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Abstract—A lot of information may be extracted from the
Earth’s surface through aerial images. This information may
assist in myriad applications, such as urban planning, crop and
forest management, disaster relief, etc. However, the process
of distilling this information is strongly based on efficiently
encoding the spatial features, a challenging task. Facing this,
Deep Learning is able to learn specific data-driven features.
This PhD thesisﬂ introduces deep learning into the remote
sensing domain. Specifically, we tackled two main tasks, scene
and pixel classification, using Deep Learning to encode spatial
features over high-resolution remote sensing images. First, we
proposed an architecture and analyze different strategies to
exploit Convolutional Networks for image classification. Second,
we introduced a network and proposed a new strategy to
better exploit multi-context information in order to improve
pixelwise classification. Finally, we proposed a new network based
on morphological operations towards better learning of some
relevant visual features.

Keywords-deep learning; machine learning; remote sensing;
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I. INTRODUCTION

Earth’s Planet is constantly being modified due to natural
and human interference, including hurricanes, earthquakes,
new residential and agricultural areas, landfills, etc. It is costly
and almost impractical to understand all these changes and
developments via on-the-ground observations. Thus, a lot of
effort has been employed for obtaining images from the Earth’s
surface, i.e., aerial ones. Although a laborious task, it can
be justified first by the amount of information that may be
extracted from these images and second by the potential
usage of this data in several tasks (such as classification
and segmentation) assisting in the understanding of a myriad
of events. Based on this argument, new technologies have
been proposed toward acquiring aerial images with improved
quality, resulting in more advanced satellites launched to
observe the Earth, as well as, more recently, in drones and
unmanned aerial vehicles. These top-notch Remote Sensing
Images (RSIs) may provide useful information that could be
employed in several Earth Observation applications, including
urban planning [1], crop and forest management [2f], [3]],
disaster relief [4]], [5]], phenological studies [6]—[8]], etc.

In general, all the information distilled by these applications
are highly dependent on the creation of high quality thematic
maps (to establish precise inventories about land cover use [9])
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as well as on detection and monitoring of events. However,
the development of both tasks, by manual efforts (e.g., using
edition tools), is slow and costly, being unfeasible, given the
large amount of data. Therefore, automatic methods appear
as an appealing alternative for the community. Traditionally,
such automatic methods would perform these tasks by using
machine-learning based approaches over features encoded
by some visual description technique. Therefore, efficiently
encoding of these features is one of the most important steps
in almost any image-related problem since it is the main key
to generate discriminative models. Given this, through years,
substantial efforts have been dedicated to develop automatic
and discriminative feature techniques [10], commonly called
(hand-crafted) descriptors. Some of them [[11], [[12] were orig-
inally proposed and successfully employed in the computer
vision scenario and then, experimented into the remote sensing
domain, while others [13]] were specifically designed for Earth
Observation applications.

In the first case, successful descriptors proposed to handle
everyday pictures may not have the same favorable outcome
for RSIs given the distinct characteristics between these im-
ages, which include: (i) perspective, as traditional images typ-
ically have a clear definition of fore and background, while, in
RSIs, all the pixels should be managed with the same attention,
(ii) context, as everyday pictures have a specific notion of
context related to the scene while aerial images do not have
this concept but have the geographic context, (iii) elementary
properties, given that traditional images usually have more
complex and rich scenes than aerial ones, mainly when consid-
ering low-resolution images, and (iv) channels, as traditional
images usually encode only visible information while RSIs
may have hundreds or even thousands of bands. Thus, as
introduced, based on these specificities and differences, many
of these techniques, originally proposed and successfully ap-
plied for computer vision applications [14], have not the same
success in the remote sensing domain [15]. In the second case,
though successfully proposed and employed into the remote
sensing domain, each descriptor technique is highly dependent
of the intrinsic properties of the image, such as gradient,
edges, colors, etc. For instance, a novel descriptor proposed
specifically for land-use scenes may not be a good choice
for agricultural images. Thus, the development of algorithms
for spatial extraction information is still a hot research topic
in the remote sensing community [16]]. Besides all this, in



a typical scenario, different descriptors may produce distinct
results depending on the data. Therefore, it is imperative to
design and evaluate many descriptor algorithms in order to
find the most suitable ones for each application [17]. This
process is also expensive and, likewise, does not guarantee an
efficient and discriminative representation.

Overcoming aforementioned limitations, deep learning [[18]],
a branch of machine learning that refers to multi-layered inter-
connected neural networks, can learn features and classifiers
at once, i.e., a unique network may be able to learn features
and classifiers (in different layers) and adjust the parameters,
at running time, based on accuracy, giving more importance
to one layer than another depending on the problem. End-
to-end feature learning (e.g., from image pixels to semantic
labels) is the great advantage of deep learning when compared
to previously state-of-the-art methods [19]], such as mid-
level (Bag of Visual Words (BoVW) [20]) and global low-
level color and texture descriptors. Among all deep learning-
based networks, a specific type, called Convolutional (Neural)
Networks [[18]], ConvNets or CNNs, is the most popular for
learning features in computer vision applications. This sort
of network relies on the natural stationary property of an
image, i.e., the statistics of one part of the image are the same
as any other part and information extracted at one part of
the image can also be employed to other parts. Furthermore,
ConvNets usually obtain different levels of abstraction for the
data, ranging from local low-level information in the initial
layers (e.g., corners and edges), to more semantic descriptors,
mid-level information in intermediate layers and high level
information (e.g., whole objects) in the final layers.

The work developed in this PhD thesis [21] was one of the
first to introduce deep learning into the remote sensing domain.
Given its pioneering spirit, several works published related to
this PhD thesis are widely cited and can be considered one of
the main references regarding deep learning and the remote
sensing domain. Precisely, the main contributions are:

1) A novel ConvNet architecture for remote sensing
image classification [22]. This network has fewer layers
and parameters, being able to converge using a small
quantity of data, demonstrating the effectiveness of deep
learning methods to encode features even for the remote
sensing domain. This is one of the first works to exploit
deep learning for remote sensing image classification.
Due to its pioneering spirit, it is the seventh most
cited article among all those published at the Sibgrapi
conference, since 2015, according to Google Scholalﬂ

2) An extensive assessment to define the best training
strategy for exploiting ConvNets for RSI classifica-
tion [23], [31]. Three distinct training strategies were
tested for RSI classification: (i) fully-train, (ii) fine-
tuning, and (iii) pre-trained network as feature extrac-
tors. Moreover, this evaluation was carried out using
six popular ConvNets and three remote sensing datasets.

Zhttps://scholar.google.com.br/citations ?hl=pt- BR&view_op=list_hcore&
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These pioneer works have been widely cited and can be
considered some of the main references regarding deep
learning for remote sensing applications. Specifically,
the work published in [31] has more than 460 citations
while the work published in [23] has more than 440
citations (according to Google ScholarE]). The former
work is the sixth most cited article among all those pub-
lished at the Computer Vision and Pattern Recognition
Workshops, since 2015, according to Google Scholalﬂ
while the latter is the second most cited article among
all those published at the renowned Pattern Recognition
journal according to the Elsevier websiteﬂ

3) A new network architecture for pixel classification
of RSI [24]. The proposed ConvNet, one of the first for
pixel classification of RSI, was evaluated for two distinct
datasets, achieving state-of-the-art in both cases.

4) A new strategy to better exploit multi-context infor-
mation to perform pixel classification of RSI using
ConvNets [25]. The proposed technique is capable of
aggregating multi-context information without increas-
ing the number of parameters (and the complexity of
the network) while defining, in training time, the best
patch size to be used for the inference phase.

5) A new paradigm for deep networks that exploits
non-linear morphological filters to capture the pat-
terns [26]. This paradigm learns the structure elements
of the morphological operation in order to extract the
features. With such concept, new morphological layers
and networks were created and optimized for RSI clas-
sification.

Besides those contributions, many others related to this
PhD work were published in [3[], [5]-[8], [27]-[30], [32]. The
following sections detail each of the contributions obtained
from the developed research.

II. CONVNET-BASED SCENE CLASSIFICATION

As introduced, hand-crafted descriptors are created for a
specific domain and may fail when applied in another one.
For instance, descriptors created to handle everyday pictures
in the computer vision domain may fail to encode features
of aerial images as well as descriptor techniques conceived
to deal with urban aerial scenes may encounter problems in
handling agricultural images. Therefore, a data-driven feature
learning step, as in ConvNets, is essential to extract all feasible
information from the data and create discriminative models.
However, ConvNets are hard to train, because of its high num-
ber of parameters, requiring a really large amount of annotated
data. Going in the other direction, remote sensing domain has
huge amount of data but with only few annotations. Hence, it
is essential to evaluate if it is feasible to exploit deep learning
for aerial images as well as to define the best strategy to do
SO.
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Fig. 1: Architecture of the proposed PatreoNet.

Random Initialized ConvNet Fully Trained on
the Target Dataset

Target Dataset
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Fig. 2: Tllustrative example of a ConvNet being fully trained.
Weights from the whole network are randomly initialized and
then trained for the target dataset.

The contribution published in [22] introduces a novel net-
work architecture fully trained specifically for the remote sens-
ing domain. This novel architecture, presented in Figure |l has
fewer layers and parameters and is able to converge even using
a smaller amount of labeled data. Such network outperformed
all traditional baselines, an outcome that demonstrated the
ability of networks to learn patterns for RSIs which, opened
new opportunities towards a better feature representation.

After verifying the effectiveness of deep learning for RSIs,
it was fundamental to analyze and define the best strategies
to exploit such technique in this domain. The contributions
published in [23]], [31] carried out a systematic set of ex-
periments to evaluate three different strategies for the remote
sensing domain: (i) fully-train, illustrated in Figure 2] which
is the strategy to train a network from scratch (with random
initialization of the filter weights), (ii) fine-tuning, presented
in Figure |3| that consists in performing fine adjustment in the
parameters of a pre-trained network by resuming the training
of the model from a current set of parameters but considering a
new dataset, and (iii) feature extractor, presented in Figure El],
which consists in using a pre-trained network as a feature
extractor and then train a standard machine learning with such
features. Those strategies were tested considering six popular
ConvNets, including the proposed PatreoNet, and three remote
sensing datasets. The results point that fine tuning tends to be
the best strategy in different situations. Specially, using the
features of the fine-tuned network with an external classifier,
linear SVM in our case, provides the best results. It is worth
mentioning that there these works have been widely cited and
can be considered some of the main references regarding deep
learning for remote sensing applications.

III. CONVNET-BASED PIXEL CLASSIFICATION

Although a lot of attention has been given to scene classi-
fication, one of the most important application in the remote
sensing community is the creation of thematic maps, which
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Fig. 3: Illustrative example of two options for the fine-tuning
process. In one of them (highlighted in red), all layers are
fine-tuned according to the target dataset, but final layers have
increased learning rates. In the other option (highlighted in
green), weights of initial layers can be frozen and only final
layers are tuned.
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Fig. 4: Illustrative example of the use of a ConvNet as feature
extractor. The final classification layer is ignored and one
should only choose from which layer to consider the features.
The figure shows the use of the features from the last layer
before the classification layer.

may help in understanding events over a specific region,
such as new urban areas and deforestation. Essentially, this
application is modeled in a supervised manner which should
have, as outcome, a class for each and every pixel of the
input image. Based on its outcome, this task is commonly
called pixel classification (also known, in the computer vision
field, as semantic segmentation [1]]). Although important, pixel
classification is a hard task given that its basic element (the
pixel) has not enough information to allow its classification.
Therefore, it is essential to research deep learning-based
methods that could efficiently exploit the pixel context in order
to perform the final classification.

The contribution published in [[24]] presents a novel network
that aggregates the context of the pixel by using overlapping
patches, centered on each pixel, that carry the context of
the pixel and help understand the spatial patterns around
them. This strategy, presented in Figure [5] allows the network
to efficiently understand the context around the pixel and
correctly classify it.

In the previous work, the input patches delimited the visual
context that the network could exploit to learn the spatial
features. However, using only one context size, as in the
previous and other works [33]], could lead to several problems,
as distinct classes may require different context sizes. To
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Fig. 5: Each pixel is actually represented by a large context
patch, centered on the pixel, in order to include the context
of its neighborhood. Those patches are then classified by the
network. Note that the predicted class for the context patch is
actually the label of the centered pixel.

alleviate this problem, several approaches [33]] exploited multi-
context information by combining networks or layers. This
process increases the number of parameters resulting in a more
difficult model to train. The contribution published in [25]]
presents a novel technique to perform semantic segmentation
of remote sensing images that aggregates information from
contexts of multiple sizes (without increasing the number
of parameters) while defining the best context size for the
testing phase. This multi-context strategy allows the network
to capture distinct information of the context of the objects,
allowing a better understanding of the scene.

The proposed technique receives as input the data and a
distribution over the desired patch sizes. During the training
procedure, a size is randomly select from this distribution
and then is used to create a new batch, composed uniquely
of patches of that size. This batch is then employed to train
the network, that outputs a score for the current batch, which
can be any metric (such as a loss or accuracy) that estimates
the performance of the network based on the current batch.
This generated score is used to update the patch scores, which
accumulate, throughout the training procedure, the scores of
the patch sizes and are employed in the selection of the best
patch size during the inference stage. All the aforementioned
steps are repeated during the training process until the number
of iterations is reached. As it can be noticed, the multi-
context information is aggregated to the model by allowing
the network to be trained using batches composed of patches
of multiple sizes. An overview of this procedure is presented
in Figure [6]
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Fig. 6: Overview of the training procedure of the proposed
dynamic multi-context strategy.

During the prediction, the accumulated scores over the patch
sizes are averaged and analyzed. The best patch size is then
selected and used to create patches. The network processes
these patches outputting the prediction maps, but no updates
in the patch scores are performed. It is important to highlight
that the proposed technique can only choose the best patch size
within all possible sizes determined by the patch distribution.

This proposed technique was evaluated on four high-
resolution remote sensing datasets, achieving state-of-the-art
in two and yielding competitive results in the remaining two.
Among all evaluated methods independently of the dataset,
the proposed one has the least number of parameters and is,
therefore, less pruned to overfitting and, consequently, easier
to train. At the same time, it produces one of the highest
accuracies, which shows the effectiveness of the proposed
technique in extracting all feasible information from the data
using limited (in terms of parameters) architectures. Aside
from this, an interesting aspect of the proposed technique is
that the networks trained using such approach can be fine-
tuned for any semantic segmentation application, since they do
not depend on the patch size to process the data. This allows
other applications to benefit from the patterns extracted by our
models, a very important process mainly when working with
small amounts of labeled data [23]].

IV. AN INTRODUCTION TO DEEP MORPHOLOGICAL
NETWORKS

ConvNets are able to efficiently learn distinct patterns,
achieving state-of-the-art in several applications. Although
this deep learning technique may be composed of several
distinct components (such as convolutional and pooling layers,
non-linear activation functions, etc), its core operation is the
convolution, a linear filtering process whose weights, in this
case, are to be learned based on the input data. Easy and
fast to implement, convolutions actually play a major role,
not only in ConvNets [[18], but in digital image processing
and analysis [34] as a whole, being effective for many tasks
and employed by several techniques [34]. However, aside
from convolutions, researchers also proposed and developed
non-linear filters, such as operators provided by mathematical
morphology. Even though these are not so computationally
efficient as the linear filters, in general, they are able to capture
different patterns and tackle distinct problems when compared
to the convolutions. In fact, supported by this capacity of
extracting distinct features, some non-linear filters, such as
the morphological operations [35], are still very popular and
state-of-the-art in some scenarios [36]]. Therefore, it would
be interesting to combine morphological filters and deep
learning, creating a new framework capable of performing and
optimizing these non-linear operations.

This contribution [26]] presents a novel paradigm for deep
networks where linear convolutions are replaced by the afore-
mentioned non-linear morphological operations. Furthermore,
differently from the current literature, wherein distinct mor-
phological filters must be evaluated in order to find the
most suitable ones, the proposed technique, called Deep Mor-
phological Network (DeepMorphNet), learns the filters (and
consequently the features) based on the input data.

Technically, the proposed basic framework, capable of per-
forming morphological erosion and dilation, uses operations
already employed in other existing deep learning-based meth-
ods, so it can preserve the end-to-end learning strategy. The
processing of this framework can be separated into two steps.
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Fig. 7: Example of a morphological erosion based on the
proposed framework. The 4 filters W (with size 4 x 4) actually
represent a unique 4 X 4 structuring element. Each filter W is
first converted to binary W?°, and then used to process each
input channel (step 1, blue dashed rectangle). The output is
then processed via a pixel and depthwise min-pooling to pro-
duce the final eroded output (step 2, green dotted rectangle).
Note that the binary filters W?, when superimposed, retrieve
the final structuring element B. The dotted line shows that
the processing of the input with the superimposed structuring
element B using the standard morphological erosion results
in the same eroded output image produced by the proposed
morphological erosion.

The first one employs depthwise convolution [37] to perform a
delimitation of features, based on the neighborhood (or filter).
However, just using this type of convolution does not allow
the reproduction of morphological transformations, given that
a spatial linear combination is still performed by this con-
volutional operation. To overcome this, we decompose each
filter into several ones (one for each weight of the filter), that
when superimposed retrieve the final structuring element. Such
filters are converted into binary and then used in the depthwise
convolution operation. The output of this step is then processed
by a depthwise pooling operation that is responsible to retrieve
the final outcome, i.e., the eroded or dilated image. This is the
second step of this proposed framework, which is responsible
to extract the relevant information based on the depthwise
neighborhood. A visual example of this proposed framework
being used for morphological erosion is presented in Figure

This framework is the foundation of five types of morpho-
logical processing units (or neurons): (i) composed processing
units, presented in Figure [Sa which have a morphological
erosion followed by a dilation (or vice-versa), without any
constraint on the weights, (ii) opening and closing processing
units, presented in Figure [8b] which use morphological erosion
followed by a dilation (or vice-versa) with tie weights in order
to make them use the same filters, i.e., the same structur-

ing element. (iii) the top-hat processing units, presented in
Figure which use an opening or closing morphological
processing unit, a skip connection (that allows the forwarding
of the input data), and a subtraction function that operates
over the processed and forwarded data, generating the final
outcome. (iv) reconstruction processing units, presented in
Figure 8d which approximate the geodesic reconstruction
by processing the input data using two basic morphological
operations (erosion and dilation or vice-versa) followed by
an elementwise max- or min-operation (depending on the
operation) over the processed data and the original input data.

These processing units are employed to create the morpho-
logical layers, which provide the essential tools for the creation
of the DeepMorphNets. Different from the standard convolu-
tional layer, a single morphological layer can be composed of
several neurons that may be performing different operations.
This process allows the layer to produce distinct outputs,
increasing the heterogeneity of the network and, consequently,
the generalization capacity.

The morphological layers are then used to create the Deep-
MorphNets. The first proposed network is a morphological
version of the AlexNet [38], presented in Figure O} Such
network was evaluated using two image classification datasets.
In both cases, the DeepMorphNet produced competitive results
when compared to ConvNets with equivalent architectures. A
qualitative evaluation showed that the morphological network
is capable of learning relevant filters and extracting salient
features. Some of these features are presented in Figure [T0]

V. CONCLUSION

In this PhD thesis, we proposed solutions that address im-
portant challenges related to the exploitation of deep learning
into the remote sensing domain, including data availability,
context exploitation, and so on. It was completed in approx-
imately four years (from March 2015 to May 2019) and has
resulted in four international journal papers [5], [8], [23], [25]],
and eleven international conference papers [3[], [6], [7], [22],
[24], 127]1-[32].

Future work includes better analyze the effectiveness of
the morphological neurons, combine ConvNets and Deep-
MorphNets, adapt DeepMorphNets to pixel classification, and
implement more moderns architectures:

o Analyze the effect of each type of morphological neuron.
This topic involves understanding the benefits of each
type of morphological neuron and analyzing which ones
are the best for each scenario. This is an interesting topic
given that each type of neuron produces distinct out-
comes. Therefore, this analysis would allow the definition
of which neurons are most suitable for each application.

o Combine ConvNets and DeepMorphNets. This is a cap-
tivating research topic given that it focuses on extracting
and combining the benefits of convolutional and mor-
phological networks. As introduced, these techniques are
able to capture distinct features. Hence, a combination
of these approaches should be able to create a better
representation, mainly because of the generated diversity.
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Fig. 10: Input images and some produced (upsampled) feature maps extracted from all layers of the networks for the UCMerced
Land-use. The first row presents features from the ConvNet network and the second row presents the features of the proposed
morphological network.

o Adapt the deep morphological networks to perform pixel and logical to adapt the deep morphological networks to
classification. This is a direct application of the proposed recreate these techniques.
DeepMorphNets. In this thesis, such network has been
evaluated only for remote sensing scene classification.
Therefore, it should be natural to apply the proposed ACKNOWLEDGMENT
networks for remote sensing pixel classification.
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tectures (including ResNets [39] and DenseNets [40]). It ¢qge the support of NVIDIA Corporation with the donation
is an interesting research topic to analyze if it is feasible  f the GeForce GTX TITAN X GPU used for this research.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]
[19]

[20]

[21]

REFERENCES

M. Volpi and D. Tuia, “Dense semantic labeling of subdecimeter reso-
lution images with convolutional neural networks,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 55, no. 2, pp. 881-893, 2017.
J. A. d. dos Santos, P.-H. Gosselin, S. Philipp-Foliguet, R. d. S. Torres,
and A. X. Falao, “Multiscale classification of remote sensing images,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 10,
pp. 3764-3775, 2012.

K. Nogueira, W. R. Schwartz, and J. A. dos Santos, “Coffee crop recog-
nition using multi-scale convolutional neural networks,” in Iberoameri-
can Congress on Pattern Recognition. Springer, 2015, pp. 67-74.

D. Fustes, D. Cantorna, C. Dafonte, B. Arcay, A. Iglesias, and M. Man-
teiga, “A cloud-integrated web platform for marine monitoring using gis
and remote sensing,” Future Generation Computer Systems, vol. 34, pp.
155-160, 2014.

K. Nogueira, S. G. Fadel, ic. Dourado, R. O. Werneck, J. A. V. Muiioz,
O. A. Penatti, R. T. Calumby, L. T. Li, J. A. dos Santos, and R. S.
Torres, “Exploiting convnet diversity for flooding identification,” IEEE
Geoscience and Remote Sensing Letters, vol. 15, no. 9, pp. 1446-1450,
2018.

K. Nogueira, J. A. Dos Santos, T. Fornazari, T. S. F. Silva, L. P. Morel-
lato, and R. d. S. Torres, “Towards vegetation species discrimination by
using data-driven descriptors,” in Pattern Recogniton in Remote Sensing
(PRRS), 2016 9th IAPR Workshop on. IEEE, 2016, pp. 1-6.

K. Nogueira, J. A. dos Santos, L. Cancian, B. D. Borges, T. S. F. Silva,
L. P. Morellato, and R. S. Torres, “Semantic segmentation of vegetation
images acquired by unmanned aerial vehicles using an ensemble of con-
vnets,” IEEE International Geoscience & Remote Sensing Symposium,
2017.

K. Nogueira, J. A. dos Santos, N. Menini, T. S. F. Silva, L. P. C. Morel-
lato, and R. S. Torres, “Spatio-temporal vegetation pixel classification by
using convolutional networks,” IEEE Geoscience and Remote Sensing
Letters, 2019.

J. R. Jensen and K. Lulla, “Introductory digital image processing: a
remote sensing perspective,” 1987.

G. Kumar and P. K. Bhatia, “A detailed review of feature extraction in
image processing systems,” in Advanced Computing & Communication
Technologies. 1EEE, 2014, pp. 5-12.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110,
2004.

R. de O. Stehling, M. A. Nascimento, and A. X. Falcao, “A compact and
efficient image retrieval approach based on border/interior pixel classi-
fication,” in International Conference on Information and Knowledge
Management, 2002, pp. 102-109.

F. Hu, G.-S. Xia, J. Hu, Y. Zhong, and K. Xu, “Fast binary coding
for the scene classification of high-resolution remote sensing imagery,”
Remote Sensing, vol. 8, no. 7, p. 555, 2016.

C.-h. Chen, L.-F. Pau, and P. S.-p. Wang, Handbook of pattern recog-
nition and computer vision. World Scientific, 2010, vol. 27.

J. A. dos Santos, O. A. B. Penatti, and R. da Silva Torres, “Evaluating
the potential of texture and color descriptors for remote sensing image
retrieval and classification.” in International Conference on Computer
Vision Theory and Applications, 2010, pp. 203-208.

J. E. Ball, D. T. Anderson, and C. S. Chan, “Comprehensive survey
of deep learning in remote sensing: theories, tools, and challenges for
the community,” Journal of Applied Remote Sensing, vol. 11, no. 4, p.
042609, 2017.

J. dos Santos, O. Penatti, P. Gosselin, A. Falcao, S. Philipp-Foliguet,
and R. Torres, “Efficient and effective hierarchical feature propagation,”
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. PP, no. 99, pp. 1-12, 2014.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org,

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

J. Sivic and A. Zisserman, “Video google: a text retrieval approach to
object matching in videos,” in International Conference on Computer
Vision, vol. 2, 2003, pp. 1470-1477.

K. Nogueira, “Going deep into remote sensing spatial feature learning,”
2019.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

K. Nogueira, W. O. Miranda, and J. A. Dos Santos, “Improving spatial
feature representation from aerial scenes by using convolutional net-
works,” in Conference on Graphics, Patterns and Images (SIBGRAPI).
IEEE, 2015, pp. 289-296.

K. Nogueira, O. A. Penatti, and J. A. dos Santos, “Towards better
exploiting convolutional neural networks for remote sensing scene
classification,” Pattern Recognition, vol. 61, pp. 539-556, 2017.

K. Nogueira, M. Dalla Mura, J. Chanussot, W. R. Schwartz, and J. A.
dos Santos, “Learning to semantically segment high-resolution remote
sensing images,” in International Conference on Pattern Recognition.
IEEE, 2016, pp. 3566-3571.

——, “Dynamic multicontext segmentation of remote sensing images
based on convolutional networks,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 57, no. 10, pp. 7503-7520, 2019.

K. Nogueira, J. Chanussot, M. D. Mura, W. R. Schwartz, and J. A. d.
Santos, “An introduction to deep morphological networks,” arXiv
preprint arXiv:1906.01751, 2019.

T. M. Santana, K. Nogueira, A. M. Machado, and J. A. dos Santos,
“Deep contextual description of superpixels for aerial urban scenes
classification,” in IEEE International Geoscience & Remote Sensing
Symposium, July 2017, pp. 3027-3031.

R. Baeta, K. Nogueira, D. Menotti, and J. A. dos Santos, “Learning deep
features on multiple scales for coffee crop recognition,” in Conference
on Graphics, Patterns and Images (SIBGRAPI), 2017, pp. 262-268.
K. Nogueira, S. G. Fadel, I. C. Dourado, R. d. O. Werneck, J. A. V.
Muiioz, O. A. B. Penatti, R. T. Calumby, L. T. Li, J. A. dos Santos, and
R. d. S. Torres, “Data-driven flood detection using neural networks,”
in Working Notes Proc. MediaEval Workshop, 2017, p. 2. [Online].
Available: http://slim-sig.irisa.fr/mel7/Mediaeval_2017_paper_39.pdf
J. A. V. Muiioz, L. T. Li, I. C. Dourado, K. Nogueira, S. G. Fadel,
O. A. B. Penatti, J. Almeida, L. A. M. Pereira, R. T. Calumby,
J. A. dos Santos, and R. d. S. Torres, “A ranking fusion approach
for geographic-location prediction of multimedia objects,” in Working
Notes Proc. MediaEval Workshop, 2016, p. 2. [Online]. Available:
http://ceur-ws.org/Vol-1739/MediaEval_2016_paper_22.pdf

O. A. Penatti, K. Nogueira, and J. A. dos Santos, “Do deep features
generalize from everyday objects to remote sensing and aerial scenes
domains?” in Conference on Computer Vision and Pattern Recognition
Workshop, 2015, pp. 44-51.

L. T. Li, J. A. V. Muifioz, J. Almeida, R. T. Calumby, O. A. B.
Penatti, I. C. Dourado, K. Nogueira, P. R. Mendes Junior, A. M. L.
Pereira, D. C. G. Pedronette, M. A. Gongalves, J. A. dos Santos, and
R. d. S. Torres, “Recod @ placing task of mediaeval 2015,” in Working
Notes Proc. MediaEval Workshop, 2015, p. 2. [Online]. Available:
http://ceur-ws.org/Vol- 1436/Paper49.pdf

F. Lateef and Y. Ruichek, “Survey on semantic segmentation using deep
learning techniques,” Neurocomputing, vol. 338, pp. 321-348, 2019.
R. Szeliski, Computer vision: algorithms and applications. — Springer
Science & Business Media, 2010.

J. Serra and P. Soille, Mathematical morphology and its applications to
image processing. Springer Science & Business Media, 2012, vol. 2.
Y. Seo, B. Park, S.-C. Yoon, K. C. Lawrence, and G. R. Gamble,
“Morphological image analysis for foodborne bacteria classification,”
Transactions of the American Society of Agricultural and Biological
Engineers, vol. 61, pp. 5-13, 2018.

F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Conference on Computer Vision and Pattern Recognition,
2017, pp. 1800-1807.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Neural Information Pro-
cessing Systems, 2012, pp. 1106-1114.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770-778.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Conference on Computer Vision
and Pattern Recognition, June 2017, pp. 2261-2269.


http://www.deeplearningbook.org
http://slim-sig.irisa.fr/me17/Mediaeval_2017_paper_39.pdf
http://ceur-ws.org/Vol-1739/MediaEval_2016_paper_22.pdf
http://ceur-ws.org/Vol-1436/Paper49.pdf

	Introduction
	ConvNet-Based Scene Classification
	ConvNet-Based Pixel Classification
	An Introduction to Deep Morphological Networks
	Conclusion
	References

