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Abstract—Melanoma is the most lethal type of skin cancer.
Early diagnosis is crucial to increase the survival rate of those
patients due to the possibility of metastasis. Automated skin lesion
analysis can play an essential role by reaching people that do
not have access to a specialist. However, since deep learning
became the state-of-the-art for skin lesion analysis, data became a
decisive factor in pushing the solutions further. The core objective
of this M.Sc. dissertation is to tackle the problems that arise
by having limited datasets. In the first part, we use generative
adversarial networks to generate synthetic data to augment our
classification model’s training datasets to boost performance.
Our method generates high-resolution clinically-meaningful skin
lesion images, that when compound our classification model’s
training dataset, consistently improved the performance in dif-
ferent scenarios, for distinct datasets. We also investigate how
our classification models perceived the synthetic samples and how
they can aid the model’s generalization. Finally, we investigate
a problem that usually arises by having few, relatively small
datasets that are thoroughly re-used in the literature: bias.
For this, we designed experiments to study how our models’
use data, verifying how it exploits correct (based on medical
algorithms), and spurious (based on artifacts introduced during
image acquisition) correlations. Disturbingly, even in the absence
of any clinical information regarding the lesion being diagnosed,
our classification models presented much better performance
than chance (even competing with specialists benchmarks), highly
suggesting inflated performances.

I. INTRODUCTION

Melanoma is the most dangerous form of skin cancer. It
causes the most deaths, representing about 1% of all skin
cancers in the United States2, and 3% in Brazil3. The crucial
point for treating melanoma is early detection. The estimated
5-year survival rate of diagnosed patients rises from 15%, if
detected in its latest stage, to over 97%, if detected in its
earliest stages.

The medical diagnosing procedure for melanoma relies
on pattern analysis. This enables machine learning to be a
practical approach to this problem. It is essential to highlight
that we do not see automated methods for diagnosis replacing
specialists. It is quite the opposite: the technology would reach
more risky patients, and they would need to consult with
dermatologists. The outcome is the increase of the overall
quality of the diagnosis, and life of specialists, enabling them
to focus on positive cases.

1M.Sc. Dissertation
2http://www.cancer.net/cancer-types/melanoma/statistics
3https://www.inca.gov.br/tipos-de-cancer/cancer-de-pele-melanoma

Despite the possibilities of using this technology, we first
need to achieve high confidence in our solutions output. Of
course, false negatives are a huge problem, since it could
potentially kill a patient by discouraging him from seeking
proper treatment for such a time-dependent disease. Also, high
amounts of false positives could be disastrous (especially in a
scenario where the number of people reached is the highest),
crowding hospitals with alarmed healthy patients seeking
treatment (excision), wasting money, and specialists’ time.

Deep Neural Networks are state-of-the-art for automated
skin lesion analysis, and data is critical for improving those
solutions [1]. For medical contexts, such as ours, the lack of
annotated data is severe. Due to the high cost (both in money
and time) of acquiring and labeling new samples, the datasets
available are very limited.

This severe limitation in our data creates two main problems
investigated in this M.Sc. dissertation: the inability to gener-
alize, and dataset bias. For the first problem, we introduce
a Generative Adversarial Networks (GANs)-based method for
generating realistic synthetic data to improve generalization of
skin lesion classification models [2]. GANs [3] aim to model
the real image distribution by forcing the synthesized samples
to be indistinguishable from real images. Our synthetic skin
lesion generation process takes advantage of dermoscopic
attributes. These attributes are local patterns in the lesion that
are core to different medical algorithms [4], [5]. Their addition
to the solution not only sharply increased the quality of the
synthetic samples but also delivered meaningful information
to the generation improving their clinical relevance.

For the second problem, we build upon dermoscopic at-
tributes and medical algorithms [4], [6] to improve our un-
derstanding of our classification models. We verify if they
are learning with clinically-meaningful information, or are
exploiting artifacts in the skin lesion images. For this, we con-
trast two experiments: in the first, we build upon dermoscopic
attributes, progressively adding information; in the second, we
progressively destroy information according to the ABCD rule
of dermoscopy [6], until a point where there is no clinically-
meaningful information left. The results shocked ourselves and
the community, showing that our classification models achieve
high levels of performance without any lesion information.

We organized this paper as follows. In Sec. II, we review
the GAN literature, dividing the advancements into topics to
create a comprehensive view of the scenario. In Sec. III, we
describe our data, including dermoscopy attributes. In Sec. IV,



we detail how we take advantage of these attributes to build
a method for high-quality clinically-meaningful skin lesion
image generation. We also show our methods and results to
evaluate the synthetic images when used for data augmenta-
tion. In Sec. V, we investigate bias on skin lesion datasets,
designing experiments to verify the network’s performance
when we expose it to correct or spurious correlations. In
Sec. VI, we summarize our main achievements. Finally, in
Sec. VII, we analyze our findings and propose future directions
for the approached problems.

II. LITERATURE REVIEW

In this section, we review the literature of GANs. This story
started in 2014 when Goodfellow et al. [3] introduced the
GAN framework. This idea drew the attention of influential
academics in machine learning such as Yan LeCunn (Turing
Award 2018), which stated that “GANs is the most interesting
idea in the last ten years in machine learning.” Since 2014, the
volume of works grew exponentially through the years, im-
proving the GAN framework significantly through theoretical
understanding, architecture enhancements, and applications.

In the M.Sc. dissertation, we divide the advancements
in six fronts — Architectural, Conditional Techniques, Nor-
malization and Constraint, Loss Functions, Image-to-image
Translation, and Validation — providing a comprehensive
notion of how the scenario evolved through the years, showing
trends of thought that resulted in where we are today, where
GANs are capable of generating face images that are almost
indistinguishable from real photos.

Since we choose to give an evolutionary view of the GAN
literature, sometimes the chronological information is in-
evitably lost in the process. To communicate the time dimen-
sion of the extensive GAN literature, we chronologically or-
ganize the GANs we comment during the review in Fig. 1 but
also categorize them concerning their foremost contribution.

In this paper, we summarize the literature review made
in the complete M.Sc. dissertation, focusing on the methods
directly related to our experiments. For this, we overview the
two main types of generation process: Plain Generation, and
Image-to-Image Translation.

A. Plain Generation

The works that followed the original Goodfellow et al.’s
paper compound the framework with architectural changes,
enabling GANs to be explored in different contexts. At this
time, GANs were capable only of generating low-resolution
samples (32× 32) from simpler datasets like MNIST [7] and
Faces [8]. However, in 2016, crucial architectural changes
were proposed by Deep Convolutional GAN (DCGAN) [9],
boosting GANs research and increasing the complexity and
quality of the synthetic samples. The proposals to remove
pooling and fully-connected layers guided the future models’
design, while the proposal of using batch normalization in-
spired other normalization techniques [10], [11] and still is
used in modern GAN frameworks [12].
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Fig. 1: Timeline of the GANs covered in the M.Sc. Disserta-
tion’ GAN literature review. We split it into six fronts, each
represented with a color. Our work in skin lesion synthesis is
in red.

In 2018, incremental architectures gained popularity, and it
is still employed for improved stability and high-resolution
generation. Progressive GAN (PGAN) [11] improved the in-
cremental architecture to generate human faces of 1024×1024
resolution. While the spatial resolution of the generated sam-
ples increases, layers are progressively added for both genera-
tor and discriminator. Since older layers remain trainable, gen-
eration happens for different resolutions for the same image. It
enables coarse/structural image details to be adjusted in lower
resolution layers, and fine details in higher resolution ones.

B. Image-to-Image Translation

The addition of encoders in the GAN architecture enabled
GANs for the task of image-to-image translation. In 2016,
Yoo et al. [13] started using GANs for this task. The addition
of the encoder to the generator’s network transformed it into
an encoder-decoder network (autoencoder). Now, the source
image is first encoded into a latent code, which is then
mapped to the target domain by the generator. The changes in
the discriminator are not structural, but the task changed. In



addition to the traditional adversarial discriminator, the authors
introduce a domain discriminator that analyzes pairs of source
and target (real and fake) samples and judges if they are
associated.

Until this time, the synthetic samples follow the same
quality of plain generation: low quality and low resolution.
This scenario changes with pix2pix [14]. Pix2pix employed a
new architecture for both the generator and the discriminator,
as well as a new loss function. It was a complete revolution!
The generator is a U-Net-like network [15], where the skip
connections allow to bypass information that is shared by
the source-target pair. The authors also introduce a patch-
based discriminator (which they called PatchGAN) to penalize
structure at the scale of patches of a smaller size (usually
70× 70), while accelerating evaluation. To compose the new
loss function, the authors proposed a term that evaluates
the L1 distance between synthetic and ground truth targets,
constraining the synthetic samples without killing variability.

The next step towards high-resolution image-to-image trans-
lation is pix2pixHD (High-Definition) [16], which was widely
used during this M.Sc. dissertation to generate realistic
clinically-meaningful skin lesions. Pix2pixHD obviously is
based upon pix2pix’s work but includes several modifications
while adopting changes brought by CycleGAN with respect
to the generator’s architecture.

The authors propose using two nested generators to enable
the generation of 2048 × 1024 resolution images, where the
outer “local” generator enhances the generation of the inner
“global” generator. Just like CycleGAN, it uses [17]’s style
transfer network as a global generator, and as a base for the
local generator. The output of the global generator feeds the
local generator in the encoding process (element-wise sum of
global’s features and local’s encoding) to carry information
on the lower resolution generation. They are also trained
separately: first, they train the global generator, then the local,
and finally, they fine-tune the whole framework together.

In pix2pixHD, the discriminator also receives upgrades.
Instead of working with lower-resolution patches, pix2pixHD
uses three discriminators that work simultaneously in differ-
ent resolutions of the same images. This way, the lower-
resolution discriminator will be more concerned about the
general structure and coarse details, while the high-resolution
discriminators will pay attention to fine details. So far, every
image-to-image translation GAN generator has assumed the
form of an autoencoder, where the source image is encoded
into a reduced latent representation, that is finally expanded
to its full resolution. The encoder plays an essential role in
extracting information of the source image that will be kept
in the output. Often, even multiple encoders are employed to
extract different information, such as content and style.

III. DATA

Due to the scarcity of good-quality, annotated skin lesion
images, two datasets dominate research on automated skin
lesion analysis: the Interactive Atlas of Dermoscopy [18] and
the ISIC Archive [19]. The Atlas is an educational medical

resource, with many standardized metadata over the cases
it contains, while the ISIC Archive is a much larger, but
also less controlled dataset, with images of different sources.
Nowadays, nearly every reproducible work in the field of skin
lesion analysis refers to these datasets for training, evaluating,
or comparing its models [1], [2], [20], [21].

Two types of skin lesion images compose these datasets:
dermoscopic and clinical. Clinical images — which are only
present in the Atlas dataset — can be captured with standard
cameras, while dermoscopic images can only be captured
with a device called dermatoscope. This device normalizes
the light influence on the lesion, allowing it to capture deeper
details. Dermoscopic images enable the application of medical
algorithms that support the specialists’ decision. There are
algorithms based on the lesion’s characteristics, such as the
ABCD rule (lesions’ Asymmetry, Border, Color, and Diam-
eter); and others such as the 7-points, that are built upon
dermoscopic attributes.

Throughout this work, we rely on dermoscopic attributes to
generate better skin lesion images and to measure bias in our
skin lesion datasets. These attributes are present in the lesions
in the form of visual patterns such as networks, globules, and
streaks. There is a wide variety of dermoscopic attributes, and
each of them can stratify with respect to their regularity, color,
and other specific details. These malignancy markers are only
visible in dermoscopic images and are crucial for specialists
when diagnosing melanoma.

The annotation regarding dermoscopic attributes, despite
crucial for human specialists, is present only for small subsets
of data available for machine learning. Only recently, at ISIC
2017 and 2018 Challenges, the organizers made available a
subset of dermoscopic images with this special annotation to
support the task for dermoscopic features segmentation. The
provided annotation is a map for each of the five interest
attributes: pigment network, negative network, streaks, glob-
ules, and milia-like cysts. This way, we know if an attribute
is present and the portion of the lesion that displays it. On
Atlas, which is the only other source of skin lesion images that
contains this annotation, the annotation is binary (present or
not), not showing the lesion regions that display the patterns.

IV. SKIN LESION IMAGE SYNTHESIS

We proposed a GAN-based method for generating high-
definition, visually-appealing, and clinically-meaningful syn-
thetic skin lesion images. This work was the first that success-
fully generates realistic skin lesion images (Fig. 2). To evaluate
synthetic images’ relevance, we trained a skin cancer classifi-
cation network with synthetic and real images, reaching an im-
provement of 1.3 percentage points. Our full implementation
is available at https://github.com/alceubissoto/gan-skin-lesion.

We aim to generate high-resolution synthetic images of skin
lesions with fine-grained detail to provide correct correlations
to the classification networks, aiding at its generalization. For
that, we directly feed the GAN’s generator with maps that
encode lesions’ dermoscopic attributes and border’s specifici-
ties. This way, instead of generating the image from pure noise



Fig. 2: Comparison between our synthetic samples (top row) and real samples from the ISIC Archive (bottom row).
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Fig. 3: Simplification of our semantic and instance maps.
While the semantic map’s pixels’ values are only ruled by
the class, instance maps’ take in consideration class and the
individual instance defined by superpixels.
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Fig. 4: Our Pipeline. We feed the generator with maps ex-
tracted from real images, resulting in the synthetic images. The
discriminator is fed with batches combining real images and
its maps, or synthetic images and the maps used to generate
them. The output of the discriminators (there are three, each
operating in a different resolution) is finally backpropagated
to train the whole pipeline.

(usual procedure with GANs), we synthesize from a semantic
label map and an instance map (Fig. 3). Because of this
different objective, our problem of image synthesis specified
to image-to-image translation. Fig. 4 summarizes our pipeline.

The semantic and instance maps are crucial for this process
of generation. They encapsulate information about the skin
lesions that simplify the generation process, enabling the

Training Data AUC (%) Set Size p-value

Real 83.4± 0.9 2,346 2.5× 10−3

Instance 82.0± 0.7 2,346 2.8× 10−5

Semantic 78.1± 1.2 2,346 6.9× 10−8

PGAN 73.3± 1.5 2,346 2.3× 10−9

Real+Instance 82.8± 0.8 4,692 1.1× 10−4

Real+Semantic 82.6± 0.8 4,692 1.2× 10−4

Real+PGAN 83.7± 0.8 4,692 2.6× 10−2

Real+2×PGAN 83.6± 1.0 7,038 2.0× 10−2

Real+Instance+PGAN 84.7± 0.5 7,038 –

TABLE I: Performance comparison of real and synthetic
training sets for a skin cancer classification network. We train
the network 10× with each set. The features present in the
synthetic images are not only visually appealing but also con-
tain meaningful information to classify skin lesions correctly.

synthesis of higher quality images. Both maps are based on
segmentation masks and dermoscopic attributes annotations
publicly provided by specialists as part of Task II from the
ISIC 2018 Challenge. The annotation comprises five types of
dermoscopic patterns (pigment network, negative network,
streaks, milia-like cysts, globules), providing a binary mask
for each.

To evaluate the complete set of synthetic images, we train
a skin classification network with different combinations of
synthetic and real data (including only real, only synthetic,
and combinations of both) to compose our training dataset.
We compare the achieved area under the ROC curve (AUC),
testing with augmented replicas of real only images. The
results for training the classification network with synthetic
images confirm they contain features that characterize a lesion
as malignant or benign, and their addition to the training set
of a classification network yields an improvement in the AUC
performance by an average of 1.3 percentage points while
keeping the network more stable (see Table I).

Finally, we need to investigate how our classification models
receive synthetic information and make sure they are provid-
ing correct correlations to improve generalization. Although
synthetic images are almost identical (at least to our eyes)
to real ones, the network perceives differences between them,



(a) Real/Synthetic (b) GradCAM (c) Occlusion

Fig. 5: Saliency maps from (b) GradCAM [22] and (c)
Occlusion [23] for real (first rows) and synthetic (second rows)
images using the same model, trained only with real images.
The saliency maps highlight (in hot colors) the portions of the
image that contributed the most to the prediction. That is, when
highlighted areas are perturbed or altered, the classification
network’s prediction was highly affected.

causing the saliency maps to output differently between real
and synthetic (Fig. 5). This raises awareness to researchers
(including ourselves) when using synthetic lesions to augment
the model’s training datasets. We need to make sure the syn-
thetic images included are contributing positively to the result,
while not reinforcing any possible spurious correlation already
present in the data. Nevertheless, our results, when augmenting
our training datasets with synthetic images, show that this
technique can significantly aid classification for small datasets.

We highlight that this M.Sc. dissertation’s contribution was
published at the ISIC Skin Image Analysis Workshop at
MICCAI 2018 [2] and still is, to this day, state of the art
for skin lesion images synthesis.

V. BIAS IN SKIN LESION DATASETS

Dataset biases may inflate the performance of models (pre-
senting them features that are not truthful to real-world data),
or play down their performance (by destroying correlations
that occur in real-world data, thus preventing models from
exploiting them).

If we think of general datasets, there can be bias over the
scenes (rural or urban), acquisition methods (professional or
amateur), amount of objects in the scene, angles of views,
among other factors [24]. If bias is present even in more
significant and more diverse datasets [24] like ImageNet [25],
it is naive to think it is not present in the smaller and harder to
obtain skin cancer datasets, where we lack works identifying
the possible sources of dataset bias. We know, however,
that there are visible artifacts introduced during the image
acquisition process (e.g., dark corners, marker ink, gel bubbles,
color charts, ruler marks, skin hair) [26] that could inflate
models performances due to spurious correlations (Fig. 6).

Despite being impossible to eliminate wholly, it is crucial
to understand bias and its sources to improve our image
acquisition processes and deep learning models further. A
useful way to measure the first possible effect of a dataset bias

(a) Dark Corners (b) Hair (c) Gel Border

(d) Ruler (e) Ink markings and
Gel bubbles

(f) Patches

Fig. 6: Possible artifacts that may provide spurious correlations
to our classification models.

(undue inflation of performances due to spurious correlations
in the dataset), is a counterfactual experiment, that destroys
the cogent information in the data, and measures how much
the performance of models drops. Therefore, our first set of
experiments follows that procedure, gradually removing infor-
mation from skin lesion images, and measuring the network
performance. We perform single- (training and testing on the
same dataset) and cross-dataset (training on ISIC and testing
on Atlas) experiments, and find that in both cases, the networks
are able to maintain a surprising amount of accuracy, even after
almost all cogent information has been destroyed (Fig. 7).

Measuring the second possible effect (inability to provide
useful correlations for learning) is much harder, since we
cannot, a priori prove those correlations exist in the real world,
neither that the machine-learning model would learn from
them if they were correctly represented in the dataset. The
best we can do is provide additional evidence for the models
that we expect would be useful for a human, and measure if
that makes any difference.

Thus, in our second experiment set, we add progressively
more features, based upon fine-grained dermoscopic attributes
(pigment network, negative network, streaks, milia-like cysts,
and globules) spatially located on the lesions. To provide
those features, we employ the annotations available for Task II
from ISIC 2018 Challenge. We expected that such clinically-
meaningful skin lesion information would improve the net-
work learning process. However, the performance fails to
improve in all scenarios we tested, even when we feed the
network with all the image’s pixels with an additional channel
containing extra clinically-meaningful information (Fig. 8).

When we hide meaningful lesion information from our
models, should it still be able to learn patterns that differentiate
benign from malignant lesions? We believe that when a model
learns to classify malignant lesions by analyzing only the skin
— without information on the borders, biological markers, or
lesions’ diameter — it strongly relies on patterns introduced
during image acquisition and general dataset bias. That prob-
lem is critical for deploying automated skin lesion analysis.
When performing in the real world, we want the network to



Fig. 7: Models’ performance over the disturbed datasets. We
first remove all the pixel colors inside the lesion (only skin),
proceeding to remove border information (bbox), and finally,
removing the size (diameter) of the lesion (bbox70). We show
samples from each dataset in the right. Surprisingly, even when
we destruct all clinical-meaningful information, the network
finds a way to learn to classify skin lesion images much better
than chance.

Fig. 8: Performance comparison of the different sets of images
with the ISIC dataset. We show samples from each set in
the right. Surprisingly, when we try to simplify the learning
process, feeding the network with dermoscopic attributes, the
result does not improve.

be as unbiased as possible to make decisions based on clinical
features. Therefore, it is urgent to understand the current bias
in the datasets used to train and evaluate our works.

We highlight that this M.Sc. dissertation’ contribution was
published at the ISIC Skin Image Analysis Workshop at CVPR
2019 [27], and our paper received the Best Paper Award.
All our source code is readily available on https://github.com/
alceubissoto/deconstructing-bias-skin-lesion.

VI. RESEARCH ACCOMPLISHMENTS

We summarize our main achievements as follows:
• Two conference papers [2], [27] and a technical re-

port [28].
• Second best poster award at the 2018 International Educa-

tional Symposium of The Melanoma World Society [29].
• Sixth place award in the ISIC 2018 Challenge [30].
• Best paper award at the ISIC Skin Image Analysis

Workshop, at the Conference on Computer Vision and
Pattern Recognition (CVPR) [27].

• Winner of the Google Latin America Research Awards
for two years (Google LARA 2018 and 2019).

• Dissemination of our research findings on traditional
media: Jornal Estadão https://tinyurl.com/v8fzqnl, Jor-
nal Correio Popular https://tinyurl.com/sepv732, Jor-
nal da Unicamp https://tinyurl.com/s76ggdo, TV Cul-
tura https://tinyurl.com/vc7qbad, EPTV 2a Edição https:
//tinyurl.com/tov4vj4, TVB Record TV Campinas https:
//tinyurl.com/rpabxod, TV BandMais https://tinyurl.com/
u7cwr2w, Rádio CBN, Show da Notı́cia https://tinyurl.
com/tve42ff.

VII. CONCLUSIONS AND FUTURE WORK

GAN literature review: We provided a comprehensive
GAN state-of-the-art, splitting it into six topics (Architecture,
Conditional Techniques, Normalization, and Constraint Tech-
niques, Loss Functions, Image-to-Image Translation Methods,
and Validation) showing how works influenced each other until
we arrive at the stage we are today [28].

Skin lesion image synthesis: We proposed a method for
skin lesion synthesis that generates high-definition clinically-
meaningful synthetic skin lesions. Our method is, to this day,
the state-of-the-art for skin lesion synthesis, and we have many
paths to increasing the quality and variability of our synthetic
samples [2], [29].

Bias on skin lesion datasets: We investigated the data used
for both synthesis and classification models. Even when no
clinically-meaningful information is presented to it (according
to medical algorithms), the performance of the model is shock-
ingly high, surpassing benchmarks that quantify a specialist’s
performance [27]. This is not a good sign for AI research. Our
work in this matter raised awareness in the community, and
we hope it can be approached soon.

Cancer is already a public health challenge. It is predicted
that 30 million people will die of cancer every year until 2030.
The vast majority of deaths will occur in lower-middle-income
countries, such as Brazil. Automated solutions, like the one
explored in this research, can help change this horizon by
reaching people and selecting the ones at risk and enabling
specialists to focus on them.

We believe we can speed up this process by extracting the
most of each sample while combining different domains (text
from medical records, clinical and histopathologic images,
and genomics). Gathering diversified quality data and learning
how to combine and make sense of this data can be the next
revolution for skin cancer analysis.
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