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Abstract—Leukemia is a disorder that affects the bone marrow,
causing uncontrolled production of leukocytes, impairing the
transport of oxygen and causing blood coagulation problems.
In this article, we propose a new computational tool, named
LeukNet, a Convolutional Neural Network (CNN) architecture
based on the VGG-16 convolutional blocks, to facilitate the
leukemia diagnosis from blood smear images. We evaluated
different architectures and fine-tuning methods using 18 datasets
containing 3536 images with distinct characteristics of color,
texture, contrast, and resolution. Additionally, data augmentation
operations were applied to increase the training set by up to 20
times. The k-fold cross-validation (k = 5) results achieved 98.28%
of accuracy. A cross-dataset validation technique, named Leave-
One-Dataset-Out Cross-Validation (LODOCV), is also proposed
to evaluate the developed model’s generalization capability. The
accuracy of using LODOCV on the ALL-IDB 1, ALL-IDB 2, and
UFG datasets was 97.04%, 82.46%, and 70.24%, respectively,
overcoming the current state-of-the-art results and offering
new guidelines for image-based computer-aided diagnosis (CAD)
systems in this area.

I. INTRODUCTION

Leukemia is one of the most dangerous diseases according
to the American Cancer Society, with an estimate of 61,780
new cases and 22,840 deaths in 2019. This disease has
unknown cause and affects the production of white blood cells
in the bone marrow. Due to the disease, young cells or blasts
are produced abnormally, replacing healthy blood cells, i.e.,
white blood cells, red blood cells and platelets. Consequently,
the affected individual suffers from oxygen transport problems
and infections. Among the forms of diagnosis of leukemia,
one can find the lumbar puncture, myelogram, blood count
and flow cytometry. Samples of blood smears with healthy
and unhealthy leukocytes are shown in Figure 1.

Computer aided diagnosis (CAD) systems aim to assisting
medical specialists by offering information that help on their
diagnosis [2]. These systems could be employed to the screen-
ing of diseases, providing a first diagnosis, or to offer a second
opinion based on previously labelled examples.

One of the main issues in recent studies addressing medical
imaging applications is the lack of heterogeneity in the image
datasets that are used to evaluate the methods [3]. The image
datasets are often acquired using similar equipment, sampled
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Fig. 1. Examples of images used in this work: (a) [1] and (b) [1] healthy
examples, (c) [1] and (d) [1] unhealthy examples.

from particular populations and annotated by a limited group
of specialists. Evaluation based on hold-out or cross-validation
may be adequate to validate the performance within a dataset,
but it is unclear how it generalizes for other datasets. Con-
sidering Deep Learning methods, this is even more relevant,
since it is known that models with sufficiently large capacity
may be able to specialize to the training data and fail to
generalize. Although transfer learning methods were shown to
be useful in many applications, there is a relevant interest on
studying how to choose the proper architectures and training
strategies that remain the built models useful within the same
domain of application but with changes, for example, as to the
source of images, sensors, viewpoint and acquisition setup [4].
Therefore, there is a gap in the literature about guidelines for
the design and evaluation of CAD systems that are consistent,
robust and reliable to be used in practice.

In this context, we propose LeukNet, which is based on a
Convolutional Neural Network (CNN), but that uses transfer
learning concepts selected according to an extensive study of
architectures that was made and advanced training strategies,
and a in-depth discussion of evaluation. A modified Deeply
Fine-Tuning (mDFT) method is employed in the training
of the proposed model. The experimental results shown the
need for an evaluation protocol using Leave-One-Dataset-Out
Cross Validation (LODOCV), where the test is carried in one
dataset, while the remaining datasets are used in the training
process. This procedure is performed until all datasets are
tested individually. This ensures that the CNN is not trained
with any image of the datasets to be tested.

The remainder of the article is organized as follows: a
description of related work is given in Section II along with



the contributions achieved with this work. In Section III,
the material and methods used are described, including the
proposed LeukNet. In Section IV, the results as well as their
discussion are presented. Finally, conclusions and perspectives
for future work are given in Section V.

II. RELATED WORK AND CONTRIBUTIONS

Related work is discussed in this section, in particular with
respect to the image descriptor employed, the sample size,
validation method and accuracy (A) results. Table I lists the
works identified and their main characteristics. We identified
two mains approaches: handcrafted features, deep learning
models.

From Table I, one can note that only Vogado et al. [5] used
more than two datasets in the experiments. Still, in Table I,
it is possible to verify that the used evaluation protocols
are usually the holdout and k-fold within the same dataset.
When using CNN’s, holdout was the most used technique.
Due to availability of relatively small image datasets, one
might question the convergence of the used classifiers and their
ability to generalize since the relationship between number
of instances used for training and the complexity of the built
model falls short in such scenarios. In this context, using more
datasets would allow to better evaluate the systems and their
robustness in terms of considering different sources of images.

TABLE I
SUMMARY OF RELATED WORK (A - ACCURACY).

Work Year Descriptor Classifier Images Validation A(%)
Patel e Mishra [6] 2015 Shape, texture, sta-

tistical and color fea-
tures

SVM 27 holdout 93.75

Singhal et al. [7] 2016 Texture features SVM 260 k-fold 93.80
Thanh et al. [8] 2018 Deep features CNN 1188 holdout 96.60
Shafique et al. [9] 2018 Deep features CNN 760 holdout 99.50
Rehman et al. [10] 2018 Deep features CNN 330 holdout 97.78
Sipes et al. [11] 2018 Deep Features CNN 388 holdout 88.00
Vogado et al. [5] 2018 Deep Features SVM 1268 k-fold 99.76
Pansombut et al. [12] 2019 Deep Features CNN 363 holdout 81.74
Ahmed et al. [13] 2019 Deep Features CNN 903 k-fold 88.25

III. MATERIALS AND METHODS

An extensive study of architectures and training strategies
was performed in order to design the network f to be used.
As a result, transfer learning from five pre-trained architectures
and four fine-tuning techniques were employed. The impact of
data augmentation in the classification problem under study
was also investigated.

A. Image Datasets

To evaluate the generalization capability of the proposed
system, we used 18 public datasets, divided into development
and performance sets.

Through experimentation, we used the development set
to define the ideal configuration of the proposed model.
This set was formed by 17 datasets, totalling 3415 images.
Those images present heterogeneity in terms of color, contrast,
resolution and texture, and each dataset has different balance
ratio between classes, which put into test the robustness of the
proposed classifier.

The performance set is a novel dataset, acquired at the
Federal University of Goiás (UFG), in Brazil, referred here
as UFG dataset1. This dataset has 121 images acquired using
different microscopes, and with distinct characteristics of
color, texture and contrast. This is the first article reporting
results using this image dataset.

From the datasets used in our experiments, only three
are class-balanced: UFG, ALL-IDB1 and ALL-IDB2 [14], as
reported in Table II. Some of them have only one leukocyte
per image and others have multiple leukocytes per image. Only
UFG and Bloodline datasets have these two patterns.

TABLE II
SUMMARY OF THE IMAGE DATASETS USED IN THE EXPERIMENTS.

Dataset Non-pathological Pathological Total Ref.
ALL-IDB 1 59 49 108 [14]
ALL-IDB 1 (Crop) 0 510 510 [14]
ALL-IDB 2 130 130 260 [14]
Leukocytes 149 0 149 [15]
CellaVision 109 0 109 [16]
Atlas 0 88 88 -
Omid et al. 2014 154 0 154 [17]
Omid et al. 2015 0 27 27 [18]
ASH 0 96 96 [1]
Bloodline 0 204 204 [19]
ONKODIN 0 78 78 [20]
CellaVision 2 100 0 100 [21]
JTSC 300 0 300 [21]
UFG 57 64 121 -
PN-ALL Dataset 0 30 30 [22]
leukemia-images 0 140 140 link
MIDB Dataset 0 673 673 link
LISC Dataset 376 0 376 [23]
Total 1434 2102 3536 -

B. Data Augmentation

Improving the generalization of the deep learning models
is one of the challenges in this area, but Data Augmentation
is a powerful way to overcome this [24]. Augmented data is
expected to represent a more extensive data set, minimizing
the differences between the training and validation sets as well
as any future test sets [25].

In this work, the image development set is relatively bal-
anced. It contains 1001 non-pathological and 1182 pathologi-
cal images. Therefore, data augmentation was applied equally
in both classes.

The augmentation operations used were: rotation in the
range of 0 to 40º, vertical, horizontal, shear and zoom in
the range of 0 to 0.2, as well as horizontal and vertical flip.
Notice that the nuclei images do not have asymmetry allowing
flipping in both directions. Hence, the reflection fill operation
was applied to replace black pixels resulting from rotation
and translation techniques. Finally, the pixels of input images
were normalized to values between 0 (zero) and 1 (one). The
augmentation resulted in a dataset 20 times larger than the
original dataset.

C. Transfer Learning

Transfer learning techniques often employed for convolu-
tional networks uses weights that are pre-trained in large
datasets, such as the ImageNet Challenge dataset [26]. This
procedure decreases the requirement to retrain all parameters

1https://hematologia.farmacia.ufg.br (accessed in June 2020)



of a CNN from scratch [27]. Figure 2 depicts this idea. Note
that some layers are copied from the pre-trained network,
forming a base architecture, while other layers are randomly
initialized and customized to the task at hand.

Pre-trained weights

Transfer Learning

Fine-Tuning

1000-Output

2-Output

CNN

ImageNet

Blood Smear Imagens

Fig. 2. Transfer learning and fine-tuning used in the development of the
proposed CNN model.

Two approaches are often employed when using pre-trained
weights: One approach is to extract features as the activation
maps of the pre-trained network layers, defining those as
feature vectors to be used as input to shallow classifiers,
such as SVM [5]. The other one is to perform fine-tuning
by creating a new classification layer.

According to Tajbakhsh et al. [28] and Izadyyazdanabadi
et al. [29], there are two types of fine-tuning, Shallow Fine-
Tuning (SFT) and Deeply Fine-Tuning (DFT). SFT consists
of freezing layers from the beginning of CNN, usually the
first convolutional layers, that are considered more general and
allow representing shape, texture and color. The top layers
are often domain-specific, carrying semantic content from the
instance labels. Therefore, SFT fine-tuning provides greater
specialization in the later layers, while keeping the first ones.

The DFT approach allows training the entire network,
adapting even the first layers. Although it requires higher
computational cost and a larger amount of data, it can benefit
applications where the target domain differs from the one used
to pre-train the weights.

Previous studies report better results in small datasets with
smaller network architectures, in particular for binary classifi-
cation [30]. Therefore, the experiments performed, alternatives
to the SFT and DFT approaches, referred to as modified Shal-
low (mSFT) and Deeply Fine-Tuning (mDFT), respectively,
were developed. In those approaches, we replaced dense layers
– prior to the output layer – with new ones with smaller
dimensionality (we evaluated layers with 256, 512 and 1024
elements). This decreases the number of parameters of the
network, allowing faster training and making it less prone to
overfitting.

D. Evaluated Architectures

The CNN architectures designed for the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [26] were
explored. Sequential networks such as VGG-16 and VGG-19
facilitate changes in the architecture structure while Residual

and Inception-based networks presented better results in the
ILSVRC. ResNet50 and InceptionV3 have less parameters
than VGGNets, but have more depth, as can be verified in
Table III. The architectures are indicated in Table III in terms
of: year of publication, topological depth of the network (in-
cluding batch normalization, activation layers, etc.), accuracy
and errors in ImageNet.

TABLE III
CHARACTERISTICS OF THE EVALUATED DEEP LEARNING MODELS.

Model Topological Depth Number of parameters Year
VGG-16 [31] 23 138,357,544 2014
VGG-19 [31] 26 143,667,240 2014
ResNet50 [32] 168 25,636,712 2015
InceptionV3 [33] 159 23,851,784 2016
Xception [34] 126 22,910,480 2017

In mSFT and mDFT approaches, the initial size of fully
connected layers was based on Zang et al. [35] that studied
cervical cancer images, which are similar to those for leukemia
diagnosis, and employed layers with dimensionality 1024 and
256.

To evaluate the Inception architectures, we used the mSFT
and mDFT approaches because when we fine-tuned Incep-
tionV3, we added a new layer of Global Average Pooling, as
well as a dense layer with 1024 elements with ReLu activation.
For Xception, we added a dense layer with 128 elements.
The output layer is the same as that presented in sequential
architectures.

In the ResNet model, we performed the same process as in
the InceptionV3. In the mSFT, only the added layers were
trained, freezing the previous ones. On the other hand, in
mDFT, all parameters were allowed to be fine-tuned.

E. Validation Methodology (Leave-one-dataset-out)

According to Diaz-Pinto et al. [36], CNNs take into
account only the raw pixel information to classify images.
It is expected that the accuracy will be significantly affected
when the model receives as input an image from a different
dataset from those used in CNN training or validation. Given
this, methods that classify well images of a dataset will not
necessarily succeed in images of other datasets. Thus, a critical
experiment to evaluate the classifier performance is to use
images obtained from different datasets.

We consider that k-fold cross validation within a given
dataset does not simulate the conditions of a real scenario.
When applying folding division, similar examples from the
same dataset are likely to be present in both training and test
sets.

Thus, we employed the Leave one dataset out cross vali-
dation (LODOCV), a validation for systems that operate on
several datasets from different sources. Considering that the
number of datasets available is d, we use d − 1 datasets
for training, and evaluate the method in the unseen dataset.
We repeated this experiment until all datasets were tested
individually. This strategy ensured that none of the images
in a dataset was present in both training and testing.



From Table II, it is possible to confirm that 15 image
datasets present only a single class. Thus, datasets with images
of both classes were used in the test step in LODOCV.
Therefore, we performed three main experiments with ALL-
IDB 1, ALL-IDB 2 and UFG datasets. For example, in the
first experiment, we used ALL-IDB 1 as a test set, while the
other 17 datasets were used in the training. This process was
repeated for ALL-IDB 2 and UFG datasets.

IV. EXPERIMENTS

We performed experiments and evaluated the results in
terms of accuracy (A), precision (P), recall (R), specificity
(S) and loss value. Because the new layers are trained
from randomly initialized weighs, we performed five runs
to compute mean and standard deviation of the metrics.
All experiments were carried out on a PC with a 3.6 GHz
Intel®Xeon™processor, 24 GB RAM, and a NVIDIA TITAN
XP 12GB graphics card.

A. Models and Fine-Tuning Evaluation

We used an ablation study to define the base architecture of
the proposed model and the training methodology. Through
validation by LODOCV, we evaluated the development set
through experiments with the ALL-IDB 1 and ALL-IDB 2
datasets.

Table IV indicates the best results obtained in architectures
and fine-tuning techniques evaluated on the bases ALL-IDB 1
and ALL-IDB 2.

TABLE IV
BEST RESULTS OBTAINED IN ARCHITECTURES AND FINE-TUNING

TECHNIQUES EVALUATED ON THE BASES ALL-IDB 1 AND ALL-IDB 2.

Arq. Fine-tuning A(%) P(%) R(%) S(%)
ALL-IDB 1
VGG-16 mDFT 97.04±1.21 96.42±2.45 97.14±1.83 96.95±2.21
VGG-19 DFT 97.04±0.41 95.98±0.04 97.55±0.91 96.61±0.00
Inception V3 mDFT 65.56±9.79 58.47±17.18 73.92±16.99 60.91±19.90
Xception mDFT 77.41±8.65 69.40±9.76 94.69±3.10 63.05±18.11
ResNet50 mDFT 87.96±2.70 91.59±8.56 82.04±4.42 92.88±8.08
ALL-IDB 2
VGG-16 mDFT 82.46±0.02 77.59±0.04 92.30±0.08 72.61±0.09
VGG-19 mDFT 79.62±6.31 77.54±8.53 85.38±9.53 73.85±12.93
InceptionV3 mDFT 58.38±3.09 56.95±2.42 70.00±12.38 46.77±11.66
Xception mDFT 64.92±2.60 63.58±2.54 70.31±7.06 59.54±6.45
ResNet50 mDFT 69.46±6.26 66.96±7.05 80.31±10.17 58.62±16.71

From the data shown, one can verify that mDFT achieved
high rates compared with the other approaches. When com-
paring the accuracy obtained by InceptionV3, Xception and
ResNet50 architectures, it is possible to verify that ResNet50
achieved better results in both datasets. However, when com-
pared those outcomes with the ones obtained using sequential
architectures (VGG 16 and VGG 19), one can see a decrease
in performance. Therefore, it is possible to conclude that this is
because these architectures deal better with greater complexity
in terms of the amount of data and classes than the other ones.

LeukNet was designed after analyzing the previously de-
scribed results, where VGG-16 and VGG-19 architectures
presented the best outcomes, with similar values for the mDFT
approach in the ALL-IDB2 dataset. Therefore, we performed
the Student’s t-test [37] to statistically compare the results at
a significance level of 5%. From the test performed, we found

that the results were equivalent. Therefore, we selected VGG-
16 due to its smaller number of trainable parameters.

According to Kornblith et al. [38], the best performing
architectures on ImageNet can provide better feature ex-
traction and fine-tuning. However, the authors observed this
fact only in photographic databases. In datasets with fine-
grained images, the effects of pre-training with ImageNet
were considered small. This study indicated that the features
obtained from ImageNet are not adequately transferred to such
datasets. According to Sipes et al. [11] leukemia images are
considered fine-grained images. This fact explains why the
results achieved by VGG-16 and VGG-19 were superior to
the other CNNs.

We also performed experiments varying the size of the
fully connected layers to find the best compromise between
accuracy and loss (see Table V), which allowed to find the
highest accuracy with 1024 and 256 neurons.

TABLE V
RESULTS OBTAINED USING DIFFERENT DIMENSIONALITIES FOR

LEUKNET’S FULLY CONNECTED LAYERS.

Fc Layers A(%) P(%) R(%) S(%)
ALL-IDB 1
512-256 94.81±2.41 93.92±2.50 94.69±3.09 94.91±2.07
1024-256 97.04±1.21 96.42±2.45 97.14±1.83 96.95±2.21
1024-512 93.14±3.73 92.95±7.62 92.65±3.09 93.55±7.89
1024-1024 93.70±1.65 91.79±3.11 94.69±1.82 92.88±3.03
ALL-IDB 2
512-256 71.53±4.97 70.91±4.20 74±13.98 69.07±9.90
1024-256 82.46±0.02 77.59±0.04 92.30±0.08 72.61±0.09
1024-512 71.84±3.64 77.84±12.16 67.53±17.09 76.15±23.46
1024-1024 69.15±2.11 69.91±4.94 69.23±9.41 69.07±11.52

We used the Student’s t-test to identify if the accuracy
achieved by the layers 1024-256 and 1024-512 are similar.
According to the test, the results are equivalent considering
the true null hypothesis. Therefore, we selected layers with
size 1024-254 because they presented the best compromise
between the number of parameters and accuracy.

Figure 3 depicts, as heat maps, the output of some
LeukNet’s convolutional filters. It can be seen that CNN
excludes the background and defines the cytoplasm and leuko-
cyte nucleus as regions of interest. However, the nuclei region
(regions in yellow tone in Figure 3) is considered here as the
most crucial region for classification.

...
...

Input Image Block1_Conv1 feature maps Block3_Conv1 feature maps

Fig. 3. Heatmap of some LeukNet’s convolutional filters output.

B. Proposed model: LeukNet

The best built model has five convolutional blocks and two
fully connected layers. After each convolutional block, max
pooling is employed. The first two blocks have only two



convolutional layers while the remaining have three layers.
The first block has 64 filters with size 3 × 3. From the
second block on, the amount of filters is doubled, to 128,
and after the convolution, the pooling operation reduces the
filter size. Finally, the last two convolutional blocks have the
same amount of filters. Figure 4 shows the final structure of
the proposed model.
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Fig. 4. Detailed structure of the proposed CNN after performing the fine-
tuning.

To avoid overfitting, dropout (dp) was also employed after
each fully connected layer with rates of 0.5 and 0.6, respec-
tively. Since we deal with a binary classification problem, the
output layer has one neuron with sigmoid activation function.

The Stochastic Gradient Descent (SGD) optimization algo-
rithm was employed with batch size 32 and for a total of 50
epochs. Therefore, we used 0.001 and 0.8 for the learning rate
and the momentum, respectively. The loss function used during
fine-tuning was the binary cross-entropy to allow computing
the gradients at each iteration.

C. Beyond CNN results with a Features Space Analysis

In order to go beyond the results obtained by fine-tuning
the CNNs, we carried out two additional analyses using the
features spaces formed by two models. In particular, the goal
was to compare the models in terms of the linear separability
of the feature spaces generated by the layer prior to the
network classifier (output layer). Because we employed a
linear SVM classifier, which has strong learning guarantees,
better results would favor models with better generalization
capabilities [39].

The analyses were performed for two scenarios. The former
consists of validation with LODOCV using feature extraction
with pre-trained VGG-16 on ImageNet and fine-tuned VGG-
16. The second scenario uses the LODOCV test as input to
the k-fold cross-validation with k = 10. Both experiments used
the same pre-trained models for feature extraction.

For the model pre-trained with ImageNet and those refined
with DFT technique, the output vector had 4096 features.
Therefore, to analyze the intrinsic dimensionality in the data,
we applied Principal Component Analysis (PCA) and reduced
the vector to its 100 principal components. Table VI presents
the results obtained by the two performed analyses.

From the results in Table VI, it is possible to realize that
in experiments with multiple datasets (LODOCV experiment),
mDFT provided a superior linear separability of the data.
However, for only one dataset (k-fold experiment), the DFT
showed better results. The advantage of mDFT in the first
experiment was because it restricts dense layers, in terms
of dimensionality (from 4096 in the original model to 256

TABLE VI
FEATURE SPACE ANALYSIS PERFORMED FOR THE VGG-16

ARCHITECTURE.

LODOCV k-fold
Approach Num. of Features A (%) P (%) R (%) Kappa A (%) P (%) R (%) Kappa
ALL-IDB 1
DFT 100 59.25% 52.68% 100% 0.2362 99.07% 98% 100% 0.9813
mDFT 256 87.96% 86.00% 87.75% 0.7575 91.66% 95.45% 83.04% 0.8571
ImageNet 100 68.51% 59.49% 95.91% 0.3962 97.22% 96% 97.95% 0.9440
ALL-IDB 2
DFT 100 51.92% 51.06% 92.30% 0.0384 94.23% 93.89% 94.61% 0.8846
mDFT 256 73.84% 75.83% 70.00% 0.4769 85.00% 84.21% 86.15% 0.7
ImageNet 100 49.61% 49.68% 60% -0.007 87.69% 87.69% 87.69% 0.7538

in the proposed model), making the model robust to images
from different datasets. The DFT uses a larger output, it
consequently has more "degrees of freedom" in the pre-trained
model, which can cause overfitting in datasets used for fine-
tuning, reducing the accuracy in an experiment with multiple
datasets.

This analysis confirms previous findings that indicate that
models with a more restricted bias, i.e., in terms of their
space of admissible functions, may transfer better for different
domains [4] in comparison to the same domain, which in the
case of the widely used ImageNet dataset are mostly natural
images and photographic data.

In addition to the classification experiments, we also visu-
alized the feature spaces using a t-SNE projection, with the
respective decision boundaries estimated to the 2D case, both
for ALL-IDB 1 (see Figure 5) and ALL-IDB 2 (see Figure 6).
From these figures, it is possible to note how the decision
boundaries show good discrimination capability of the feature
spaces. Also, it is clear how ALL-IDB2 is a more challenging
dataset, and that the mDFT tend to produce a space that better
separate the classes in comparison to the greater class overlap
shown in DFT and no-finetuning spaces (see Figure 6).

(a) no fine-tuning (b) DFT (c) mDFT

Fig. 5. ALL-IDB 1 dataset visualizations using t-SNE projection in 2D
along with the estimated decision boundaries using Linear SVM classifiers
for different feature extraction methods: (a) no fine-tuning, (b) DFT and (c)
mDFT.

(a) no fine-tuning (b) DFT (c) mDFT

Fig. 6. ALL-IDB 2 dataset visualizations using t-SNE projection in 2D
along with the estimated decision boundaries using Linear SVM classifiers
for different feature extraction methods: (a) no fine-tuning, (b) DFT and (c)
mDFT.



D. Discussion

The results presented in Section IV-A were obtained using
the LODOCV. However, other literature works do not use
this validation. Thus, we applied k-fold cross-validation, with
k = 5, to compare the results of the proposed approach with
the ones obtained by sate of art methods. Table VII presents
the results achieved by the proposed approach; the indicated
accuracy values for the other methods were taken from their
original articles.

TABLE VII
COMPARISON BETWEEN THE RESULTS OBTAINED BY THE PROPOSED

METHOD AND STATE OF THE ART METHODS.

Work Images Validation technique A(%)
Handcrafted features
Patel e Mishra [6] 27 holdout 93.75
Singhal et al. [7] 260 k-fold 93.80
Deep-Learning-based systems
Thanh et al. [8] 1188 holdout 96.60
Shafique et al. [9] 760 holdout 99.50
Rehman et al. [10] 330 holdout 97.78
Sipes et al. [11] 388 holdout 88.00
Pansombut et al. [12] 363 holdout 81.74
Feature extraction with CNNs
Vogado et al. [5] 1268 k-fold 99.76
Ahmed et al. [13] 903 k-fold 88.25
LeukNet 3536 k-fold 98.24

First, from Table VII, it is possible to verify that the amount
of images used in all competing methods is inferior to those
presented in our experiments.

Among the studies studied, the method of Vogado et al. [5]
presented experiments in more than two databases: eight of
the fourteen that were used in this work. Given that this
method was the only showing performance higher than the
one of the proposed method, we performed a more detailed
comparison between the two methods. Table VIII presents
the comparative result of the proposed method and the one
suggested by Vogado et al. [5] using k-fold cross-validation in
the 3536 images of the 18 datasets available.

TABLE VIII
COMPARISON BETWEEN THE PROPOSED METHOD (LEUKNET) AND THE

METHOD SUGESTED BY VOGADO ET AL. [5] WITH K-FOLD
CROSS-VALIDATION.

Approach Accuracy (%) Precision (%) Recall (%) Specificity (%)
Vogado et al. [5] 92.79 92.90 92.80 92.22
LeukNet 98.24 98.20 98.76 97.34

Vogado et al. [5] used eight of the fourteen datasets used in
this study. Comparing the results presented in Tables VII and
VIII, one can notice that there was a reduction in accuracy
(from 99.76 to 92.79%) due to the inclusion of new images.
It is possible to highlight the ASH, UFG, Bloodline and
ONKODIN datasets, which were created with images from
several microscopes, with distinct resolutions, textures and
different color characteristics.

To expand the comparison, Table IX shows the comparative
result of the proposed method and the one suggested by
Vogado et al. using the UFG performance set. One can observe
that the two approaches achieved lower results when evaluated

by k-fold cross-validation. However, the performance decrease
of the proposed method was more moderate (from 98.28 to
70.24%) than that of the method developed by Vogado et
al. [5] (from 92.79 to 52.06%). This result demonstrates that
LeukNet generalizes better than the competing methods. One
can believe that this result is due to the use of data aug-
mentation techniques and a precise definition of the network
parameters.

TABLE IX
COMPARING THE PROPOSED MODEL WITH THE METHOD SUGGESTED BY

VOGADO ET AL. [5] BY LODOCV IN THE UFG DATASET.

Approach Accuracy (%) Precision (%) Recall (%) Specificity (%)
Vogado et al. [5] 52.06 49.90 52.10 47.70
LeukNet 70.24±5.51 70.54±8.62 80.31±15.17 58.94±22.24

V. CONCLUSION

In this work, a novel CNN architecture and training strategy
were presented for the diagnosis of leukemia in blood smear
images. Different architectures, parameters and fine-tuning
scheme were studied to define our model. This allowed to
develop a model for diagnosis that is more precise and robust
than the state of the art works.

From the comparison performed against previous studies,
some conclusions may be drawn as to leukemia diagnosis
from images: First, fine-tuning may be more efficient than
off-the-shelf feature extraction. Second, CNNs with more
representations through feature maps prove better in cross-
dataset experiments. Also, the choice of fine-tuning technique
is essential for the correct definition of CNN parameters. Since
blood sample images belong to a different domain to those
used to pre-train the layers, adjusting all layers is preferable.

The use of the LODOCV evaluation demonstrated the need
for more challenging experiments towards a better generaliza-
tion capability, allowing a model to perform satisfactorily even
on an unpublished or unseen dataset. New studies are needed
to investigate the feature representations learned by LeukNet,
when compared to pre-trained models or even hand-crafted
features. Future work may also investigate the use of Gen-
erative Adversarial Networks in increasing data availability,
considering those are able to generate heterogeneous images
that are sufficiently representative of the original distribution.
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