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Abstract—This research aims to build a model for the semantic
description of objects based on visual features extracted from
images. We introduce a novel semantic description approach in-
spired by the Prototype Theory. Inspired by the human approach
used to represent categories, we propose a novel Computational
Prototype Model (CPM) that encodes and stores the object’s
image category’s central semantic meaning: the semantic proto-
type. Our CPM model represents and constructs the semantic
prototypes of object categories using Convolutional Neural Net-
works (CNN). The proposed Prototype-based Description Model
uses the CPM model to describe an object highlighting its most
distinctive features within the category. Our Global Semantic
Descriptor (GSDP) builds discriminative, low-dimensional, and
semantically interpretable signatures that encode the objects’
semantic information using the constructed semantic prototypes.
It uses the proposed Prototypical Similarity Layer (PS-Layer) to
retrieve the category prototype using the principle of categoriza-
tion based on prototypes. Using different datasets, we show in
our experiments that: i) the proposed CPM model successfully
simulates the internal semantic structure of the categories; ii)
the proposed semantic distance metric can be understood as
the object typicality score within a category; iii) our semantic
classification method based on prototypes can improve the
performance and interpretation of CNN classification models;
iv) our semantic descriptor encoding significantly outperforms
others state-of-the-art image global encoding in clustering and
classification tasks.

I. INTRODUCTION

For several years, the fields of Computer Vision and Ma-
chine Learning have tried to build pattern recognition methods
with a similar performance of a human being for visual
information understanding. Image semantic understanding is
influenced by how are semantically represented the features
of image basic components (e.g., objects), and the semantic
relations between these basic components [1]. The advent
of Convolutional Neural Networks (CNN) outperformed the
traditional methods used for image feature representation [2]–
[4] and it enabled to achieve a visual recognition model
with similar behavior of human semantic memory [5] for
classification tasks [6]–[8]. CNN’s success sparked the ten-
dency of images semantic processing with deep-learning tech-
niques. Representations of image features extracted using deep
classification models [6]–[8], or using CNN-descriptors are
commonly referred as semantic feature or semantic signature.

Semantic feature and Semantic Meaning terms have been
extensively studied in the field of linguistic semantic. While
a semantic feature is defined as the representation of the

basic conceptual components of the meaning of any lexical
item [9], according to Rosch [10], the representation of seman-
tic meaning is related to the category prototype, particularly
to those categories naming natural objects. In her seminal
work [10], Rosch introduced the concept of semantic prototype
and presented a deep analysis of the semantic structure in
the meaning of words. Although state-of-the-art methods have
achieved surprising results, there are still many challenges to
simulate the discriminative and abstraction power of human
semantic memory to represent the semantics.

In this research1, we rely on cognitive semantic studies
related to the Prototype Theory [10]–[12] for modeling the
central semantic meaning of objects categories: the prototype.
The observations on the Prototype Theory raise the following
questions: i) How to describe and stand for objects images,
semantically? ii) Can a model of the perception system be
developed in which objects are described using the same
semantic features that are learned to identify and classify
them? iii) How can the category prototype be included in the
object global semantic description and classification tasks?

We address these questions motivated by the human’s ap-
proach to describe objects globally. Humans use the general-
ization and discrimination processes to build object descrip-
tions that highlighting their most distinctive features within
the category. For example, a typical human description: a
dalmatian is a dog (generalization ability to recognize the
central semantic meaning of dog category) that is distinguished
by its unique black, or liver-colored spotted coat (discrimi-
nation ability to detect the semantic distinctiveness of object
within the dog category). Fig. 1 illustrates the intuition and
principal concepts of our prototype-based description model.
Our approach’s main idea is to use the quality of features
extracted with CNN-classification models both to represent
the central semantic meaning of a specific category and learn
the object distinctiveness within the category.

More specifically, our main contributions in this work are
as follows: 1) a Computational Prototype Model (CPM) based
on Prototype Theory foundations, to stand for the central
semantic meaning of object images categories (prototypes);
2) a semantic distance metric in object image CNN features
domain, which can be understood as a measure of object

1This work relates to a Ph.D. thesis. See the project page:
https://www.verlab.dcc.ufmg.br/global-semantic-description.



Input

1 2

3

4

Global Semantic Description

semantic features

5

ear

shape

eyes
nose

  mouth
snout

nape
tail

thigh

rear leg

 black colored spotted coat

priori knowledge

 learned prototypes

black or liver colored spotted coat
that is distinguished by its unique

A dalmatian is a dog

Generalization

+

Human Description

Discrimination

ear

shape

eyes
nose

  mouth
snout

nape

tail

thigh

rear leg

 color

dog definition

meaningsemantic

Generalization

+
object features

ear

shape

eyes
nose

 mouth
snout

nape
tail

thigh

rear leg

 black colored spotted coat

category prototype

ear

shape

eyes
nose

  mouth
snout

nape

tail

thigh

rear leg

 color
-

semantic distinctiveness

Discrimination

+
semantic

distinctivenessmeaning
semantic

6

Fig. 1. Motivation and Concepts. Schematic of our prototype-based description model. The human visual system can observe an object and build an object
semantic description that highlighting their most distinctive features within the object category. We propose a prototype-based model to simulate this behavior
through the processing flow from 1) to 6). 1) features extraction; 2) object features recognition; 3) categorization based on prototypes; 4) object features; 5)
central semantic meaning of a category (the category prototype); 6) our Global Semantic Description based on Prototypes.

typicality within the object category; 3) a prototype-based
description model for global semantic description of objects
images. Our semantic description model introduces, for the
first time, the use of category prototypes in image global
description tasks; 4) a prototype-based semantic classification
model for semantic classification of objects images based on
prototypes. We propose a Prototypical Similarity Layer (PS-
Layer) that classifies objects according to its similarity con-
cerning our prototypes encoding.

II. RELATED WORKS

A. CNN descriptors

CNNs provide outstanding performance in image seman-
tic processing tasks, and descriptors extracted using CNN
techniques have outperformed the best techniques based on
carefully hand-crafted image features [2]–[4]. CNN descrip-
tor models differ among themselves on how to compute
the image representation in their deep architectures [13]–
[15], similarity functions learning [14], [16], and its features
extraction methods [7], [8], [14]. Initially, CNN descriptor
models were more oriented toward achieving discriminatory
features than representing the image’s semantic information.
Still, some works [17], [18] use the robustness of CNN-models
for training semantic descriptors architectures to address the
problem of semantic correspondence [19]. In general, CNN de-
scriptors and semantic descriptors are trained to learn semantic
representations with different approaches and architectures.
CNN descriptors and semantic descriptors effectively learn
their image representations, but it is still unknown how they
encapsulate semantics. Nevertheless, none of these CNN-
feature description approaches codify the representation of
the visual information based on the theoretical foundation
of Cognitive Science to represent the semantic meaning. In
contrast, in this thesis, we introduce a novel image semantic
description approach based on the foundation of Prototype
Theory to represent the meaning of an object’s image.

B. Prototype Theory

The Prototype Theory [10]–[12], [20]–[22] analyzes the
internal semantic structure of categories and introduces the
prototype-based concept of categorization. It proposes cate-
gories representation as heterogeneous and not discrete, where
the features and category members do not have the same rele-
vance within the category. Rosch [10], [11] obtained evidence
that human beings store first the semantic meaning of category
based on degrees of representativeness (typicity) of category
members, and then its specificities. The category prototype
was formally defined as the clear central members (typical
members) of a category [10], [12], [21]. Rosch [10], [11], [20]
showed that human beings store the category knowledge as a
semantic organization around the category prototype (prototyp-
icality organization phenomenon [11], [21], [23]). Finally, ob-
ject categorization is obtained based on the similarity of a new
exemplar with the learned categories prototypes [11], [20]. For
Geeraerts [21], four characteristics are frequently mentioned
as typical of prototypicality in prototypical categories [10],
[11], [21]: i) extensional non-equality; ii) extensional non-
discreteness; iii) intensional non-equality; and iv) intensional
non-discreteness. The prototypicality effects surmise the im-
portance of the distinction between central and peripheral
meaning of the object categories [21]. In this thesis, we try to
model the main concepts of the prototypicality effects.

C. The prototype in classification tasks

Learning Vector Quantization (LVQ) is a field started by
the seminal work of Kohonen [24], in which the methods
try to find optimal prototypes from the labeled data. This
approach [24]–[26] divides the feature input space assigning
data samples to a set of prototypes. LVQ models have the
advantage that reduce the complexity of the classifier, but
its performance strongly depend on the correct prototypes
choice [26]. The learning method always tries to move the
prototypes near to training samples of the same category and
away from other categories. Recent works use prototypes to
improve the classification on zero-shot learning [27] and few-



LegendHigh

Low

T
yp

ic
al

it
y

Semantic Prototype

Abstract  Prototype

Category edges 
(undefined)

Semantic Prototype 
edges (defined)

Prototypical distance

Distance between 
objects

Typical members

Non-typical members

Category  internal  representation
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definitions and constraints of our Computational Prototype Model.

shot learning [28]. In general, works that use prototypes as the
core of its classification learning process: use a set of images
templates as priori prototypes; learn or calculate the prototypes
in a learned embedded space, and classify a new instance
image based on the similarity between each instance-prototype
pair computed with a distance metric (commonly euclidean
distance or some learned metric). Although the prototype
be considered (conceptually) the most typical member of
the category, it is common that literature approaches do not
introduce the image typicality in category learning processes.

III. METHODOLOGY

A. Computational Prototype Model

Based on our hypothesis for simulating the human behavior
in object features description (see Fig. Figure 1), our proposal
requires as priori knowledge the representation of objects
categories prototypes.We proposed a mathematical framework,
based on Prototype Theory foundations, to stand for the
central semantic meaning of object image categories. Our
Computational Prototype Model (CPM) is a set of definitions
and constraints that allows us to interpret possible semantic
associations between members within the internal category
structure (See Fig. 2).

Let O be an universe of objects; C = {c1, c2, ..., cn} is the
finite set of objects categories labels that partition O; Oci =
{o ∈ O : category(o) = ci} is the set of objects that share the
same i-th category ci ∈ C, ∀i = 1, ..., n; F = {f1, f2, ..., fm}
is a finite set of distinguishing features of an object o ∈ Oci ;
and fj ∈ Fo ; is the j-th feature extracted for object’s image
o, ∀i = 1...n; ∀j = 1...m.

Definition 1. Semantic prototype of ci-category is the 3-
tuple Pi = (Mi,Σi,Ωi) where: i) Mi = [µi1, µi2, ..., µim]
is a m-dimensional vector, where µij is the mean of j-th
feature of features extracted for only typical objects of ci-
category; ii) Σi = [σi1, σi2, ..., σim] is a m-dimensional
vector, where σij is the standard deviation of j-th feature
of features extracted for only typical objects of ci-category;
and iii) Ωi = [ωi1, ωi2, ..., ωim] is a nonempty m-dimensional
vector, where ωij is the relevance value of j-th feature for the
category ci ∈ C.

Algorithm 1 Semantic Prototype Construction
Input: CNN-Model Λ, Object Dataset O, Category ci
Output: Category Prototype (Pi)

Initialization :
1: Oci ← {o ∈ O : category(o) = ci}
2: features block ← {}
3: threshold← 0.99
4: for o ∈ Oci do
5: Fo, typicality score← Λ.features of(o)
6: if (typicality score ≥ threshold) then
7: features block ← features block ∪ Fo
8: end if
9: end for

10: Ωi, bi ← Λ.sofmax weight learned of(ci)
11: Mi,Σi ← compute stats(features block)
12: return (Mi,Σi,Ωi, bi)

Definition 2. Distance between objects.2 Let o1, o2 ∈ Oci be
objects of i-th category ci ∈ C; Fo1 ,Fo2 the features of objects
o1, o2 respectively. We defined the semantic distance between
objects o1 and o2 as: δ(o1, o2) =

∑m
j=1 |ωij |

∣∣f1j − f2j ∣∣ ,
where ωij ∈ Ωi, f

1
j ∈ Fo1 and f2j ∈ Fo2 .

Definition 3. Prototypical distance.3 Let o ∈ Oci be an object
of i-th category ci ∈ C, Fo the features of the object o
and Pi = (Mi,Σi,Ωi) the semantic prototype of ci-category.
We defined as prototypical distance between o and Pi the
semantic distance: δ(o, Pi) =

∑m
j=1 |ωij | |fj − µij | , where

ωij ∈ Ωi, µij ∈Mi, fj ∈ Fo ; and Mi,Ωi ∈ Pi.

Definition 4. Semantic prototype edges.4 Let (Fci , δ) be the
metric space of object features of i-th category ci ∈ C. Let
E ⊆ Fci be a set of features extracted from only typical objects
of ci-category, and Fo ⊆ E the features of a typical object
o ∈ Oci . We weakly defined as edges of our semantic prototype
Pi, the threshold vector ~λi = [λi1, λi2, ..., λim] that meets the
expression: Pr(|fj − µij | ≥ λijσij) ≤ min

(
1, 1

λ2
ij

)
, where

fj ∈ Fo, µij ∈Mi and σij ∈ Σi.

B. Global Semantic Descriptor

In the previous section, we presented a framework to
encapsulate the central meaning (semantic prototype) of an
object category. In this section, we present how to introduce
that semantic prototype representation to simulate the object
semantic description work-flow depicted in Fig. 1. We lay hold
of the theoretical foundations related to the representation of
semantic meaning [5], [32], [33] to model an object semantic
meaning representation. We define the object semantic value
z =

∑
m ωijfj + bi to be the same value used to object cate-

gorization in softmax layer of CNN-classification models [34].
Hence, we assume as object semantic meaning vector, the
semantic vector (~z = Ωi � Fo + ~bi) constructed with the
element-wise operations to compute the object semantic value.

2Based on the psychological distances between two stimuli proposed in
Generalized Context Model (GCM) [22], [29].

3Based on the distance of Multiplicative Prototype Model (MPM) [30].
4Based on Multivariate Chebyshev inequality constraints [31].
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Fig. 3. Methodology Overview. Set of steps to transform the visual information received as input into a Global Semantic Descriptor signature. The
methodology workflow can be divided into two main stages: 1) Feature extraction and Categorization and 2) transformation of CNN-object features into
our Global Semantic Signature. a) input image; b)-c) features extraction and classification using a pre-trained CNN-classification model. Our Prototypical
Similarity Layer (PS-Layer) is used to convert a common CNN-model into a prototype-based CNN-classification model; d) prototype dataset; e) category
prototype selection; f) global semantic description of object using category prototype; g) graphic representation of our descriptor signature resulting from the
dimensionality reduction function (r(x)); and h) Global Semantic Signature.

We stand for the semantic distinctiveness of an object for
a specific ci-category as the semantic discrepancy between
object features and features of the ci-category prototype.
Consequently, we assume as object semantic distinctiveness
vector, the semantic difference vector (~δ = Ωi � |Fo −Mi|)
constructed with the element-wise operations to compute the
object prototypical distance (See Definition 3).

Fig. 3 shows an overview of our novel prototype-based
description model. Our Global Semantic Descriptor based
on Prototypes (GSDP) requires the priori knowledge of each
category prototype (pre-computed off-line using Algorithm 1).
After feature extraction and categorization processes (Fig. 3a-
c), we use the corresponding category prototype for semantic
description of object features. We show in Fig. 3f) the steps
to introduce the category prototype into the global semantic
description of object’s features. A drawback of our object
semantic representation (Fig. 3f) is having high dimensionality,
since it is based on semantic meaning vector (~z) and semantic
difference vector (~δ). We proposed the transformation func-
tion r(x) [34] to compress our global semantic representation
of the object’s features (Fig. 3f) in a low dimensional global
semantic signature (Fig. 3g). Fig. 3 details the main steps of
our description approach; note that we follow the same work-
flow of human description hypothesis depicted in Fig. 1.

C. Prototype-based Semantic Classification

We present how to introduce our CPM framework to simu-
late the prototype-based concept of categorization of Prototype
Theory (see work-flow depicted in Figure 1 steps 1-3)).
Figure 3c) presents the internal structure of our Prototypical
Similarity Layer (PS-Layer): i) we show how to use our PS-
Layer in a common CNN-model; ii) we highlighted in purple

the mathematical model of our PS-Layer neuron. Noting how
the cell neuron body keeps, as priori knowledge, our i − th
category semantic prototype. The PS-Layer has many neurons
as prototypes and categories (see Fig. 3c); and it uses as
neuron output activation the object’s semantic distinctiveness
(our prototypical distance). Analogous to MPM model [22],
[30], our PS-Layer computes the probability with which object
o ∈ O is classified into i-th category using the equa-
tion: P (ci|o) = S(o, Pi)

γ/
∑n
k=1 S(o, Pk)γ where γ is the

response-scaling parameter, and S(o, Pi) = exp(−αδ(o, Pi))
is the similarity between object o ∈ O and the i-th prototype
(Pi). Without loss of generality, and using the same MPM
model assumptions [22], [30], we set at 1 the α and γ
parameters. Consequently, classification probability of our PS-
Layer can be rewritten as:

P (ci|o) =
exp(−δ(o, Pi))∑n
k=1 exp(−δ(o, Pk))

, (1)

where δ(o, Pi) is our prototypical distance. Note that our
PS-Layer uses a softmax function over our prototypical dis-
tance as probability distribution: P = softmax(−~δ(o, Pk)).
To simplify our PS-Layer neuron gradient computation, we
add several constraints: i) neuron weights must be non-
negative (ωij ≥ 0); ii) L2-regularization is used to guarantee
small weights values [22]. Consequently, since µij ∈Mi is a
constant, our PS-Layer neuron gradient:

∂δ

∂ω
=

{
µi − x, if ωx− ωµi ≥ 0

x− µi, if ωx− ωµi < 0.
(2)

is as simple as common CNN neuron gradient ∂z/∂ω = x.
Then, the model that uses our PS-Layer can be trained using
the same training conditions of a baseline CNN-model.



IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

1) Datasets: The off-line prototype computation process
was conducted using MNIST [35], CIFAR10, CIFAR100
[36] and ImageNet [37] datasets. We evaluated our GSDP
descriptor performance in ImageNet [37] and Coco [38] as
real images datasets. For each image dataset, we used a CNN-
classification model for feature extraction and classification
(see Fig. 3a-c). Our PS-Layer performance was evaluated in
MNIST [35], CIFAR10 and CIFAR100 [36] datasets.

2) Models: We evaluated our GSDP descriptor using CNN-
models architectures based on LeNet [35] and Deep Belief
Network [36] architectures for MNIST and CIFAR datasets,
respectively. Also, we conducted experiments in ImageNet
[37] and Coco [38] using VGG16 [7] and ResNet50 [6] models
as background of our global semantic description model. Also,
PS-Layer performance evaluation was conducted using some
models architectures: sMNIST [35], sCF10 [36], sCF100 [36],
vggCF10 [39], vggC100 [39].

B. Computational Prototype Model

There is no defined metric to quantify whether our CPM
framework correctly captures the category semantic meaning.
Since we do not have annotated images with the object
typicality score to robustly evaluate the semantic captured by
our representation, we used another approach to analyze the
semantics behind our CPM model.

1) Semantic prototype encoding: We analyze the semantics
behind of our semantic prototype representation. We con-
ducted the hierarchical clustering of our categories semantic
prototypes to illustrate the hierarchical semantic organization
of a specific image dataset. Fig. 4 shows an example of a
tree diagram (dendrogram) achieved by semantic prototypes
computed in CIFAR10. Notice how our semantic categories
representations partition the CIFAR10-dataset achieving a hi-
erarchical semantic organization. For example, two macro-
categories are clearly visible in Fig. 3: animals and transport
vehicles. Note also how this last macro-category is also
semantically interpreted by our representation as non-ground
vehicles and ground vehicles.

2) Central-Peripheral meaning and Prototypical Organi-
zation: We conducted experiments to know what is the visual
representativeness of category members closest and furthest

Fig. 4. Hierarchical clustering of CIFAR10 semantic prototypes.
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Fig. 5. Prototypical organization within dalmatian category of ImageNet.
We represented category members using image features extracted with VGG16
model.

from the category semantic center (our abstract prototype). We
proposed a function ρ : Fci → R2 | ρ(Fo) = p(zo, δ(o, Pi))
[34] that maps image object features to (R2, L1) metric space
using its semantic value and its prototypical distance. Fig. 5
shows an example of the internal semantic structure captured
by our CPM-model. Note that our CPM-model can recog-
nize as most visually representative category-members (Top-5
closest members to semantic prototype (blue)), those objects’
images that are easy recognized as it exhibits the category
typical features. Also, we observed that elements identified
as less representatives (Top-5 furthest elements (red)) are not
easily recognized by human beings, although retaining some
category features. Our approach allow to observe how visually
relevant are those elements allocated by our CPM model in
center and periphery of category.

3) Image Typicality Score: Lake et al. [40] showed that
semantic value can be used as a signal for how typical an
input image looks like. We conducted qualitative experiments
to analyze how semantic value variations vs. prototypical
distance can influence object image visual representativeness
(typicality). In contrast to Lake et al. results, our experiments
showed that using the semantic value as object typicality score
can be problematic since objects with same semantic value do
not imply same image typicality (e.g., Fig. 5). We observed
that when prototypical distance increases, object image visual
typicality decreases (typicality score (o) = 1/δ(o, Pi)). How-
ever, experiments did not allow us to generalize a behavior
pattern between semantic value and image typicality.

C. Global Semantic Descriptor based on Prototypes

We evaluated our image semantic encoding performance
with supervised (image classification) and unsupervised learn-
ing (clustering) techniques.We evaluated our GSDP descrip-
tor performance in clustering task (comparing its K-Means



Fig. 6. K-Means metrics on ImageNet. History of K-Means metrics reached
by ResNet50 features versus our GSDP representation in ImageNet dataset.

TABLE I
K-MEANS CLUSTER METRICS ACHIEVED FOR RESNET50 FEATURES

versus OUR GSDP REPRESENTATION IN COCO DATASET.

Descriptor Size FPS Metrics Scores
H C V ARI AMI

Deep Features Performance on Coco [38](CrossDataset)
ResNet50 [6] 2048 10.6 0.29 0.36 0.32 0.17 0.31
ResNet50 PCA 128 128 12.5 0.32 0.34 0.33 0.17 0.31
ResNet50 PCA 512 512 12.5 0.34 0.35 0.34 0.20 0.33
GSDP RNet 128 (our) 128 9.6 0.43 0.69 0.53 0.16 0.52
GSDP RNet 512 (our) 512 9 0.34 0.47 0.40 0.09 0.39

clustering metrics) using ImageNet and Coco datasets. We
compared our GSDP representation performance on Ima-
geNet dataset against: 1) traditional handcraft image global
descriptors: GIST [41], LBP [42], HOG [43], Color64 [44],
Color Hist [45], Hu H CH [45]–[47]; 2) deep learning im-
ages features trained on ImageNet: VGG16 features and
ResNet50 features (and PCA-reduced versions).

Fig. 6 shows an example of K-Means metrics history
achieved for ResNet50 features against our GSDP signatures.
Experiments showed that as the data diversity of object’s
images increases, our semantic GSDP encoding significantly
outperforms other image global encoding in terms of cluster
metrics in ImageNet dataset. Also, we conducted the same
experiments on Coco (cross-dataset) to evaluate the perfor-
mance and generalization ability of each image representation
on unseen data. Table I shows a screenshot with an example
of K-Means clustering metrics achieved by each global image
descriptor on the 18-th iteration of the experiments.

D. Prototype-based Classification Model

We evaluated the PS-Layer performance using as baseline
models the CNN architecture: sMNIST, sCF10, sCF100, vg-
gCF10, and vggC100. For each baseline model, we replaced
the softmax layer with our PS-Layer. We trained the re-
sulting PS-Layer models changing the weights initialization
method: fromscratch, freezing and pretrain. For each initial-
ization method we used two distance function inside the PS-
Layer: a) prototypical distance; and b) penalized prototypi-
cal distance (we penalized peripheral elements using Def. 4
constraints). Consequently, we evaluated six PS-Layer model
versions. Fig. 7 summarizes the performance of each PS-Layer
model versions evaluated. Experiments showed that our PS-

Fig. 7. PS-Layer performance summary. Classification accuracy overview
of each baseline CNN-model versus our PS-Layer versions. Each circle
summarizes the metrics performance (Test-Top1, Test-Top5, Train-Top1,
Train-Top5) of each case study analyzed. Accuracy values were normalized
between [0-1].

Layer pre-train versions (in magenta and red) outperforms
baseline CNN-model (black) in each case study analyzed. Our
PS-Layer provides greater interpretive power to CNN models
due to simplicity and clear geometric interpretation of the
object typicality concept (see Fig. 2).

V. CONCLUSION

In this Ph.D. thesis we introduced and evaluated three
models based on Prototype Theory foundations to propose
semantic representations of object’s categories and object’s
images: i) a Computational Prototype Model (CPM), ii) a
novel Prototype-based Description Model (GSDP) and iii) and
Prototype-based Classification Model. Experiments showed
that our CPM model can capture the object’s visual typicality
and the central and peripheral meaning of objects’ categories.
Our novel GSDP5 representation introduces a new approach
to the semantic description of object’s images; and experi-
ments in large image dataset shows that it is discriminative,
small dimensioned, and encodes the semantic information
of category members. Our PS-Layer introduces the image
typicality property in semantic category learning process and
experiments conducted showed that it can outperform some
CNN-Models architecture.

Acknowledgment: We would like to thank the PPGCC-
UFMG, CAPES, CNPq and FAPEMIG for funding this work.

VI. PUBLICATIONS & AWARDS

Parts of this work were published on the IEEE Winter
Conference on Applications of Computer Vision (WACV)
2019, and an journal paper is under review on the Transactions
on Image Processing (TIP). The thesis related to this work was
also awarded to be presented at the WACV 2019 Doctoral
Consortium.
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