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Abstract—This work1 addresses the activity recognition prob-
lem. We propose two different representations based on motion
information for activity recognition. The first representation is
a novel temporal stream for two-stream Convolutional Neural
Networks (CNNs) that receives as input images computed from
the optical flow magnitude and orientation to learn the motion in
a better and richer manner. The method applies simple non-linear
transformations on the vertical and horizontal components of the
optical flow to generate input images for the temporal stream. The
second representation is a novel skeleton image representation to
be used as input of CNNs. The approach encodes the temporal
dynamics by explicitly computing the magnitude and orientation
values of the skeleton joints. Experiments carried out on chal-
lenging well-known activity recognition datasets (UCF101, NTU
RGB+D 60 and NTU RGB+D 120) demonstrate that the proposed
representations achieve results in the state of the art, indicating
the suitability of our approaches as video representations.

I. INTRODUCTION

Human activity recognition has been used in many real-
world applications, such as surveillance systems, video re-
trieval systems and health care. Over the last decade, a signifi-
cant portion of the progress on the activity recognition task has
been achieved with the design of discriminative representations
known as handcrafted feature descriptors employed with a
machine learning classifier. Moreover, with the development
of cost-effective RGB-D sensors (e.g., Kinect), it became pos-
sible to employ different types of data such as human skeleton
joints to perform 3D activity recognition. Nowadays, large
efforts have been dedicated to the employment of deep Convo-
lutional Neural Networks (CNNs) as representation learning.
These approaches learn hierarchical layers of representations
to perform pattern recognition and have achieved effective
results on the activity recognition task [2]–[6].

The temporal component of videos provides an important
clue for activity recognition, as a number of activities can be
reliably recognized based on motion information. Hence, a
significant portion of the progress on the activity recognition
task has been achieved with the design of discriminative rep-
resentations exploring temporal information based on motion
analysis [2], [4], [5]. In view of that, in this work we explore
the use of motion information based on optical flow and the
motion extracted from skeleton joints to compute our represen-
tations. Our representations are based on the assumption that
the motion information on a video sequence can be described

1This work corresponds to a PhD dissertation [1].

by the spatial relationship contained on the local neighborhood
of magnitude and orientation extracted from the optical flow
or from skeleton information. More specifically, we assume
that the motion information is adequately specified by fields
of magnitude and orientation.

Considering the image-domain, our first representation is a
novel feeding scheme for CNNs based on images computed
from the optical flow to learn the motion in a better and richer
manner, named Magnitude-Orientation Stream (MOS). The
method applies simple nonlinear transformations (magnitude
and orientation) on the vertical and horizontal components of
the optical flow to generate the input images. Regarding the
skeleton-domain, we propose the SkeleMotion representation.
The proposed approach encodes temporal dynamics by explic-
itly using motion information computing the magnitude and
orientation values of the skeleton joints. Moreover, different
temporal scales are used to aggregate more temporal dynamics
to the representation making it able to capture long-range joint
interactions involved in activities.

II. PROPOSED APPROACHES

A. Image Domain-based Approach

1) Magnitude-Orientation Stream (MOS): The two-stream
network is composed of two different networks receiving
distinct flows of data, spatial and temporal. The spatial stream
receives as input the RGB frames while the temporal stream
receives optical flow images as input.

The process for computing the optical flow images is the
following. For each frame F at time t, the optical flow Ot is
computed considering Ft and Ft+1. The resulting optical flow
Ot is composed of two channels: (i) Ox

t , denoting an image
containing the x (horizontal) displacement field; and (ii) Oy

t ,
denoting an image containing the y (vertical) displacement
field. Moreover, to avoid storing the displacement fields as
floats, the horizontal and vertical components of the flow are
linearly rescaled to a [0, 255].

Our MOS follows the same fundamentals as the two-stream
networks. However, aiming at extracting more information
from the optical flow, MOS captures the displacement informa-
tion by using the orientation of the optical flow and the veloc-
ity of the movement considering the optical flow magnitude.
The spatial relationship contained on local neighborhoods of
magnitude and orientation captures not only displacement by
using orientation, but also magnitude, providing information



regarding the velocity of the movement. The method is based
on non-linear transformations on the optical flow components
to generate input images for the temporal stream.

To incorporate such information on the temporal stream,
we compute the dense optical flow as Wang et al. [7].
For each video composed of n frames, we compute n −
1 optical flows O. Once the optical flow is available,
we compute the magnitude and orientation information as
Mi,j =

√
(Ox

i,j)
2 + ( Oy

i,j)
2 and θi,j = tan−1

(Oy
i,j

Ox
i,j

)
,

where M and θ are magnitude and orientation information,
respectively.

Since the values obtained in M and θ are composed of real
numbers, they are linearly rescaled to a [0, 255]. Moreover,
since the orientation values are estimated for every pixel of
the optical flow, they can generate noisy values from regions
of the image without any movement. Therefore, we perform
a filtering on θ based on the values of M as

θ
′

i,j =

{
0, if Mi,j < m

θi,j , otherwise ,

where m is a magnitude threshold value.
With the rescaled magnitude and orientation information,

which can be seen as two image channels, it can be used as
input to CNNs.

B. Skeleton Domain-based Approach

1) SkeleMotion: As the forerunner of skeleton image rep-
resentations, Du et al. [3] represent the skeleton sequences
as a matrix. Each row of such matrix corresponds to a chain
of concatenated skeleton joint coordinates from the frame t.
Hence, each column of the matrix corresponds to the temporal
evolution of the joint j. At this point, the matrix size is
J ×T × 3, where J is the number of joints for each skeleton,
T is the total frame number of the video sequence and 3 is the
number coordinate axes (x, y, z). The values of this matrix are
quantified into an image (i.e., linearly rescaled to a [0, 255]).
In this way, the temporal dynamics of the skeleton sequence
is encoded as variations in rows and the spatial structure of
each frame is represented as columns.

Motivated by our MOS approach, we propose a novel
skeleton image representation (named SkeleMotion), based
on magnitude and orientation of the joints to explore the
temporal dynamics. Our approach expresses the displacement
information by using orientation encoding (direction of joints)
and magnitude to provide information regarding the velocity
of the movement. Furthermore, due to the successful results
achieved by the skeleton image representations ( [3], [6], [8]–
[12]), our approach follows the same fundamentals by rep-
resenting the skeleton sequences as matrices. First, we apply
the depth-first tree traversal order [6] to the skeleton joints to
generate a pre-defined chain order C that best preserves the
spatial relations between joints in original skeleton structures2.
Afterwards, we compute a matrix S that corresponds to a chain

2Chain C considering 25 Kinect joints: [2, 21, 3, 4, 3, 21, 5, 6, 7, 8, 22,
23, 22, 8, 7, 6, 5, 21, 9, 10, 11, 12, 24, 25, 24, 12, 11, 10, 9, 21, 2, 1, 13,
14, 15, 16, 15, 14, 13, 1, 17, 18, 19, 20, 19, 18, 17, 1, 2], as defined in [6].

of concatenated skeleton joint coordinates from the frame t.
In view of that, each column of the matrix corresponds to
the temporal evolution of the arranged chain joint c. At this
point, the size of matrix S is C × T × 3, where C is the
number of joints of the chain, T is the total frame number
of the video sequence and 3 is the number joint coordinate
axes (x, y, z). Then, we create the motion structure D as
Dc,t = Sc,t+d − Sc,, where each matrix cell is composed

of the temporal difference computation of each joint between
two frames of d distance, resulting in a C×T −d×3 matrix.

We build two different representations using the pro-
posed motion structure D: one based on the magnitudes
of joint motions and another one based the orientations of
the joint motion. We compute both representations using
Mc,t =

√
( Dx

c,t)
2 + ( Dy

c,t)
2 + ( Dz

c,t)
2 and

θc,t = stack(θxyc,t, θ
yz
c,t, θ

zx
c,t),

θxyc,t = tan−1
(
Dy

c,t

Dx
c,t

)
,

θyzc,t = tan−1
(
Dz

c,t

Dy
c,t

)
,

θzxc,t = tan−1
(
Dx

c,t

Dz
c,t

)
,

where M is the magnitude skeleton representation of size J×
T − d × 1 and θ is the orientation skeleton representation of
size J × T − d× 3 (composed of 3 stacked channels).

Finally, the generated matrices are normalized to [0, 1] and
empirically resized to a fixed size of C×100, since number of
frames may vary depending on the skeleton sequence of each
video. Figure 1 gives an overview of our method for building
the SkeleMotion representation.

To capture long-range joint interactions involved in ac-
tivities, we pre-compute the motion structure D considering
different d distances, which we called Temporal Scale Ag-
gregation (TSA). For each of the motion structures D, we
compute its respective magnitude skeleton representation M
and then stack them all into one single representation. The
same idea is applied to compute the orientation skeleton
representation θ, however since the orientation values are
estimated for every joint, it might generate noisy values for
joints without any movement. Therefore, we perform a filtering
on θ based on the values of M with a weighting scheme, as

θ
′

c,t =

{
0, if Mc,t < m× d

θc,t, otherwise .

where m is a magnitude threshold value. Such technique adds
more temporal dynamics to the representation by explicitly
showing temporal scales to the network. Therefore, the net-
work can learn which movements are relevant for the activity
and also is able to capture long-range joint interactions.

III. EXPERIMENTAL ANALYSIS

In this section we present the experimental results ob-
tained with our proposed representations. The results will be
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Fig. 1. SkeleMotion representation. (a) Skeleton data sequence of T frames. (b) Computation of the magnitude and orientation from the joint movement. (c)
θ
′

and M arrays: each row encodes the spatial information (relation between joint movements) while each column describes the temporal information for
each joint movement. (d) Skeleton image after resizing and stacking of each axes.

presented in two different groups, each one regarding the
proposed representation and its experimental setup.

A. Image Domain-based Approach Evaluation

We first introduce the implementation details regarding
MOS and then we compare the proposed approach to other
CNN methods in the literature. We used Very Deep Two-
Stream network (VD2S) [7] with VGG-16 and Temporal
Segment Networks (TSN) with Inception [4] as baseline
comparisons. To isolate only the contributions brought by our
method, the baselines were evaluated with ImageNet model as
pre-training, the same splits of training and testing data. The
evaluations are performed considering a well-known dataset
for the activity recognition problem, UCF101 [13].

1) Implementation Details: Training: Following our base-
lines [4], [7], we set the learning rate initially to 0.005. For the
VD2S [7], the learning rate decreases at every 5, 000 iterations
dividing it by 10. The maximum number of iterations was set
to 15, 000. We followed a similar scheme for the TSN [4]
reducing the learning rate after 12, 000 and 18, 000 iterations.
For the TSN, the number of iterations was set to 20, 000. We
kept the same schedule for all training sets. The weights are
learned using the mini-batch stochastic gradient descent with
a momentum set to 0.9 and weight decay of 0.0005. We also
set high dropout ratio for the fully-connected (FC) layers (0.9
and 0.8).

We employed the same data augmentation techniques used
by our baselines [4], [7]. Thus, we cropped and flipped four
corners and the center of the frame. In addition, we applied
a multi-scale cropping method and randomly sampled the
cropping width and height from {256, 224, 192, 168} (finally,
we resize the cropped regions to 224× 224).

Test: To perform a fair comparison, we applied the same test
scheme used by our baseline [7], described as follows. First,
we sample 25 magnitude/orientation flow images for testing.
Then, from each of these, we obtain 10 convolutional network
inputs (by cropping and flipping four corners and the center).
Finally, the prediction score for the input video is obtained by

averaging the sampled images’ scores and their crops. For the
fusion of streams, we use a non-weighted linear fusion that
consists in a combination of their prediction scores.

Optical Flow Extraction: The magnitude/orientation images
are computed from the optical flow information. For the sake
of comparison, we used the same optical flow algorithm as
our baselines (TVL1 algorithm [14]). To obtain the magnitude
and orientation image information we empirically set the
parameterm = 128 to compute θ

′
.

2) Results and Comparisons: We report the activity recog-
nition performance of our MOS with VGG-16 architecture
and the VD2S baseline [7] on the UCF101 dataset in Table I.
A considerable improvement was obtained with MOS when
compared to the baseline single streams, reaching 90.5% of
average accuracy over the 3 splits of UCF101 dataset. There
is an improvement of 3.5 p.p. when compared to Very Deep
Temporal Stream (VDTS) [7] and 12.1 p.p. when compared
to Very Deep Spatial Stream (VDSS) [7]. This shows that the
optical flow preprocessing (i.e., extraction of magnitude and
orientation information) brings improvement over using raw
optical flow information. Furthermore, it is worth noting that
our best result using MOS is close to the best one reported
(VD2S), which is obtained by using a combination of two
different streams (spatial and temporal information), while we
only used our single MOS (temporal information). Therefore,
such results can be considered remarkably good and shows
that preprocessing the inputs helps on guiding the network to
extract certain information.

Figure 2 shows the confusion matrices of VDTS and our
MOS for the UCF101 split 1. Our approach fails on classes
that are more semantically closer to each other3, whereas
VDSS and VDTS fail in a random manner. In addition, the
three methods produce false positives and false negatives
different from each other, indicating the possibility of fusion.

3Since the activities on the confusion matrices are sorted according to its
labels (e.g., ApplyEyeMakeup, ApplyLipstick, or BaseballPitch, Basketball,
BasketballDunk), near regions denote semantically closer activities.



(a) VDTS (b) MOS

Fig. 2. Confusion matrices on UCF101 split 1. False positives and false
negatives were highlighted to show where each method fails.

To exploit a possible complementarity of the three ap-
proaches (VDSS, VDTS and our MOS), we combined the
different streams by employing a late fusion technique using
a weighted linear combination of their prediction scores.
According to the results showed in Table I, any type of
combination performed with our MOS provides better results
than VD2S [7], with the best result achieving an improvement
of 2.4 p.p. over VD2S [7].

TABLE I
ACTIVITY RECOGNITION RESULTS (AVERAGE ACCURACY % OVER 3

SPLITS AND STANDARD DEVIATION) OF MOS WITH VGG-16
ARCHITECTURE AND VD2S [7] BASELINE ON THE UCF101 [13]

Approach Avg. Acc. (%)
VDSS [7] 78.4 ± 1.1

Baseline VDTS [7] 87.0 ± 1.0
VD2S [7] 91.4 ± 0.3

MOS (VGG-16) 90.5 ± 0.9
Our MOS + VDSS [7] 92.5 ± 0.5

results MOS + VDTS [7] 92.4 ± 0.9
MOS + VD2S [7] 93.8 ± 0.7

We also report the activity recognition performance of
our MOS with Inception architecture in comparison with the
TSN [4] baseline in Table II. According to the results, a
considerable improvement was achieved with MOS when com-
pared to the TSN [4] baseline single streams, reaching 92.4%
of accuracy on UCF101. We can note an improvement of
7.3 p.p. when compared to Spatial Segment Stream (SSS) [4]
and 2.7 p.p. when compared to Temporal Segment Stream
(TSS) [4]. Once more, such results confirm that preprocessing
the optical flow inputs helps guiding the network to extract a
better information and, although temporal evolution patterns
can be learned implicitly with CNNs, an explicit modeling is
preferable and is able to achieve better results.

We also exploited a possible complementarity of the spatial
and temporal streams from TSN and our MOS approach. Here,
we applied the same late fusion technique used on VGG-16
architecture experiments, which consists of a weighted linear
combination of the prediction scores. Last line of Table II
shows the combination results, with the best result improving
2.7 p.p when compared to TSN [7].

TABLE II
ACTIVITY RECOGNITION RESULTS (AVERAGE ACCURACY % OVER 3

SPLITS AND STANDARD DEVIATION) OF MOS WITH INCEPTION
ARCHITECTURE AND TSN [4] BASELINE ON THE UCF101 [13].

Approach Avg. Acc. (%)
SSS [4] 85.1 ± 0.4

Baseline TSS [4] 89.7 ± 1.6
TSN [4] 94.0 ± 0.4

MOS (Inception) 92.4 ± 0.7
Our MOS + SSS [4] 96.3 ± 0.3

results MOS + TSS [4] 94.3 ± 0.6
MOS + TSN [4] 96.7 ± 0.2

Table III presents results for many works on the UCF101
dataset. According to the results, by only using our MOS,
we outperform many methods [2], [4], [15]–[18]. It is worth
mentioning that we also improved the results achieved by
the original two-stream from Simonyan and Zisserman [2].
Using the VGG-16 architecture, we outperform it by 2.5 p.p.
(temporal stream) and by 5.8 p.p. (combining it with VD2S).
Further more, using the Inception architecture, we outperform
it by 4.4 p.p. (temporal stream) and by 8.7 p.p. (combining
it with TSN). Finally, we can observe that our best result did
not outperform only the I3D method from Carreira et al. [5].
However, it is important to emphasize that they used the
huge Kinetics Dataset [5] for pre-training. Nevertheless, we
believe our results are remarkably good since 3D convolutional
operations are more computationally expensive than the 2D
convolutional operations used in our approach. For instance,
the Two-Stream I3D network used by Carreira et al. [5] has
25 million parameters, while the 2D Two-Stream employed by
us has less than half (12 million parameters).

TABLE III
ACTIVITY RECOGNITION ACCURACY COMPARISON ON THE UCF101 [13].

Approach Avg. Acc. (%)
Deep Networks [15] 65.4
Composite LSTM [16] 75.8
C3D [17] 85.2
Factorized CNN [18] 88.1

Literature Two-Stream [2] 88.0
Results Two-Stream F [19] 92.5

KVMF [20] 93.1
TSN (3 modalities) [4] 94.2
R-STAN-101 (RGB+FLOW) [21] 94.5
STM ResNet-50 [22] 96.2
Two-Stream I3D [5] 98.0

MOS (VGG-16) 90.5
Our MOS (VGG-16) + VD2S 93.8

Results MOS (Inception) 92.4
MOS (Inception) + TSN 96.7

To verify the statistical significance of our results, a statisti-
cal test for the differences between the means was performed
using a Student t-test [23], paired over the dataset splits. Thus,
at 95% confidence level, we can conclude that the difference
is significant for our combination results.



3) Discussion: To better analyze our proposed approach,
we take a closer look at the activities from UCF101 that
our method achieved higher performance than the baseline
approaches. For instance, some activities that were most
correctly classified by MOS and misclassified by the baselines
include activities with movements on very similar areas ( apply
lip stick and shaving beard with brushing teeth or apply eye
makeup) and classes that are more semantically closer to each
other, such as rafting with kayaking and basketball and volley-
ball spiking. The correct classification of these activities by our
MOS approach shows that feeding the network with explicit
orientation information instead of x and y displacements might
improve the classification of activities with movements on very
close areas or even with similar movements. Besides, we might
note the importance of using magnitude information (velocity)
since the velocity information can be used to distinguish
between similar activities with different velocities.

The analysis of the misclassified videos revealed that our
method had trouble classifying activities that are only dis-
tinguishable by the object used as they have very similar
movements, such as playing instrument activities (cello, guitar
and sitar; or daf, dhol and tabla). The same difficulties were
also noted on the baseline methods. Another misclassification
of our approach is walking with dog with horse riding. Such
analysis indicates the use of object information could help
enhancing the classification.

B. Skeleton Domain-based Approach Evaluation

This section describes the experimental results obtained
with the proposed SkeleMotion approach. We first introduce
the implementation details and then we compare our proposed
approaches to other CNN methods in the literature on the
RGB+D 60 [24] dataset as well as to state-of-the-art methods
on the NTU RGB+D 120 [25] dataset, in which we applied
the same split of training and testing data and we employ the
evaluation protocols and metrics proposed by their authors.

1) Implementation Details: To isolate only the contribu-
tions brought by the proposed representation, all compared
skeleton image representations were implemented and tested
on the same datasets and used the same network architecture.
We adopted a smaller version of the CNN architecture pro-
posed by Li et al. [11] to learn the features of the generated
skeleton image representations, which consists of three con-
volution layers and only two FC layers.

To cope with activities involving multi-person interaction
(e.g., shaking hands), we apply a common choice in the
literature, which is to stack skeleton image representations of
different people as the network input. To obtain the orienta-
tion skeleton image representation θ

′
we empirically set the

parameter m = 0.004, as described in Section II-B1.
2) Results and Comparisons: We used a subset of the

NTU RGB+D 60 [24] training set (considering cross-view
protocol) to set the number of temporal scales of our Skele-
Motion approach. We empirically varied it from two to four
temporal scales considering 20 frames in total. The best result
is obtained by using three temporal scales for both magnitude

and orientation. Also, we noticed that the performance tends
to saturate or drop when considering more temporal scales.

TABLE IV
ACTIVITY RECOGNITION ACCURACY (%) RESULTS ON THE

NTU RGB+D 60 [24].

Cross- Cross-
subject view

Approach Acc. (%) Acc. (%)
Du et al. [3] 68.7 73.0
Wang et al. [8] 39.1 35.9

Baselines Ke et al. [10] 70.8 75.5
Li et al. [11] 56.8 61.3
Yang et al. [6] 69.5 75.6

SkeleMotion (Ori.) 65.3 73.2

Our SkeleMotion (Mag) 69.6 80.1

results SkeleMotion (Mag.Ori.) 72.2 81.7
SkeleMotion (Mag.Ori.) + [26] 77.9 86.1

Table IV compares our approach with other skeleton image
representations. The methods that have more than one “image”
per representation ( [4] and [10]) were stacked to be used
as input to the network. The same was performed for our
approach, considering magnitude and orientation. Regarding
the cross-subject protocol, the best result was obtained by our
SkeleMotion (Mag.Ori.) representation with 72.2% of accu-
racy. There is an improvement of 1.4 (p.p.) when compared to
Ke et al. [10], which was the best baseline result. It is worth
noting that there is a considerable improvement of 15.4 (p.p.)
obtained by SkeleMotion (Mag.Ori.) when compared to [11]
baseline, which also explicitly encodes motion information.
On the cross-view protocol, the best results was also achieved
by our SkeleMotion (Mag.Ori.) representation, with 81.7% of
accuracy. There is an improvement of 6.1 (p.p.) when com-
pared to the Tree Structure Skeleton Image (TSSI) [6], which
was the best baseline result. Again, there is a considerable
improvement of 20.4 (p.p.) when compared to [11].

To exploit a possible complementarity of temporal and spa-
tial skeleton information, we combined our approach with Tree
Structure Reference Joints Image (TSRJI) [26] by employing a
late fusion technique (non-weighted linear combination of the
prediction scores of each method). According to the results
showed in Table IV, the combination our approaches achieves
the best results. Detailed improvements are shown in Figure 3.

Finally, Table V presents the experiments of our proposed
skeleton image representation on the NTU RGB+D 120 [25]
dataset. Again, when combining our representation we achieve
state-of-the-art results, outperforming the best reported method
(Body Pose Evolution Map [27]) by up to 6.5 p.p. on cross-
subject protocol and achieve competitive results on cross-setup
protocol (up to 0.8 p.p. better).

In comparison with LSTM approaches, we outperform
the best reported method (Two-Stream Attention LSTM) by
9.9 p.p. on cross-subject protocol. Regarding the cross-setup
protocol, we outperform them by 4.4 p.p. using our combined
skeleton image representation. This indicates that, our skeleton
image representation approach used as input for CNNs leads
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to a better learning of temporal dynamics than the approaches
that employs LSTM.

TABLE V
ACTIVITY RECOGNITION ACCURACY (%) RESULTS ON THE

NTU RGB+D 120 [25].

Cross- Cross-
subject setup

Approach Acc. (%) Acc. (%)
Part-Aware LSTM [24] 25.5 26.3
Dynamic Skeleton [28] 50.8 54.7
Internal Feat. Fusion [29] 58.2 60.9

Literature GCA-LSTM [30] 58.3 59.2

results Multi-Task Learning [10] 58.4 57.9
FSNet [31] 59.9 62.4
Two-Stream LSTM [32] 61.2 63.3
Multi-Task CNN [33] 62.2 61.8
Body Evolution Map [27] 64.6 66.9

SkeleMotion (Ori.) 52.2 54.1

Our SkeleMotion (Mag.) 57.6 60.4

results SkeleMotion (Mag.Ori.) 62.9 63.0
SkeleMotion (Mag.Ori.) + [26] 71.1 67.7

3) Discussion: We better analyze our achieved results by
taking a closer look at the activities from the NTU RGB+D
60 dataset that our method achieved higher performance than
[10] and [6]. The activities that were most correctly classified
by our representation and misclassified by the baselines are
activities involving arm and hand movements, such as writ-
ing; playing with phone; and handshaking. We note that the
baselines usually confused such activities, which are activities
involving arm and hand movements.

The correct classifications of the aforementioned activities
by our representation show that feeding the network with
explicit motion information can be used to distinguish between
similar activities with different velocities. Furthermore, the
spatial relations of adjacent joint pairs were preserved by the
use of the depth-first tree traversal order algorithm bringing
more semantic meaning to the representation.

The analysis of the misclassified videos revealed that the
method had trouble classifying activities that are only dis-
tinguishable by the object used as they have very similar
movements (e.g., the activities writing is confused with read-
ing, typing on a keyboard and playing with phone). This was

expected given that our approach is based only on skeleton
joints and does not encodes any appearance information.

IV. CONCLUSIONS

In this work, we have presented novel representation meth-
ods for the activity recognition problem and evaluated in
three datasets from the literature. Regarding our image domain
CNN-based method, MOS, the representation uses non-linear
transformations on the optical flow to generate magnitude-
orientation input images for a temporal stream. MOS has
the advantage of capturing displacement information by using
orientation of the optical flow and velocity of the movement
considering the optical flow magnitude. We showed that our
approach provides better recognition accuracy than other iso-
late streams - i.e., only using spatial stream or temporal stream
of the literature compared to our MOS temporal stream.

We also introduced a skeleton domain CNN-based method,
SkeleMotion. SkeleMotion is based on temporal dynamics
encoding and explicitly uses motion information (magnitude
and orientation) of skeleton joints. It also takes advantage of a
structural organization of joints that preserves spatial relations
of more relevant joint pairs and also incorporates different
temporal relationships between the joints (TSA). Again, the
performed experiments confirmed the relevance of the use of
magnitude and orientation information to be used for motion
learning for the activity recognition task.

V. AWARDS & PUBLICATIONS

Contributions of this work correspond to the main achieve-
ments during the doctorate research. Methods were pub-
lished on the International Conference on Pattern Recognition
(ICPR) 2016 [34] (awarded with an IAPR Travel Stipend),
Conference on Graphics, Patterns and Images (SIBGRAPI)
2017 [35] (awarded as the best Computer Vision/Image Pro-
cessing/Pattern Recognition main track paper award), In-
ternational Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications (VISAPP)
2018 [36], IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS) 2019 [37], Conference
on Graphics, Patterns and Images (SIBGRAPI) 2019 [26] and
a publication in the Journal of Visual Communication and
Image Representation (JVCI) 2019 [38].
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