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Abstract—Biometric systems are common in our everyday
life: from our mobile devices to huge surveillance systems.
Despite the higher difficulty to circumvent biometric applications,
criminals are simulating traits such as face or fingerprints of valid
users (presentation attacks - PA), in order to fool the security
applications. Deep neural networks have obtained state-of-the-
art results in PA detection. However, in many cases, they are
computationally expensive, being not feasible in environments
with hardware restrictions, such as mobile ones. In this sense,
we propose efficient deep learning architectures for PA detection,
especially for face recognition systems, able to be trained and
deployed even when there is low computational power available.

I. INTRODUCTION

Biometrics emerged as a robust solution for security sys-
tems, recognizing people by “who they are”. [Jain et al. 2011].
Despite the higher difficulty in circumventing the biometric
applications when compared with traditional security systems
based on passwords or token, criminals are already developing
techniques to simulate biometric traits of legal users, such
as using printed photographs to simulate valid faces (process
known as spoofing or presentation attack - PA), to fool the
security mechanisms, especially in commercial applications
[ISO 2016].

Face is a promising biometric trait for our days given its
universality, non-intrusive and fast capture, by means of com-
mon digital cameras, which are available, nowadays, almost
everywhere. The traditional face recognition systems are the
ones that most suffer with PAs given the high availability of
photographs of people in the world wide network, especially
in social networks. All this makes PA detection techniques
essential to security systems based on faces.

Convolutional Neural Networks (CNN) [LeCun et al. 1998]
have presented the best results in many tasks, including
biometric recognition and PA detection such as in [Atoum
et al. 2017], obtaining good accuracy rates. However, most
of the deep learning models are extremely computationally
expensive, requiring specialized hardware for training and de-
ployment (powerful GPUs) as well as lots of data and storage
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capacity, which are are not available in mobile environments
or even in developing countries.

Main contributions: (i) proposal of alternative deep neural
networks (not only CNNs) and demonstration of their effec-
tiveness without the usage of GPUs; (ii) proposal of novel tex-
ture based CNN architectures, demonstrating the superiority of
deep texture features when compared with handcrafted ones;
(iii) proposal of Partial Learning, a novel training algorithm
for CNNs based on deep local features for face PA detection;
(iv) development of proprietary deep learning based systems
for face recognition and PA detection to Banco do Brasil; (v)
presentation and publication of academic and technical papers
in qualified conferences and journals; (vi) awards, such as the
IEEE Computational Intelligence Society Student Travel Grant
Award and the 2nd place in the the Face Recognition Challenge
at the International Summer School for Advanced Studies on
Biometrics; and (vii) dissemination of knowledge and results
obtained in important events, such as Brazilian Conference on
Intelligent Systems (BRACIS 2018) - paper presentation and
invited tutorial on Deep Learning.

II. PROPOSED RBM BASED MODEL

The first approaches proposed in this work were based
on highly efficient neural network models called Restricted
Boltzmann Machines (RBM) [Hinton 2002], which can be
trained using low computational power, usually single CPUs.
Restricted Boltzmann Machines [Tang et al. 2012], [Hinton
2012] are energy-based stochastic neural networks composed
of two layers of neurons (visible and hidden), in which the
learning phase is conducted by means of an unsupervised
fashion. The RBM, actually, is based on the classical Boltz-
mann Machines [Ackley et al. 1985] with the restriction
that no connections between neurons of the same layer are
allowed. This restriction allows training in a significantly lower
complex way with no high loss in terms of accuracy.

Let θ = (W ,a, b) be the set of parameters (weights and
biases, respectively) of an RBM, they can be learned though
a training algorithm that aims at maximizing the product of
ocurrence probabilities given all the available training data V ,
as follows:



argmax
θ

∏
v∈V

P (v). (1)

One of the most used approaches to solve the above problem
is the Contrastive Divergence (CD) [Hinton 2002], which ba-
sically ends up performing Gibbs sampling using the training
data as the visible units.

We can modify a generative RBM in order to turn it into
a classifier. To do so, one of the possibilities is to include
especial neurons in the visible layer in order to identify the
class of the presented input signal (calling them DRBM -
Discriminative RBM). Given each input training data, its class
is informed as the activation of the respective special neuron
(the other special neurons stay in zero) and the network
is trained to correctly activate such special neuron. After
presenting an unknown pattern to the RBM and performing
its forward and backward pass, the activations of the special
neurons indicate the class of the test pattern. This can be used
in order to identify real and fake face.

We also can stack many RBMs and perform classification
at the top one, as we propose and demonstrate in Fig. 1. In
this case, we train each RBM from bottom to top without
considering labels, and then train the top one with the labels
of the faces. Tab. I shows the results obtained using a single
DRBM and the proposed DDRBM (Deep DRBM) in classifi-
cating real and fake faces demonstrating that the deep features
of the stacked approach allow better results - the DDRBM
obtained better accuracy results than the single DRBM and
than the state-of-the-art result so far for the the NUAA [Tan
et al. 2010] dataset as well as a much lower standard deviation
(more stable performance of the stacked approach).
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Fig. 1. Proposed DDRBM: generative RBM at the bottom and discriminative
RBM at the top for classifying faces in real or fake.

TABLE I
RESULTS FOR THE DRBM AND DDRBM ON THE NUAA DATASET.

Method Accuracy Std. Dev.
NUAA Best 0.920 -

DRBM 0.913 0.012
DDRBM 0.923 0.008

III. PROPOSED TEXTURE BASED CNN ARCHITECTURES:
LBPNET AND N-LBPNET

We also proposed a novel CNN architecture, called LBPnet,
by integrating the LBP (Local Binary Patterns) [Ojala et al.
2002] descriptor, a robust texture descriptor for face PA
detection, in the first layer of a convolutional neural network,
in order to extract deep texture features, instead of handcrafted
texture histograms, from the facial images for a more robust
PA detection.

The first layer of LBPnet incorporates LBP information as
follows: the convolution operation actuates not only convolv-
ing the values of the kernels (weights of connections between
neurons learned in training) with the image grayscale values,
but also finding the LBP values of the image pixels before
performing the convolution.

The LBPnet presents the following configuration, from
bottom to top, mainly inherited from Lenet-5: (i) Two layers
with a convolution followed by a pooling operation - the first
layer is modified, as said, by incorporating the LBP descriptor
in the convolution step; (ii) a Rectified Linear Unit (ReLU)
layer, that performs an inner product followed by a rectification
(elimination of negative values) on the originated signals; and
(iii) a Fully Connected (FC) layer, with two nodes, which also
performs an inner product and classification (real or fake face)
using the softmax function. Given a detected and normalized
grayscale facial image (in this work resized to 66 × 66), the
convolution operation in the first layer, CONV1, finds the
pixels LBP-based values and produces 20 outputs with size
60 × 60 by convolving such values with 20 different kernels
with size of 5 × 5 - each kernel generates an output and is
applied with stride of 1 to the image.

Still in the first layer of the LBPnet, a pooling operation,
POOL1, is applied to obtain certain scale and translational
invariance. In such case, the max-pooling is performed with a
2×2 sized kernel with no overlapping (stride of 2) generating
20 output feature maps with size 30×30 (since the size of the
pooling kernel is 2 and there is no overlapping, the dimensions
of the output feature maps of the pooling operation are half
of the dimensions of the input ones).

These two mentioned operations, convolution and pooling,
are repeated in the second layer of LBPnet, without LBP
calculation, but also using kernels with size and stride of 5 and
1, and of 2 and 2, respectively. As shown in Fig. 2, after the
second layer, there are 50 two-dimensional feature maps with
size 13 × 13. At the top of the network there are a Rectified
Linear Unit (ReLU) and a Fully Connected (FC) layers. The
ReLU layer actuates by performing an inner product with the
13 × 13 structures and by rectifying the signal obtained, not
propagating negative values.At the top, the Fully Connected
layer presents two neurons fully connected to the neurons of
the ReLU layer also performing an inner product operation and
applying the softmax function for defining their activations.

An extended version of LBPnet, called normalized LBPnet
(n-LBPnet), was also proposed. The n-LBPnet architecture is
quite similar to the LBPnet model, however a Local Response
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Fig. 2. Architecture of LBPnet. The first two layers perform convolution and
pooling operations, (CONV1, POOL1) and (CONV2, POOL2), respectively.
Given an original image with size 66×66, the number of output feature maps
and their sizes, after each operation, are shown below their representations.

Normalization (LRN) [Krizhevsky et al. 2012] step, which
simulates the competitive process presented by neurons of hu-
man brain in nearby areas, is present between the convolution
and pooling operations in the second layer of the CNN.

A. Experiments, Results and Discussion

The proposed networks, LBPnet and n-LBPnet, were as-
sessed on the traditional NUAA Photograph Imposter Database
[Tan et al. 2010], with images obtained from real and fake
faces. This dataset contains 3,491 images for training (1,743
from real faces and 1,748 from printed ones) and 9,123 test
images (3,362 real and 5,761 fake facial images). They were
obtained from different people in terms of gender, age, etc.,
and on different capture sessions (also varying the cameras
used for such task), making the database very realistic. The
normalized images (in grayscale and with size of 64 × 64)
were already provided by the authors of the database in
order to make the comparison of antispoofing methods fair,
avoiding that different preprocessing techniques affect the
results. We used such normalized images in our experiments.
They were only resized to 66 × 66 pixels before feeding
LBPnet and n-LBPnet since the LBP descriptor reduces the
image dimensions by 2 pixels, going back to the size of 64×64
(we considered a neighborhood of P = 8 and R = 1 for LBP).
As an observation, we augmented the training set (doubling its
size) by considering the 3,491 initial normalized images and
their histogram equalized versions in order to avoid lack of
data while training the networks. Regarding the ROC curves,
Fig. 3 shows their True Acceptance Rate (TAR) versus the
False Acceptance Rate (FAR) compared with other state-of-
the-art-methods: (i) n-LBPnet; (ii) LBPnet; (iii) the MLBP-
based method [Chingovska et al. 2012]; (iv) the best method
of the original paper of the NUAA [Tan et al. 2010] dataset

- this best approach works on DoG (Difference of Gaussians)
images with a sparse low rank bilinear logistic regression
classifier; and (v) the Low Level Descriptors (LLD) [Schwartz
et al. 2011] approach, i.e., combination of HoG (Histograms
of Oriented Gradient), GLCM (Gray Level Co-occurrence
Matrix) and HSC (Histograms of Shearlet Coefficients), which
works with a Partial Least Squares (PLS) classifier. The higher
the ROC curve, the better the approach. As can be seen, the
proposed deep networks outperformed the best technique of
the original paper of NUAA [Tan et al. 2010] database and the
LLD approach [Schwartz et al. 2011] by far (both based on
handcrafted texture features), presenting considerably higher
curves.

Despite the MLBP-based approach [Chingovska et al. 2012]
also presenting a high curve, it is still lower then the results
of LBPnet and n-LBPnet. Even extracting many handcrafted
histograms from faces by varying the LBP neighborhood to
characterize them and using a powerful classifier (SVM -
Support Vector Machine [Cortes and Vapnik 1995]) for attack
detection (all this demanding time), the results of such method
are still worse than the ones obtained by LBPnet and n-
LBPnet, which work with high-level (deep) features based
only on a fixed neighborhood system for LBP calculation. All
this indicate that the deep texture features are good source of
information for face antispoofing compared to the traditional
handcrafted texture features.
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Fig. 3. ROC curves of the proposed CNNs and other state-of-the-art
approaches. The higher the curve, the better the method.

IV. PARTIAL LEARNING - A NOVEL TRAINING
ALGORITHM FOR CNNS APPLIED TO PA DETECTION

We proposed a novel training algorithm, called Partial
Learning, for face PA detection, applied to traditional CNN
architectures, therefore called lsCNN (Locally Specialized
CNN), for a more effective learning of deep local attack
features, based on two steps: (i) the Local Pre-training phase,
in which each part of the model is trained on each main facial
region (predefined and fixed), learning deep local features for
attack detection from such areas, and allowing to initialize the
whole model in a great better position in the search space; and
(ii) the Global Fine-tuning phase, in which the whole model



is fine-tuned based on the weights learned independently
by its parts on the facial regions, in order to improve its
generalization.

A. lsCNN Architecture

Basically, the proposed lsCNN presents 4 convolutional
and pooling layers (Conv1/Pool1 to Conv4/Pool4) at the
bottom. They are followed by a fully-connected layer (FC1), a
batch normalization and ReLU layers, as well as a dropout one
(Drop1). At the top, there is a softmax layer with two neurons
to classify the faces in real or fake. Each convolutional layer
is immediately followed by a batch normalization and signal
rectification (ReLU - Rectified Linear Unit) layer. The batch
normalization layer serves to normalize the output feature
maps obtained in the convolutional layers, improving learning.
The rectification function, in each neuron, acts as its activation
function, eliminating negative values in the resultant feature
maps and also accelerating training.

1) Local Pre-training: In order to initialize the whole
lsCNN model in a better position in the search space and make
it specialized in deep local attack features from each region
of the faces, we split each training face into 9 main regions
(patches), regions also adopted for face recognition. After this,
we also split the lsCNN architecture into 9 independent smaller
CNNs, called PatchNets for simplicity, presenting, each of
them, a ninth of the size of the complete original model, and
being trained on each of the 9 main facial regions considered
from the faces, from p1 to p9. Each PatchNet had as input
RGB patches with 32× 32 pixels from a respective region of
the training faces. Fig. 4 illustrates the training process of the 9
instances of this smaller neural network on the facial regions
of a given image. As one can observe, on the top of each
PatchNet there are two softmax neurons since they are trained
to classify their respective patches as being real or fake.

2) Global Fine-tuning: After training the 9 smaller neural
networks on their respective facial regions, their weights and
biases are used to initialize the parts of the whole lsCNN for
a fine-tuning step of such larger model on the whole training
facial images, in order to improve its generalization. As shown
in Fig. 5, each smaller network initializes the weights of the
connections and biases of a partition (a ninth) of the lsCNN
model, from the left (top) to the right (bottom) side of the
lsCNN model. The weights of the first PatchNet, e.g., initialize
the connections between the most left neurons of the lsCNN
model, responsible for first feature maps (from FM1−FM3,
in the first layer, to FM1−FM4, in the second layer), and so
on. The connections of lsCNN between neurons from different
parts of it are zero-initialized.

The weights of the two fully-connected layers on top are
randomly initialized from a normal distribution in order to
improve the generalization of model even more. Their biases
are zero-initialized. In Fig. 5, for simplicity, in each partition of
lsCNN, only the connections from a neuron in a given feature
map to the neurons of the previous layer are shown, as well
as the connections of the selected neurons in the first part
of lsCNN to their receptive fields in the other parts of such
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Fig. 4. Illustration of the local pre-training process of lsCNN. Given a facial
image, it is split into its 9 main regions, from p1 to p9, and 9 instances of
the smaller CNN architecture (PatchNet) are trained on each of them.

whole model. However, the lsCNN has all the connections of a
traditional CNN. 2 After the initialization, the same training
facial images (which were split into patches in the former
step) are used to fine-tune the weights of the whole lsCNN
model, also allowing it to detect some global or more generic
features from whole faces, which were not learned locally in
the pre-training step.

B. Experiments, Results and Discussion

We evaluated the proposed lsCNN architecture on larger
databases: (i) Replay-Attack [Chingovska et al. 2012] dataset;
and (ii) CASIA FASD (Face Antispoofing Database) [Zhang
et al. 2012].

Regarding Replay-Attack [Chingovska et al. 2012] and
CASIA [Zhang et al. 2012] datasets, the lsCNN obtained
much better results in terms of ERR and HTER than the
traditionally trained CNN and state-of-the-art methods. In
order to allow a more robust analysis of lsCNN, we performed
larger experiments on the Replay-Attack [Chingovska et al.
2012] and CASIA [Zhang et al. 2012] databases. The Replay-
Attack dataset contains 360 videos for training, 360 videos for
validation and a test set with 480 videos. The CASIA [Zhang
et al. 2012] dataset presents videos of 50 subjects, 12 videos
per subject being 3 of real faces and 9 of fake faces. The
dataset is divided in training set (20 subjects, 240 videos) and
test set (30 subjects, 360 videos). There is no validation set
explicitly defined for this database.

In the experiments on both datasets, in order to classify a
video, we considered a majority of votes scheme of the faces
in its frames. Frames with no face detected by the MTCNN
architecture were discarded.

Unlike the experiment with the NUAA dataset, in the
experiments with the Replay-Attack and CASIA databases,
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Fig. 5. Initialization of lsCNN based on the weights of the 9 PatchNets. The thicker colored lines represent 3 × 3 connections and are initialized with the
weights learned by each PatchNet. The first PatchNet, e.g., initializes the weights between the first neurons (first feature maps - FM) in the layers of lsCNN.
The thin black dotted lines also indicate 3×3 connections zero-initialized and the green thin ones are initialized with random values from a normal distribution
(zero-mean and standard deviation of 0.01, by default). The thin gray lines are just for a better visualization of the initialization process.

we considered the original architecture of lsCNN given the
larger facial images obtained. After cropping the faces of all
frames of all training videos, an augmentation process on both
datasets was performed. In each of them, initially and for
each facial image, we generated two new versions of it by
increasing or decreasing the values of the R, G, and B channels
by 50. This was done in order to force the neural network to
not rely on brightness for spoofing detection (we did not apply
techniques for attenuating the shadows on the faces since they
are important to distinguish real faces from 2D fake faces).

For each of the three versions of each original training facial
image, we also applied noise or blur transformations in three
levels each (with low magnitudes to not affect the images
too much), in order to make the neural network also learn
smoother features and not rely much on noise. Again we used
the Matlab toolbox for applying blur and Gaussian noise to the
images. The blur operation was applied in three levels (using
a 2×2 Gaussian filter with standard deviations of 0.1, 0.5 and
1.0), as well as the Gaussian noise (with standard deviations
of 0.00005, 0.000075 and 0.0001). Such transformations were
applied isolatedly, so we obtained, for each of the three initial
images from a given face, 6 representations of it. In this
sense we augmented our dataset 19 times (original images
and 3× 6 = 18 transformed images).

For the Replay-Attack dataset we obtained 1, 766, 031 train-
ing facial images, and for the CASIA dataset, 852, 568 images.
Again, we initialized all weights of the smaller PacthNets
based on random values from a zero-mean normal distribution
(standard deviation of 0.0001) and normalized each channel of
the input facial images by subtracting the mean value of it and
diving all the image values by 128 (before splitting them), in
order to ensure that most of them would belong to the interval
[−1; 1]. The biases of the neurons were all zero-initialized.
As optimizer, we also used the Adam [Kingma and Ba 2015]
method in both cases, with the same following parameters: 64

training images per batch, base learning rate of 0.0001, first
momentum of 0.9 and second momentum of 0.999.

In both experiments, we trained the 9 smaller PatchNets
for 5, 000 iterations on the facial patches using the Caffe [Jia
et al. 2014] framework and initialized the whole lsCNN model.
Then we fine-tuned it over 100, 000 iterations. For the Replay-
Attack dataset, the best model was obtained (considering
results on the validation set of videos) on iteration 53, 600. For
the CNN with the same architecture, traditionally initialized
with random values extracted from a normal distribution with
zero-mean and standard deviation of 0.0001 (biases also zero-
initialized) and trained on the whole faces, the best model was
obtained only on iteration 74, 200 (much later). The results of
the proposed approach and of state-of-the-art methods are pre-
sented in Tab. II. For simplicity, we denoted the traditionally
trained CNN with the same architecture of lsCNN as “lsCNN
Traditionally Trained”.

TABLE II
RESULTS ON REPLAY-ATTACK [CHINGOVSKA ET AL. 2012] DATASET:

EQUAL ERROR RATE (EER) ON THE VALIDATION DATASET AND
HALF-TOTAL ERROR RATE (HTER) ON THE TEST SET. BEST VALUES ARE

HIGHLIGHTED.

Method EER HTER
Efficient Fine-Tuned VGG-Face [Souza et al. 2017] — 16.62

Patch Based Handcrafted Approach — 5.0
[Akhtar and Foresti 2016]

Whole Fine-Tuned VGG-Face [Lucena et al. 2017] — 1.20
Fine-Tuned VGG Face [Li et al. 2016] 8.40 4.30

Li et al. [Li et al. 2016] 2.90 6.10
Random Patches Based CNN [Atoum et al. 2017] 2.50 1.25

MobileNet-v1 [Howard et al. 2017] 1,67 3,13
Boulkenafet et al. [Boulkenafet et al. 2015] 0.40 2.90

lsCNN Traditionally Trained 0.33 1.75
lsCNN 0.33 2.50

As one can observe, besides obtaining the best EER, lsCNN
presented a great HTER, much lower than expensive methods,



which work with extremely complex and large CNNs, such as
VGG-Face [Parkhi et al. 2015]. Despite obtaining a worse
HTER result than the traditionally trained neural network,
lsCNN obtained the presented results much faster (in a much
earlier iteration of the training), as mentioned.

Regarding the CASIA experiment, the best model for
lsCNN was obtained on iteration 9, 800, while the best model
for the traditionally trained CNN was obtained on iteration
80, 900. In order to compare the performances of such methods
with state-of-the-art approaches, we measured the EER, since
this dataset presents a predefined test dataset. Tab. III shows
the results.

TABLE III
RESULTS IN THE CASIA [ZHANG ET AL. 2012] DATASET OF THE

PROPOSED NETWORK ARCHITECTURE (LSCNN) AND OTHER
STATE-OF-THE-ART METHODS. THE BEST VALUES ARE HIGHLIGHTED.

Method EER
Fine-tuned VGG-Face [Li et al. 2016] 5.20

LSTM-CNN [Wang et al. 2018] 5.17
Yang et al. [Yang et al. 2014] 4.92

Patch Based Handcrafted Approach [Akhtar and Foresti 2016] 4.65
Li et al. [Li et al. 2016] 4.50

Random Patches Based CNN [Atoum et al. 2017] 4.44
lsCNN Traditionally Trained 4.44

lsCNN 4.44

As one can observe, lsCNN obtained the best EER on
the CASIA dataset, as well as the traditionally trained CNN
and the work of [Atoum et al. 2017] (which proposes a
much complex CNN), better than approaches that require
complex and expensive architectures. Besides, when compared
with the traditionally trained CNN, lsCNN training was again
much faster (lsCNN obtained its best performance on iteration
9, 800 against iteration 80, 900 for the lsCNN architecture
traditionally trained, as mentioned).

1) Connection Weights: Still referring to the intra-databases
experiments on the Replay-Attack [Chingovska et al. 2012]
and CASIA [Zhang et al. 2012] datasets, in order to better
analyze the behavior of the weights of the lsCNN model
given its two-steps training, we verified the values of the
convolutional kernels between the first and second layers of
the proposed model (which represent weights of connections
between neurons in such layers) after the global fine-tuning
step of the proposed architecture. In subsection 12.3.1 of the
thesis, one can see the configuration of the sinaptic weights
of lsCNN and of a traditionally trained network. As one
can observe, even after the global fine-tuning step in the
training of lsCNN, the weights inherited from the PatchNets
(main diagonal) remain of great magnitudes indicating that
the local features are really important for the model (which
preserved the high magnitudes of the locally learned weights).
The traditionally trained CNN presented much more random
weights after training, paying attention in much granular
details (noise), not representative for face classification.

2) Statistical Analysis: Still regarding the intra-database
experiments on the Replay-Attack [Chingovska et al. 2012]
and CASIA [Zhang et al. 2012] datasets, For better comparison
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of lsCNN trained on Replay-Attack dataset after the global fine-tuning step.

between the lsCNN and the traditionally trained CNN, we
repeated the training and test of lsCNN and of a traditional
CNN on the Replay and CASIA datasets, 5 times each. In each
experiment we measured the EER and HTER (the latter only
for the Replay-Attack database) in all training iterations. We
performed these experiments in order to compare the lsCNN
and the traditional model in a more robust way. Fig. 7 shows
the mean curves obtained by each model. The mean EER in
both databases (Replay-Attack and CASIA) decreases faster
and keep lower for the lsCNN model than for traditional CNN.
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Fig. 7. Mean EER (and HTER) for the Replay-Attack and CASIA datasets.

V. CONCLUSION, PUBLICATIONS AND AWARDS

Based on the proposed approaches for efficient deep neural
networks is possible to conclude that more efficient Deep
Learning architectures, especially ones applied for face PA de-
tection are feasible. The thesis with further details is available
at: https://repositorio.ufscar.br/handle/ufscar/11609.

The following papers and awards were obtained related to
the thesis:

Main publications
1) “On the Learning of Deep Local Features for Robust Face Spoofing

Detection”, G. B. Souza, J. P. Papa e A. N. Marana, Anais da
Conference on Graphics, Patterns and Images (SIBGRAPI), 2018;

2) “Partial Learning - On the Importance of Deep Local Features for
Face Presentation Attack Detection”, G. B. Souza, J. P. Papa e A.
N. Marana, (under submission);

https://repositorio.ufscar.br/handle/ufscar/11609


3) “Efficient Width-Extended Convolutional Neural Network for
Robust Face Spoofing Detection”, G. B. Souza, D. F. S. Santos, R.
G. Pires, J. P. Papa e A. N. Marana, Anais da Brazilian Conference on
Intelligent Systems (BRACIS), p. 230–235, 2018;

4) “Deep Discriminative Restricted Boltzmann Machine (DDRBM)
for Robust Face Spoofing Detection”, G. B. Souza, J. P. Papa e A.
N. Marana, Progr. in Human-Computer Int., v. 1, n. 3, p. 1–8, 2018;

5) “Deep Texture Features for Robust Face Spoofing Detection”, G.
B. Souza, D. Santos, R. Pires, A. N. Marana e J. P. Papa, IEEE Trans.
on Circuits and Systems II, v. 64, n. 12, p. 1397–1401, 2017 (abstract
and full paper);

6) “Efficient Transfer Learning for Robust Face Spoofing Detection”,
G. B. Souza, D. F. S. Santos, R. G. Pires, A. N. Marana e J. P. Papa,
Proc. of Iberoamerican Congress on Pattern Recognition (CIARP), p.
643–651, 2017;

7) “Detecção de Spoofing Facial: Uma abordagem baseada nas
Máquinas de Boltzmann Restritas”, G. B. Souza, A. N. Marana e J.
P. Papa, Revista Eletrônica de Matemática, v. 10, p. 158-166, 2017;

Related publications
1) “Cross-Domain Deep Face Matching for Real Banking Security

Systems”, J. S. Oliveira, G. B. Souza, A. R. Rocha, F. E. Deus e A.
N. Marana, Int. Conf. on e-Democracy and e-Government, 2020.

2) “Deep Features Extraction for Robust Fingerprint Spoofing Attack
Detection”, G. B. Souza, D. F. S. Santos, R. G. Pires, A. N. Marana e J.
P. Papa, Journal of Artificial Intelligence and Soft Computing Research,
v. 9, n. 1, p. 41–49, 2018;

3) “Introduction to Deep Learning - Theory and Practice”, G. B.
Souza, J. P. Papa e A. N. Marana, Anais da Brazilian Conference on
Intelligent Systems (BRACIS), p. 1–2, 2018 (abstract);

4) “Deep Boltzmann Machines for Robust Fingerprint Spoofing
Attack Detection”, G. B. Souza, D. F. S. Santos, R. G. Pires, A.
N. Marana e J. P. Papa, Anais da International Joint Conference on
Neural Networks (IJCNN), p. 1863–1870, 2017;

5) “A 2D Deep Boltzmann Machine for Robust and Fast Vehicle
Classification”, D. F. S. Santos, G. B. Souza e A. N. Marana, Anais
da Conference on Graphics, Patterns and Images (SIBGRAPI), 2017;

6) “A Robust Restricted Boltzmann Machine for Binary Image
Denoising”, R. G. Pires, D. F. S. Santos, L. A. M. Pereira, G. B.
Souza, A. L. M. Levada e J. P. Papa, Anais da Conference on Graphics,
Patterns and Images (SIBGRAPI), 2017;

7) “A Deep Boltzmann Machine-Based Approach for Robust Image
Denoising”, R. G. Pires, D. F. S. Santos, G. B. Souza, A. N. Marana,
A. L. M. Levada e J. P. Papa, Anais do Iberoamerican Congress on
Pattern Recognition (CIARP), p. 525–533, 2017;

8) “A Restricted Boltzmann Machine-Based Approach for Robust
Dimensionality Reduction”, G. B. Souza, D. F. S. Santos, R. G. Pires,
A. N. Marana e J. P. Papa, Proc. of Workshop de Visão Computacional
(WVC), p. 138–143, 2017;

9) “A Graph-Based Approach for Contextual Image Segmentation”,
G. B. Souza, G. M. Alves, A. L. M. Levada, P. E. Cruvinel e A.
N. Marana, Anais da Conference on Graphics, Patterns and Images
(SIBGRAPI), 2016;

10) “Shape Analysis Using Multiscale Hough Transform Statistics”,
L. A. Ramos, G. B. Souza e A. N. Marana, Anais do Iberoamerican
Congress on Pattern Recognition (CIARP), p. 452–459, 2015;

• 2016 - 2nd place - Face Recognition Challenge at the International
Summer School for Advanced Studies on Biometrics for Secure Authen-
tication, Alguero (Italy);

• 2016 - Top Best Works - I Workshop of the Graduate Program in
Computer Science, Federal University of São Carlos (UFSCar);

• 2017 - IEEE CIS Student Travel Grant Award for presenting the paper
at the International Joint Conference on Neural Networks, 2017.

• 2018 - Tutorial on “Deep Learning - Theory and Practice” -
Collocated event at the Brazilian Conference on Intelligent Systems
(BRACIS) 2018.
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