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Abstract—High-resolution aerial images are usually not acces-
sible or affordable. On the other hand, low-resolution remote
sensing data is easily found in public open repositories. The
problem is that the low-resolution representation can compromise
pattern recognition algorithms, especially semantic segmentation.
In this M.Sc. dissertation1, we design two frameworks in order
to evaluate the effectiveness of super-resolution in the semantic
segmentation of low-resolution remote sensing images. We carried
out an extensive set of experiments on different remote sensing
datasets. The results show that super-resolution is effective to
improve semantic segmentation performance on low-resolution
aerial imagery, outperforming unsupervised interpolation and
achieving semantic segmentation results comparable to high-
resolution data.

I. INTRODUCTION

High-resolution (HR) aerial images are essential for many
remote sensing applications, as they provide a finer represen-
tation of spatial boundaries [1], more precise textures and can
even display small objects that are barely visible in a low-
resolution (LR) representation. High-end satellites and drones
currently are two of the main ways of acquiring HR data. In
reality, however, this type of data is not always employable
or accessible: drones lack autonomy and are not suitable for
large scale problems, and data from HR satellites is expensive
while often presenting low temporal resolution. Thus, relying
on these options is often impracticable.

Due to data unavailability or high-cost reasons, the use of
LR images is often adopted in replacement of the HR ones.
An alternative for remote sensing applications is to get their
data from LR satellite imagery, which is cheap (or free) and
present a long history of acquisition. But a main problem
arises from the use of LR images: the amount of important
information compressed into one single pixel can compromise
machine learning algorithms to detect or segment objects. As
observed by [2], semantic segmentation is one of the computer
vision applications that is more severely affected by the input
of LR images. If the objects are way too small or have similar
textures the low-resolution may cause cases of mislabeling,
dropping the accuracy of the algorithm. In Figure 1 we can see

1This work relates to a M.Sc. dissertation.
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Fig. 1. Thematic map (b) generated from an LR (a) input image (up-sampled
to eight times more with bicubic interpolation) with a SegNet [3].

an example of this situation: there are three cars (yellow class),
but only one of them was correctly labeled by a semantic
segmentation network. Also, it is possible to see that big
parts of the buildings (dark blue class) were mislabeled for
impervious surfaces (white class).

Considering this situation, a natural question to arise is: how
can we effectively reconstruct low-resolution remote sensing
imagery in order to improve semantic segmentation? In this
work, we provide ways of achieving this goal with the use of
super-resolution.

Single image super-resolution (SR) aims to construct a HR
image from a single LR input. In this work, we study the
performance of two frameworks that unite SR and semantic
segmentation methods to generate high-quality thematic maps
for LR remote sensing images. The first one is a two stage
framework that uses SR as a pre-processing step for a se-
mantic segmentation task, training both networks separately.
The second one is an end-to-end framework that trains both
networks at the same time.

The remainder of this document is structured as follows.
Section II presents similar works that evaluated SR for the
improvement of different pattern-recognition tasks. Section III
introduces the proposed frameworks. Section IV presents the
experimental setup and datasets. In Section V we show and
discuss the results. In Section VI we conclude our work and
discuss future possibilities.



II. RELATED WORK

Despite the growing interest in SR and semantic segmenta-
tion, almost no study has yet been made evaluating the perfor-
mance of methods for both problems together. [2] evaluated
SR methods for several vision tasks: edge detection, semantic
segmentation, digit recognition, and scene recognition. Their
experiments showed that applying SR to input images of other
vision systems improves their performance when the input
images are of low-resolution and that standard perceptual
criteria used to evaluate SR methods (such as PSNR) correlate
quite well with the usefulness for the vision tasks. Although
having a similar purpose to us, not only they did not evaluate
on aerial imagery, but they also applied methods for SR and
semantic segmentation that are no longer close to the state-of-
the-art, all in a superficial manner.

[4] proposed a framework that unifies SR and object
detection tasks in an end-to-end training, which incorporates
a trade-off between detection and reconstruction losses. They
used D-DBPN [5] for SR and SSD [6] for object detection.
In terms of detection performance, their results surpassed the
mean average precision (mAP) of bicubic interpolation more
than three times for the test without blur or noise and up to
around eight times for the test with noise on 8× up-scaling.
Like in [2], the tests were not conducted on aerial images.

In [7] and [8], the authors used SR to assist object de-
tection performance in aerial imagery. Both used SSD [6]
for detection, but while the former applied SRGAN [9] as
the SR method, the latter chose VDSR [10]. [8] verified that
super-resolving native 30cm ground sampling distance (GSD)
imagery to 15cm yields a 16 to 20% improvement in detection
mAP on the xView Dataset. [7] applied their tests on the
VEDAI dataset and achieved around 27% more mAP in 4×
up-scaling compared to an LR input.

Another recent work has evaluated the use of SR for the
improvement of semantic segmentation on remote sensing
imagery [11]. They use ESPCN [12] for SR and U-Net [13]
for semantic segmentation. This method inputs in the testing
phase a panchromatic image from a different sensor of lower
resolution. This work applies SR as a pre-processing step for
semantic segmentation and trains the semantic segmentation
network with HR images. In our work, we also study the case
in which we do not have access to HR data even for training.
Moreover, our frameworks do not require a panchromatic
image as input.

III. METHODOLOGY

In this section, we introduce the two frameworks we have
proposed in this work. Both of them are composed of two main
blocks: a SR network and a semantic segmentation network.
The first framework uses SR as a pre-processing step for
semantic segmentation, training the two networks separately.
The second framework is an end-to-end approach that trains
both networks at the same time, taking into consideration
the loss of the two tasks. We first introduce each individual
network (for SR and semantic segmentation) and then we
present the proposed frameworks.

LR Input
HR Output

D-DBPN Segnet

Fig. 2. Overview of the two stage framework, which applies SR on LR images
before sending them to a semantic segmentation network.

A. The Super-resolution Network

D-DBPN [5] was the chosen SR network to be employed
in the frameworks. The main characteristic of D-DBPN is the
error feedback mechanism, in which the method projects the
HR features back to the LR spaces using down-sampling layers
[5]. This allows the network to guide the image reconstruction
by calculating the projection error from the up and down-
sampling blocks. The different ways of projecting back to an-
other LR representation enrich the knowledge of the network,
which learns different ways of up-sampling the features. We
refer to the original paper [5] for further details.

In order to train the SR network, we need pairs of cor-
responding low and high-resolution images. It is possible to
automatically generate LR images by degrading the HR ones.
We use the same default network configuration proposed in
D-DBPN’s original paper [5] in terms of kernel size, striding,
padding and number of back-projection stages. This network
is trained with the L1 loss.

B. The semantic segmentation network

For the semantic segmentation task, we employ SegNet [3],
which has an encoder-decoder architecture that is followed by
a pixelwise classification layer. The encoder network consists
of the first 13 convolutional layers of the VGG16 network
[14] for object classification. Each decoder layer has a corre-
sponding encoder from which it receives max-pooling indices
to perform non-linear upsampling of their input feature maps
[3]. We also refer to the original paper [3] for further details.
The training of the Segnet is performed with the use of a
pixelwise cross-entropy loss.

C. The Two Stage Framework

The two stage framework is presented in Figure 2. It was
first used similarly in [2], but, as explained in Section II, the
evaluation was highly superficial and not for remote sensing
images. The pipeline of such framework is straightforward.
First, an LR image, from which we desire to generate a
thematic map, is processed by the SR network. The output
from this first step is a reconstructed version of the LR input.
The second step consists of inputting the super-resolved image
in the semantic segmentation network. The final output, there-
fore, is the thematic map classifying each pixel of this image.
As the resolution and quality of the reconstructed image are
higher than the original input, the final thematic map should
be more accurate than one generated by directly inputting the
LR image into the semantic segmentation network.

Although we employed D-DBPN and SegNet, any other
method with the same input and output configuration could
replace them according to the task or preference.



As mentioned, the two networks are trained separately. The
main disadvantage of this approach is that it is not possible to
use the semantic segmentation loss to bias the SR network into
creating an output that is more easily segmented by the other
method. On the other hand, since the training of the semantic
segmentation network is performed apart, any available data
that does not have a corresponding thematic map can be used
to train the SR network. This is especially useful in the context
of aerial imagery, which has less labeled data available when
compared to normal images.

For D-DBPN, we train the model for 300 epochs and
randomly extract a 32 × 32 random patch for input from the
LR image on each iteration. The learning rate is initialized to
1e − 4 and is decayed by a factor of 10 at half of the total
epochs. For optimization, we use Adam with 0.9 momentum
and 1e− 4 weight decay.

For SegNet, we also follow the same approach that was
proposed in its original paper [3]. We train the model for
500 epochs with inputs of size 480 × 480. The learning rate
is initialized to 1e − 4. We use Adam optimizer with 0.9
momentum and 5e − 4 weight decay. Also, in order to train
SegNet in this framework, we only use available HR data.
However, during testing, we input the reconstructed images
generated from the LR ones. The motivation for this is that
in many cases, only a few amounts of data are available for
training, but in practice, we often need to perform semantic
segmentation on LR images. Our objective is to demonstrate
that it is possible to achieve more accurate semantic segmen-
tation results by inputting a reconstructed version of the LR
images, instead of the degraded images themselves.

D. The End-to-end Framework

The end-to-end framework is capable of training the SR
and the semantic segmentation network at the same time.
This is an interesting approach as it allows the semantic
segmentation network to guide the SR reconstruction in a way
that is more beneficial for its own vision. When using the
two stage framework, the SR method does not take anything
into consideration apart from the network’s loss and the
quality of reconstruction criterion (PSNR). By allowing the
semantic segmentation loss to be also used in the training
procedure together with the SR loss, we are letting it bias
the reconstruction procedure in a way that makes the image
features more easily segmented.

Our proposed framework for this case is based on the task-
driven architecture proposed in [4] and can be seen in Figure 3.
It works as follows: first, the LR input image is sent to the
framework, where it will first be processed by the SR module.
The result of this process will be a super-resolved image that
will be used both to calculate the L1 loss (SR loss) and as
input to the semantic segmentation part. After being processed
by the SegNet, the final output of the framework will be an HR
thematic map made from the LR input. This thematic map will
also serve to calculate the semantic segmentation loss (cross-
entropy). The unified loss (ξ) of the framework is calculated

HR ground-truth

L1 loss

SR output

Predicted
thematic map

Ground-truth
thematic map

Cross-Entropy
Loss...

LR input

D-DBPN Segnet

Pooling indices

Fig. 3. Overview of the end-to-end framework, which trains the SR and
semantic segmentation networks at the same time.

as in Equation 1, similarly to how [5] applied it to the object
detection task.

ξ = αL1(IHR, SR(ILR))+βCe(yHR, Seg(SR(ILR))), (1)

where L1(.) represents the SR loss, and Ce(.) the cross-
entropy loss for semantic segmentation. IHR and ILR repre-
sent, respectively, the HR ground truth image and the LR input.
yHR is the ground-truth thematic map. SR(.) and Seg(.)
are, respectively, the SR and semantic segmentation networks.
Finally, α and β are pre-defined values that represent the
balance between the SR and semantic segmentation losses.

The definition of the α and β values is the key to defin-
ing how biased the outputs will be for human or machine
perception. With an α value higher than β, the network will
prioritize the SR reconstruction over the result of the semantic
segmentation. However, by setting a β value higher than α,
the framework will penalize more the semantic segmentation
error and consider less how the image reconstruction is being
performed.

This framework is trained for 300 epochs with inputs of
size 480 × 480. The learning rate is initialized to 1e − 5
and is decayed by a factor of 10 at half of the total epochs.
Each individual network inside the framework (D-DBPN and
SegNet) is optimized under the same conditions as they do in
the two stage framework.

IV. EXPERIMENTAL SETUP

A. Datasets

In order to evaluate our frameworks, we selected three
distinct remote sensing datasets. The first one is the Brazilian
Coffee Scenes Dataset [15], which is an agricultural dataset
composed of scenes containing coffee and non-coffee areas
from three cities located in Minas Gerais (Brazil): Guaranésia,
Guaxupé and Monte Santo de Minas. The second one is the
Vaihingen dataset, provided by the International Society for
Photogrammetry and Remote Sensing (ISPRS) Commission
for the 2D Semantic Labeling Contest, which contains urban
scenes with six different pixel classes. The third one is the
2014 IEEE GRSS Data Fusion Contest dataset (Thetford
dataset), that also contains urban scenes and seven thematic
classes.

For the coffee dataset, we employed a protocol in which we
train the networks on the images of two cities and test them
on the remaining city. Later, the results for this dataset will be



reported in terms of the mean and standard deviation of these
three cases.

Labeled ground truth is provided for only one part of the
Vaihingen dataset. Thus, we trained and tested our framework
using only the publicly available images. We applied the same
division of the data as in [16]: areas 11, 15, 28, 30 and 34
are used as test, while the remaining areas are seen during
training. We excluded from the results the clutter/background
class, since it represents less than 1% of the dataset and is
designated to unclassified or rejected objects on the scene.

For the Thetford dataset, we use the same parts of the
image selected by the contest for training and test. The original
dataset contains seven classes, but one of them (bare soil) is
only present in the training part of the full data. Thus, we do
not considerate this class in our results, as it takes part in the
SR training set.

B. Implementation Details

We evaluate our frameworks under two scaling factors of
degradation: 4× and 8×. Our objective is to compare how
much the SR network can help in each case.

We evaluate the quality of regenerated images in terms of
Peak Signal-to-Noise Ratio (PSNR). We evaluate the PSNR
over all the three channels of the inputs. For the semantic
segmentation, we used four metrics: pixel accuracy (acc), nor-
malized accuracy (norm.acc), mean intersection over union
(IoU ) and Cohen’s Kappa coefficient (Kappa).

We applied a similar experimental protocol for each one of
the datasets. First of all, we divide the training and testing HR
images in crops of size 480×480, from which we create the LR
inputs. To create the LR images, we follow the same approach
used by [4] (on their first experiment), [2] and [7]: we apply
bicubic interpolation on the HR image with the desired down-
scaling factor.

The weights of D-DBPN are initialized with the pre-trained
model provided by the original Github repository of the
paper [5]. Similarly, Segnet is fine-tuned with the VGG16
trained weights for image classification. For the end-to-end
framework, we also initialize each one of these corresponding
blocks in the same way.

For the two stage framework, we start by training the SR
network for the desired up-scaling factor using the pairs of
original HR data and the generated LR images. During this
stage we can also use data that does not contain a correspond-
ing thematic map in order to improve the SR training. We also
train the semantic segmentation network with the available
HR data and the thematic maps. This procedure works as a
simulation of a real-world scenario, in which we have already
trained the models with the few available HR data and now
we need to apply the semantic segmentation on a new LR
image. The final evaluation is performed on the output of the
semantic segmentation network.

For the training of the end-to-end framework, the SR and
semantic segmentation networks are trained together in a
single step. Thus, unlabeled data for semantic segmentation
will not be used in the framework. Differently from the

two stage framework, the end-to-end framework simulates the
whole process of training and testing already expecting an
LR image as input. Therefore, this framework is less versatile
than the previous (detaching the semantic segmentation block
will not allow it to perform well in HR data), but it is more
powerful on LR images.

We experimented with many different losses configura-
tions for the end-to-end framework by changing the α and
β values of Equation 1. As our objective is to improve
semantic segmentation results, we aim for higher β values.
We tested the framework on the Vaihingen dataset with α
values from the set {0.001, 0.1, 1}, and β values from the
set {1, 10, 100, 1000, 10000, 100000}. We observed that lower
β values achieved results that were similar to the two stage
framework and that the higher the β values, the higher was the
number of artifacts created in the reconstructed image. Under
these circumstances, the best results were achieved with the
0.1/1000 configuration for α and β, respectively. For now on,
the results reported next for the end-to-end framework are all
using this same configuration.

V. RESULTS AND DISCUSSION

We conducted an extensive series of experiments to an-
swer the following research questions: (1) How effective is
deep-based SR to different levels of degradation for remote
sensing semantic segmentation tasks? (2) How deep-based SR
compares to classical unsupervised interpolation? (3) Is deep-
based SR able to reconstruct small objects and, consequently,
contribute to semantic segmentation improvement?

A. Effectiveness to different levels of degradation

Table I presents the performance of the two stage framework
with 4× and 8× degradation factor.

TABLE I
SEMANTIC SEGMENTATION PERFORMANCE OF THE TWO STAGE

FRAMEWORK FOR DIFFERENT DEGRADATION FACTORS

Dataset Deg. Acc Norm. acc IoU Kappa

Coffee
8× 0.763 ± 0.011 0.720 ± 0.030 0.581 ± 0.030 0.463 ± 0.047
4× 0.802 ± 0.005 0.772 ± 0.003 0.645 ± 0.006 0.562 ± 0.009
1× 0.833 ± 0.013 0.816 ± 0.009 0.697 ± 0.017 0.639 ± 0.024

Vaihingen
8× 0.744 0.593 0.476 0.662
4× 0.791 0.636 0.525 0.723
1× 0.847 0.683 0.590 0.798

Thetford
8× 0.544 0.600 0.291 0.406
4× 0.717 0.666 0.426 0.589
1× 0.845 0.818 0.646 0.763

The results show for all datasets that image resolution
has a high impact on semantic targeting results. The lower
the resolution, the worse the result. However, the impact
of the degradation rate impacts differently for each dataset.
Concerning coffee, the segmentation quality loss is relatively
low for all metrics. It is an indication that for cropping, the
use of deep-based SR can improve the results. In the case of
the urban datasets, the impact of the loss of resolution was
greater than for coffee crops. The main explanation for the
effect is that the Coffee dataset has only two classes and,



in general, the coffee crops are relatively large areas. In the
case of the urban scenes, the accuracy was reduced mainly
due to classes such as trees and cars that are composed of
small regions that are difficult to recover given the strong
loss of information. The difference for Thetford was higher
than for Vaihingen because of the high amount of data that
is available for the Vaihingen dataset, especially to train D-
DBPN. This indicates that deep-based SR can increase the
semantic segmentation results relatively close to a native HR
data given enough training.

TABLE II
SEMANTIC SEGMENTATION PERFORMANCE OF THE END-TO-END

FRAMEWORK FOR DIFFERENT DEGRADATION FACTORS

Dataset Deg. Acc Norm. acc IoU Kappa

Coffee
8× 0.800 ± 0.025 0.778 ± 0.024 0.647 ± 0.034 0.565 ± 0.052
4× 0.820 ± 0.012 0.809 ± 0.009 0.680 ± 0.014 0.616 ± 0.020
1× 0.833 ± 0.013 0.816 ± 0.009 0.697 ± 0.017 0.639 ± 0.024

Vaihingen
8× 0.828 0.662 0.565 0.773
4× 0.829 0.663 0.569 0.773
1× 0.847 0.683 0.590 0.798

Thetford
8× 0.860 0.856 0.698 0.788
4× 0.873 0.841 0.711 0.799
1× 0.845 0.818 0.646 0.763

Table II shows the semantic segmentation results of the
end-to-end framework. It is possible to see that the impact
of 8× degradation factor while using the end-to-end approach
is not as considerable compared to 4× as in the two stage
framework. In the Thetford dataset, the normalized accuracy
was even higher when inputting 8× degraded images, while
the remaining metrics also stood close. This indicates that
the end-to-end framework is more capable of dealing with
higher degradation factors without losing too much semantic
segmentation accuracy. This is due to the fact that this frame-
work can change the reconstructed image with information
that is more easily discernible for the semantic segmentation
task. When relying only on the SR loss, there is no assurance
that similar textures will be reconstructed in a way that
highlights the differences among them. By letting the semantic
segmentation task guide the super-resolution, we are allowing
this highlighting to occur automatically. Another important
reason that makes the end-to-end framework perform better is
that it is trained with LR data as input, while the Segnet of the
two stage framework is trained with HR data. Therefore, the
difference in the degrading factors impacts more a network
trained with HR data only than a network trained with that
specific degradation as input.

We can also see that even the difference to native HR
data (1× degradation) is smaller in the end-to-end framework.
The most interesting and noticeable change is in regard to
the Thetford dataset. The end-to-end framework managed
to achieve better results with LR images than the semantic
segmentation trained on HR data. One of the reasons that
made this happen is the low amount of training data for this
dataset. The lack of training images compromised the SegNet
to differentiate similar classes and deal with the intra-class
variance. The framework is capable of differentiating these

cases due to the way it is trained. Also, considering that the
low-resolution aspect diminishes the intra-class variance, the
results of the framework ended up being better than expected.

What the results show is that the end-to-end framework
is more effective than applying SR as a pre-processing step
for semantic segmentation trained with HR data. This was an
expected conclusion, since the semantic segmentation network
of the two stage framework is trained with HR data and,
therefore, is not being tested with the same resolution. This
does not change the fact that SR can indeed improve the results
for LR data when the training is performed on HR images.

B. Comparison to bicubic interpolation

TABLE III
COMPARISON BETWEEN THE PERFORMANCE OF BICUBIC INTERPOLATION

AND THE PROPOSED FRAMEWORKS.

Dataset Deg. Method PSNR (dB) Norm. acc Kappa IoU

Coffee

4×
Bicubic 25.209 ± 0.797 0.566 ± 0.021 0.161 ± 0.050 0.401 ± 0.027
Two stage 27.278 ± 1.114 0.772 ± 0.003 0.562 ± 0.009 0.645 ± 0.006
End-to-end 26.055 ± 0.369 0.809 ± 0.009 0.616 ± 0.020 0.680 ± 0.014

8×
Bicubic 21.660 ± 0.694 0.501 ± 0.001 0.003 ± 0.001 0.317 ± 0.003
Two stage 22.833 ± 1.182 0.720 ± 0.030 0.463 ± 0.047 0.581 ± 0.030
End-to-end 21.272 ± 1.349 0.778 ± 0.024 0.565 ± 0.052 0.647 ± 0.034

Vaihingen

4×
Bicubic 28.745 0.574 0.641 0.452
Two stage 31.197 0.636 0.723 0.525
End-to-end 26.369 0.663 0.773 0.569

8×
Bicubic 25.388 0.474 0.528 0.344
Two stage 27.454 0.593 0.662 0.476
End-to-end 22.619 0.662 0.773 0.565

Thetford

4×
Bicubic 26.829 0.577 0.427 0.290
Two stage 31.029 0.666 0.589 0.426
End-to-end 29.818 0.841 0.799 0.711

8×
Bicubic 23.335 0.466 0.167 0.140
Two stage 26.317 0.600 0.406 0.291
End-to-end 25.592 0.856 0.788 0.698

Table III presents the results for semantic segmentation by
using bicubic interpolation and the proposed frameworks. It
also reports the reconstruction rate with PSNR. As the table
shows, the use of SR improved the semantic segmentation
results of all the metrics for all datasets and degradation
factors. An important improvement can be noted for the
Thetford dataset. Being able to increase the performance with
deep-based SR even when it contains a small amount of
training data shows that our frameworks are more reliable than
interpolation.

Regarding the reconstruction, the PSNR is higher when
applying D-DBPN directly as an up-scaling method (as in the
two stage framework) instead of a simple bicubic interpolation.
This means that the super-resolved output contains more
visually appealing, high-frequency details than an interpolated
image. However, the PSNR in the end-to-end approach does
not follow the same pattern. Even though the reconstruction
metric is not as high as the other options in some cases, the
semantic segmentation results are better. That happens because
the supervision of the semantic segmentation network in the
training of the SR method allows the framework to change the
visual characteristics of the reconstructed image. This makes
the PSNR drop since the SR output will present details that are
inexistent in the ground-truth HR image, but those details are
exactly what makes the performance of the SegNet improve.



C. Robustness to small object segmentation

In order to verify the effectiveness of the two frameworks in
the segmentation of small objects, we analyzed the accuracy
obtained by class for the Vaihingen dataset. Visual results for
SR and semantic segmentation are shown in Figure 4.

Considering the car class, a Segnet trained with HR data
achieves 69% accuracy. The end-to-end framework managed to
stay close to this value even under 8× degradation: it achieved
65%. The use of LR data compromises a lot the performance:
bicubic up-sampled inputs could predict correctly only 19% of
the car pixels. The two stage framework increased this value to
58%. This confirms that SR and both frameworks are capable
of making more discernible objects that are too small in an
LR representation. In Figure 4 we can see an example of a
segmentation that missed most of the car information due to
the LR representation, but that was successfully recovered with
the use of both frameworks. The results also presented a great
improvement for the building class, which achieved only 31%
accuracy with LR inputs, but 68% and 89% with the two stage
and end-to-end frameworks, respectively (HR inputs achieved
93%).

Finally, by observing the visual results of the reconstructed
images from the end-to-end framework in Figure 4, it is
possible to see the different textures employed by the semantic
segmentation network that helped it to more accurately classify
the pixels.

VI. CONCLUSION

In this work, we presented two frameworks that generate
more accurate semantic segmentation thematic maps for LR
remote sensing inputs with the use of super-resolution. The
first one uses SR as a pre-processing, while the second one
trains one single network that shares the loss of both tasks. We
evaluated their performances on three different aerial datasets
and under two degradation factors, comparing the results with
bicubic up-sampled inputs.

SR was confirmed to be a viable strategy to recover im-
portant texture and object details for semantic segmentation.
The recovered texture information greatly helps not to mislabel
similar classes. Small objects, such as the cars in the Vaihingen
dataset, which are not easily detected on LR representations,
can become more discernible with the employment of SR.

The end-to-end framework allows the semantic segmenta-
tion loss to coordinate the image reconstruction. The recon-
structed image for this framework presents artifacts generated
by the semantic segmentation network that help the task to be
performed.

For future work we plan to evaluate different experiments,
such as the performance of a semantic segmentation network
when trained and tested with LR data compared to the use
of SR. We can also evaluate the performance with only
reconstructed data. There is also space to study how different
reconstruction/visual benchmarks can help to enhance the
semantic segmentation performance more than PSNR, such
as adversarial losses from GANs.

(a) HR image (b) Ground-truth

(c) 8× interpolated image (d) 8× interpolation map

(e) 8× SR image with two
stage framework

(f) 8× SR map with two
stage framework

(g) 8× SR image with end-
to-end framework

(h) 8× SR map with end-
to-end framework

Fig. 4. Example results for the Vaihingen dataset with 8× up-scaling factor.
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