNN) and a
variation called OSNNcv, both are able to recognize samples
from unknown classes during training time and outperform
other approaches in the literature.

B. Semantic Segmentation

Besides its open set characteristics, our method relies
heavily on deep convolutional architectures. Convolutional
Neural Networks (CNNs) [6]–[10] have been the state-of-the-
art method for most Computer Vision classification tasks for
the better part of the last decade. The first widely adopted
CNN was AlexNet [6], followed by the deeper VGG [7] and
GoogLeNet [8] architectures.

Between 2015 and 2017, it was observed that the training of
earlier layers was severely hampered in deeper architectures
due to the Vanishing Gradient problem. Residual Networks
(ResNets) [9] and Densely Connected Convolutional Networks
(DenseNets) [10] were designed to deal with this limitation of
simply stacking convolutions on top of each other by employ-
ing shortcuts for the backward gradient between shallower and
deeper layers. CNNs can be used for image segmentation by
classifying the central pixel of a region according to its class
and iterating this algorithm across all pixel positions, as will
be further explained in Section III.

C. Gaps Explored by the Proposed Methods

The knowledge gap explored by this paper becomes clear
when observing the related works presented in this section.
None of the existing methods properly perform both open set
inference and semantic segmentation. Therefore, as far as the
authors are aware, the methods proposed in this work are the
first techniques that can semantically segment a remote sensing
imagery on an open set scenario.

III. METHODOLOGY

This section describes in detail the proposed methods, there
are: (1) the OpenPixel method presented in Section III-A,
(2) Morph-OpenPixel, presented in Section III-B, (3) the
method OpenFCN presented in the Section III-C and (4) it’s
variation using Super Pixels, called SLIC-OpenFCN in the
Section III-D. All methods are based on existing closed set
methods for semantic segmentation, but the OpenPixel tech-
nique does a pixel-level classification and applies a threshold
to differentiate between known and unknown classes while
OpenFCN uses the relation between activation maps of each
known class and the FCN network to perform the task.
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Fig. 1. Simplified OpenPixel and Morph-OpenPixel architecture. The dis-
tinction between the networks is that OpenPixel does not contain the last
morphological filtering step.

A. OpenPixel: Pixelwise Open Set Classification

The first method proposed in this paper is an open set
adaptation from the closed set Pixelwise algorithm proposed
by [2], which had presented good results in remote sensing
datasets. This Pixelwise approach consists of the individual
treatment of all the pixels present in the images. Since the pixel
itself has not enough information to allow its classification,
context windows are employed. Precisely, context windows
are crops of 55× 55 pixels with the central one representing
the crop class. By iterating over all pixels in an image, it is
possible to train a CNN for patch-level classification by using
the contextual window.

In order to compose OpenPixel, we added an extra layer
at the end of the closed set CNN responsible for thresholding
each pixel-wise prediction as well as a layer to filter False
Positives, as shown in Figure 1. This network receives an
image as input and processes it using three layers, each
one composed of convolutional operation, Rectified Linear
Unit (ReLU) activation, and max pooling. Then, three Fully
Connected (FC) layers further process the activation maps
from the convolutional blocks to classify each patch’s central
pixel as pertaining to some class.

This architecture is the same as Pixelwise for the closed set
scenario, adding a probability threshold after the softmax. To
do so, a pixel with a class confidence (given by the softmax)
that exceeds a determined threshold is labeled as belonging to
that class. However, if the pixelwise probability is inferior to
the threshold, the pixel is classified as unknown. As the value
of probability given by the softmax varies between 0 and 1,
the possible values of threshold also vary between 0 and 1.

B. Morph-OpenPixel: Morphological Filtering

After the result predicted at the softmax layer and applied
the threshold by the network, a post-processing morphological
filter is applied at the pixels classified as unknown.

The applied filter can be seen as an erosion done over the
unknown pixels, with the only difference being its adaptation
for a multi-class context. According to [11], the process of
erosion of a set A by another set B (both in Z2) is defined
as the set of all points in z such that B, translated by z, is
contained in A, as represented on the Equation 1:

A	B = {z|(B)z ⊆ A } (1)

Since this process of erosion is only applied over the pixels
classified as unknown by the network, the technique reduces
the amount of false unknown labels created by the uncertainty



Fig. 2. Simplified architecture view of the OpenFCN method.

of boundary regions. The rightmost modules in Figure 1 shows
a didactic example of the application of the morphological
filter.

C. OpenFCN: Open Set Fully Convolutional Networks

The original application of the OpenMax technique was to
develop a method that could discern between images generated
by computers and real images. The idea described on [4] is that
some images can be generated to fool classification networks,
simulating features similar to real images. However when
comparing the distribution of the classes and their similarities,
the OpenMax method could be able to classify an image as
a fooling image. In that case, this classification would set the
image class as unknown, i.e. not belonging to any known class.

Similarly to most of the other open set techniques, Openmax
was based on scene classification, only deciding the general
label of the image, not pixel by pixel. So the method OpenFCN
uses the same idea of an OpenMax layer, but adapted to an
FCN, a pixel-by-pixel approach.

Figure 2 illustrates the architecture of the fully-
convolutional neural network used in this work, FCN, adapted
for the open set scenario. To achieve the OpenFCN, we
substituted the classification layer, softmax, for the OpenMax.
This network receives an image as input. This image passes
through 6 layers of convolutions and 4 layers of max pooling,
to then be deconvoluted 4 times, using information from earlier
layers, and then reach the output layer, OpenMax, which is
responsible for classifying each pixel and deciding if it belongs
to a known or unknown class.

It is valid to observe that even though this work uses an
FCN as the network to extract features for each pixel, the
architecture of OpenFCN allows the use of any pixel-wise
network. The method becomes flexible when observed that
the Openmax layer is applied during the testing phase, being
isolated from the training.

The classification of the pixels happens in the OpenMax
layer. This layer is based on the distance between each evalu-
ated pixel and the distributions of the known classes, being
these Weibull distributions. Another way of describing the
OpenMax layer is as a classification layer that uses similarity
between the activation vector of the pixel, its features, and the

Fig. 3. Example of the process of applying SLIC to the input image,
classifying with OpenFCN and using SLIC to return the prediction to the
original image. In this example, after the OpenFCN method, white represents
the class street, dark blue represents a car, green represents trees and light
blue represents grass.

activation vectors of the pixels belonging to known classes to
label the pixels.

For the OpenMax layer to correctly classify the pixels,
it needs to use the appropriate parameters for the Weibull
distribution and calculation of distances. Parameters of Weibull
distribution are estimated based on the distance between each
correctly classified training example, obtaining a class-specific
distance distribution. The exact length of tail for estimating
parameters of Weibull distribution is determined during the
parameter estimation phase over a small set of the data.

In a different aspect, the alpha rank represents the number of
top classes that are considered during the recalibration of the
classes. Those top classes are defined as the classes with the
biggest variance between the activation maps, in other words,
the classes that better represent the diversity of the dataset.

One of the biggest problems that surface when adapting a
method based on scene detection to semantic segmentation is
the increase in computational time required to analyze each
pixel from the image.

This bottleneck is on the stage in which the technique cal-
culates the distances of each pixel to all the class distributions
and, after allocating that pixel to a predicted class, redistributes
the class distribution, needing to follow a sequential process
of finding a pixel class, before evaluating the next one.

D. SLIC-OpenFCN: OpenFCN Using Super Pixels

The technique utilized in this work, to accelerate the
method, was the use of superpixels. To segment, the input
image in superpixels was used the Simple Linear Iterative
Clustering (SLIC) method [12].

For this segmentation method, different values of superpix-
els were tested, but the chosen value that increases the speed of
the algorithm while maintaining some individual information
was a group of 20 pixels for each superpixel. That means that,
on average, every 20 pixels from the original image would be
represented by a single one in the final image, and this way
the method would need to evaluate 20 times fewer pixels for
each image. After the prediction by the Openmax layer, the
method reverses the superpixel, copying the prediction of the
superpixel for each one of the 20 original pixels. This process
is represented by one example in Figure 3.

IV. EXPERIMENTAL SETUP

In this section, we introduce the configuration used during
the experiments and needed to guarantee the reproducibility of
results. Section IV-A describes the Vaihingen dataset used in
our experimental procedure, Section IV-B presents the protocol



for training and testing and, finally, Section IV-C introduces
all the metrics used for quantitative evaluation.

A. Dataset

The Vaihingen dataset1 contains 33 patches of different
sizes, each consisting of a True OrthoPhoto (TOP) extracted
from a larger TOP mosaic.

These 33 patches were captured over the city of Vaihingen
in Germany by the German Society for Photogrammetry and
have a ground sampling distance of 9 cm. The Ground Truth
consists of 5 classes: street, building, grass, tree, and car.

The dataset was created to be well controlled and avoid
areas without data. To do so, the patches were selected from
the central part of the mosaic and not from the boundaries.
Even with this approach, some small missing information
could occur, to prevent that to happen, interpolation is used to
fill all the gaps. The TOP is 8 bit TIFF files with three bands,
being three RGB bands, corresponding to the near-infrared,
red and green.

B. Training/Predicting Protocol

For the Vaihingen dataset, we followed the protocol pro-
posed by [13]. Precisely, the dataset is divided into two sets,
one for training and one for testing. The testing set consists
of images from the patches 11, 15, 28, 30 and 34, whereas
the remaining images are used as training.

During the experiments, 4 out of the 5 labels of the dataset
are used as known classes (employed to train the model) while
the remaining one is exploited as the unknown class. Since this
work focus is to demonstrate the concept, it will follow this
protocol, but future works can extend it to allow a composition
of categories as unknown class.

To better evaluate the proposed method, the protocol also
varied the class used as unknown. In each iteration of the
experiments, a different class of the dataset was not fed to the
algorithm during the training stage, only being seeing during
the testing. Figure 4 represents the variation on the unknown
class.

The validation set, only used by the OpenPixel method to
determine the best threshold values, is composed of a part of
images from the training set, excluded from the training.

In the predicting phase, each input image is processed
independently by the trained deep model, which outputs a
final prediction map in which for each pixel a label indicates
whether or not the pixel belongs to a known class, and if it
belongs, to which class. This stage uses and presents the one
class not seen during learning as the unknown class.

It was analyzed four different contexts with all the networks.
The first one was training and testing the networks as the
traditional closed set. In this case, the methods are trained and
evaluated considering all existing classes of the dataset. This
context was only used to show the accuracy of the method
without the open set concept.

1http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.
html

Ground Truth

Unknown: Street Unknown: Building

Unknown: Grass

Input Image

Unknown: Tree
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Fig. 4. Representation of the protocol used to vary the unknown class during
the experiments.

The second context was training the model as a closed set,
but testing it in an open set scenario. In this scenario, the model
must classify, during the testing phase, pixels from classes that
do not exist training set, resulting in an misclassification of
such samples. This scenario, along the next one, shows the
relevance of the open set concept for semantic segmentation.

The third one is training and testing the method in open
set scenarios. In this case, the network knows it will analyze
some pixels from not known classes during the training phase
and will be able to classify them as unknown.

The last one is very similar to the third one, the only
difference is that it applies the morphological filter to en-
hance the prediction and mitigate some False Positives on the
OpenPixel methodology and uses the SLIC to reduce the time
consumption of the OpenFCN method.

C. Metrics

All results obtained in this work are reported using Cohen’s
Kappa Index, Overall and Normalized Accuracy scores, given
that these metrics take into account the existence of multiple
classes and the importance of correct segmenting all of them
[14].

V. RESULTS AND DISCUSSION

The conducted experiments (and results) presented in this
section aim to answer the following questions: (1) Is the
OpenPixel able to semantic segment a remote sensing image?
(2) Is the OpenFCN able to semantic segment a remote sensing
image?

A. OpenPixel Evaluation

Considering the analysis performed on the previous section,
we analyze the effectiveness of the proposed method to
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Fig. 5. Per-class error rates for each unknown class according to the closed set baseline (a) and the proposed open set methods (b-c).

(a) RGB Image (b) Ground Truth

(c) Pixelwise Closed Set
Prediction

(d) Morph-OpenPixel
Prediction

Fig. 6. Example wherein Pixelwise wrongly classifies the unknown class (car)
as known, while the Morph-OpenPixel classifies the areas as unknown.

perform open set semantic segmentation. Table I presents the
obtained results.

Through the table, it is possible to note that the proposed
method, OpenPixel, yielded acceptable results, showing the
feasibility of combining semantic segmentation and open set
concepts.

TABLE I
NORMALIZED ACCURACY AND KAPPA INDEX OBTAINED BY THE

OPENPIXEL METHOD AND BASELINES.

Network Overall
Accuracy

Normalized
Accuracy Kappa

Pixelwise (closed) 55.84% 53.98% 0.5585
OpenPixel 55.78% 53.15% 0.5106

Morph-OpenPixel 57.51% 54.23% 0.5602

Analyzing the results shown in Table I, one can observe
that the OpenPixel method trained on an open set configuration
achieved similar results to the Pixelwise closed set when tested
on an open set scenario.

Even though the open set methods only surpassed the closed
set architecture with morphology filtering (Morph-OpenPixel)
the simpler version (OpenPixel) also has the benefit of finding
unknown classes that are always mislabeled by closed set
methods in this scenario.

This advantage is better demonstrated in Figure 5, in which
the Error Rate is reported. Observing the error rate of the
Pixelwise network, more precisely the main diagonal, one
can notice that in all cases the error is 100%, an expected
outcome, since the network was not designed to deal with
unknown classes, misclassifying all the pixels belonging to
this class. When comparing the main diagonal from all three
methods, it is possible to understand the advantage of using
an open set semantic segmentation technique. Both proposed
methods have error rate lower than the Pixelwise network for
the unknown classes, while keeping the error rate low on most
known classes.

Aside from this, since each class has distinct patterns, it
is essential to evaluate the proposed method by varying the
unknown class. Results for this experiment are presented in
Figure 7. Through the table, it is possible to note that Morph-
OpenPixel achieved better metric rates on most of the setups,
including the ones in which all the networks had a worse
performance.

Visual results are presented in Figure 6, in which the ground
truth had known and unknown classes, being the car class
(in yellow) the unknown. The Closed Set Pixelwise technique
wrongly classified all the pixels belonging to cars, as was
expected, since it does not know this class. The prediction
resulting from the Morph-OpenPixel, as it can be noticed, has
most of the instances of the known classes classified correctly,
while still classifying the car pixels as unknown (in red).

B. OpenFCN Evaluation

Table II that presents the results obtained using the overall
and normalized accuracy and kappa index metrics. Analyzing
it, it is possible to note that the proposed method, OpenFCN,
obtained results that also shows that semantic segmentation
can be applied to open set scenarios.

Now, observing the results from OpenFCN at Table II, is
possible to analyze that the method outperforms the closed set
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TABLE II
NORMALIZED ACCURACY AND KAPPA INDEX OBTAINED BY THE

OPENFCN METHOD AND BASELINES

Network Weibull
Tail Size

Alpha
Rank

Overall
Accuracy (%)

Normalized
Accuracy (%) Kappa

FCN [15] - - 74.76 56.86 0.6648
OpenFCN 125,000 1 47.82 45.91 0.3774

SLIC-OpenFCN 1,000,000 4 80.77 63.92 0.7437
OpenFCN 1,000,000 4 82.27 64.39 0.7630

technique when applied to an open set scenario. Similarly, as
the OpenPixel, the method can correctly classify the pixels
belonging to known classes, and still classify most of the
unknown pixels correctly. Figure 8 shows one example of
semantic segmentation done by OpenFCN when compared to
the application of the closed set FCN [15] on an open set
scenario.

(a) Image (b) Unknown Building

(c) Unknown Grass (d) Unknown Street

Fig. 8. Example of prediction by the OpenFCN method with the Grass as
unknown class. The color white, dark blue, green and yellow represents the
class street, building, tree and car , respectively and red represents the predict
unknown class, grass, colored as light blue on the ground truth.

The OpenFCN method uses known classes to calculate
distances of each pixel being evaluated and uses that to classify
them. For this reason, depending on which classes are being
used for the algorithm to learn and which classes are set as
unknown the results may vary. For this reason, the method
needed to be tested against all the cases, and the results for
the instance in which each class is set as unknown is presented
in Table III.

TABLE III
OVERALL, NORMALIZED ACCURACY AND KAPPA INDEX OBTAINED BY

THE OPENFCN METHOD FOR EACH CLASS AS UNKNOWN

Unknown
Class

Overall
Accuracy (%)

Normalized
Accuracy (%) Kappa

Street 84.95 68.02 0.7921
Building 83.93 66.08 0.7782

Grass 78.99 59.96 0.7294
Tree 79.86 60.82 0.7343
Car 83.59 67.11 0.7811

The results on Table III shows a lower accuracy and kappa
when the classes grass or tree are set as unknown. It is easy
to understand the reason when observed the concept of the
method. When using grass as an unknown class, the class tree
is learned and used to calculate the distances, and since the
classes grass and tree have similar features, the method tends
to label grass pixels as the class tree, since it learned tree
features.

VI. CONCLUSION AND FUTURE WORKS

The method presented in this paper, dubbed OpenPixel,
presented acceptable rates of normalized accuracy when com-
pared to closed set methods on the same dataset. On average,
the open set scenario method presented an overall accuracy of
57.51%, a normalized accuracy of 54.23% and a kappa index
of 0.4600.

The OpenFCN method presented good results of normalized
accuracy when compared to closed set methods on the same
dataset and even better when compared to the OpenPixel. On
average the open set scenario method presented an overall
accuracy of 82.27%, a normalized accuracy of 64.39% and a
kappa index of 0.7630.

Observing the experiments and the results presented in
this paper, it is possible to affirm that the proposed methods
are effective in semantically segmenting pixels belonging to
unknown classes, while still correctly classifying pixels from
known classes, performing an open set semantic segmentation
on remote sensing images.

In conclusion, this paper main contributions are: (1) a
discussion of the related works, showing evidence that the
semantic segmentation techniques can be applied to open set
scenarios; and (2) the development of four methods for open
set semantic segmentation. The dissertation also resulted in
two publications, one entitled Towards Open-Set Semantic
Segmentation of Aerial Images [16], accepted in the 2020
Latin American GRSS ISPRS Remote Sensing Conference,
and the second one entitled Fully Convolutional Open Set Seg-
mentation [17] and submitted to Machine Learning Journal.
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