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Abstract—Image enhancement is a critical process in image-
based systems. In these systems, image quality is a crucial
factor to achieve a good performance. Scenes with a dynamic
range above the capability of the camera or poor lighting are
challenging conditions, which usually result in low contrast
images, and, with that, we can have the underexposure and/or
overexposure problem. In this work, our aim is to restore ill-
exposed images. For this purpose, we present UCAN, a small
and fast learning-based model capable to restore and enhance
poorly exposed images. The obtained results are evaluated using
image quality indicators which show that the proposed network is
able to improve images damaged by real and simulated exposure.
Qualitative and quantitative results show that the proposed model
outperforms the existing models for this objective.

I. INTRODUCTION

Scenes with high contrast represent a challenge for im-
age acquisition systems. Images acquired from conventional
cameras, which operate in the visible light spectrum, are
commonly affected by artifacts and distortions resulting from
the excess or lack of light. The radiance of the scene near the
limits of the acquisition system results in underexposure and
overexposure. When the radiance passes through those limits
(clipping), the information is lost [1].

Underexposure is a phenomenon of digital photography that
occurs when the camera’s sensor can not correctly capture
the scene details in the darkest areas. Underexposure occurs
due to inadequate lighting, insufficient exposure time, or small
opening of the iris lens limiting the amount of light that
reaches the sensor. Overexposure, on the other end, occurs
when the sensor receives too much light and becomes unable to
distinguish the scene details in the brighter parts of the image.
Overexposure usually leads to large saturated areas where the
scene content information is lost.

To estimate the radiance of an inappropriately exposed
image, we need to restore and enhance non-clipped pixels to
improve clarity and color fidelity, as well as reconstruct the
regions where the signal has been clipped. Therefore, Deep-
Learning models can overcome the limitations of traditional
image enhancement approaches by being able to learn objects,
textures, and patterns from a wide set of training data. Neural
networks can enhance image restoration outcomes with the
help of semantics and contextual information learned from the
instances it has been trained on.

Life sciences, machine vision, voice recognition, natural
language processing, autonomous vehicles, and a wide set
of difficult image-based tasks have benefited from the ad-
vancements in artificial neural networks [2]. Estimating an
ill-exposed image’s irradiance requires preservation and en-
hancement of the pixels with details to improve clarity and
color accuracy, as well as reconstruction techniques for clipped
regions. Deep-Learning models provide a viable alternative to
perform the de-clipping task.

We present an end-to-end convolutional neural network
for image enhancement for ill-exposed sRGB images. Our
network architecture is designed to broaden the receptive
field. The model is significantly smaller than other state-of-
the-art CNNs working on this problem domain in terms of
trainable parameters. The main contributions of this paper are
summarized as follows: i) We present UCAN, a fast and small
exposure correction model which is able to enhance color
texture from an ill-exposed image; ii) We introduce Receptive
Field Expander Block, allowing the model to access a wide
region in the neighborhood, which reduces the need for scaling
layers in the network. iii) We design a custom content-based
objective function to maximize restoration and reconstruction
on almost clipped regions; and iV) We provide quantitative
and qualitative results on both under and over-exposed images,
outperforming recently proposed methods.

II. RELATED WORKS

For ill-exposed images, luminance and color correction
incorporate elements from distinct areas of image processing
such as contrast enhancement, signal reconstruction, noise
suppression, tone mapping, and image completion. Thus, the
literature includes histogram equalization [3], [4], dehaze-
based contrast enhancement [5], Retinex based contrast en-
hancement [6], camera response based models [7], as well as
exposure fusion based models [8].

All of the previous methods depend entirely on the signal
that is represented in the input image. Deep Learning based
image processing has gained a lot of attention in recent years.
Its applications include super-resolution [9], de-hazing [10],
inpainting [11], as well as general image enhancement [12],
[13], RAW low light image enhancement [14], and sRGB ill-
exposure correction [15], [16].



III. METHODOLOGY

A. UCAN Model

U-Nets [17], [18] have become popular for image-to-image
translation tasks. However, the amount of memory required
to store the part results in the intermediate layers is a major
feature affecting all models inspired by U-Net. Due to ex-
tensive usage of skip connections, where the early layers of
the network (encoder) have to be stored for later use in the
decoder layers, U-Nets require a lot of memory resources.

We propose UCAN, a new architecture based on ideas
presented in [17], [19], and [13]. The proposed approach
reduces the network memory requirements and increases the
performance of image exposure adjustment. The network relies
on dilated convolutions and learned downscaling and upscaling
layers. Therefore, we substantially boost the performance in
the restoration task and raise the size of each batch during the
training process. Fig. 1 presents an overview of the network
design.

Our Receptive Field Expander Block (RFEB), shown in Fig.
1, contains four dilated convolutional layers of 3× 3 parallel
with dilation values varying from 20 up to 23. Therefore, each
RFEB will cover 19 features in the input space utilizing just
nine trainable weights per channel. Dilated convolutions favor
context aggregation for each pixel by enabling the model to
reach a wide neighborhood area, helping us to improve the
scaling layers inside the network.

All hidden convolutional layers in the CNN model are
followed by an Exponential Linear Unit (ELU). Through
experiments, we have found it significantly speeds up the
learning process and leads to overall higher image quality.
ELUs’ ability to result in negative values allows them to push
the mean unit activation closer to zero, speeding up learning
because they bring the gradient closer to the unit’s natural
gradient. We also use a ReLU non-linear activation function
on the output layer to avoid negative outputs.

B. Loss Function

A custom error function is used to emphasize regions of the
image closer to the sensor limit, and therefore more likely to
suffer the adverse effects of inadequate exposure. This objec-
tive function combines, in a weighted combination, structural
dissimilarity (DSSIM) and absolute mean error between pixel-
by-pixel. DSSIM is based on SSIM [20], a similarity index
calculated on various 3× 3 window of an image.

Although DSSIM provides a good assessment of the similar-
ity between two images, the index is unable to assess the pixel
values at the exact position. Therefore, the objective function
is complemented with the absolute error (AE) between pixel
values of the model output and the input image. In order to
favor the restoration of critical regions, greater weight is at-
tributed in regions more prone to saturation or underexposure.
For that, we use a matrix of weights W computed from the
reference image b. Assuming that the images are represented
in the interval [0; 1], values close to the limits have a weight
greater than values in the center of the scale. Fig. 1: UCAN architecture overview.



AE(Î , I∗) =| I∗ − Î | . (1)

W =| I∗ − 0, 5 | (2)

In the end, the objective function is given by

L(Î , I∗) = λW ◦AE(Î , I∗) + (1− λ)DSSIM(Î , I∗), (3)

where Î and I∗ represents the enhanced image and the target
image. The empirical constant λ = 0.2 is used to compensate
for the difference in scale between the two error functions.

C. Datasets

We used four sets of images with the ill-exposure distortion.
Half of them are simulated making use of gamma transforma-
tion. Gamma power transformation is a nonlinear operation
used to encode and decode luminance values in image systems
[22] given by the equation:

Ideg = Iγ . (4)

To generate the simulated datasets, we use gamma values
between [2, 8] for underexposure and between [ 12 ,

1
8 ] for over-

exposure.
Simulated: FiveK-based and HDR+ Burst. The MIT-

Adobe FiveK Dataset [23] contains 5,000 photographs shot
with SLR cameras from a variety of various photographers.
The HDR+ Burst Photography Dataset, initially presented by
Hasinoff et al. [24], comprises sequences of images in different
exposures by smartphone cameras.

Real: A6300 and Cai Multi-Exposure Datasets.. Proposed
by Steffens et al. [25], the A6300 dataset is composed of
sets of 4 images for each scene: an appropriately exposed
image using a single photograph, an underexposed image, an
overexposed image, and a composition of the previous ones
using the Tone Mapping method of Mertens et al. [26]. The Cai
dataset, presented in [15], it consists of 589 image sets with
separate exposure settings for each scene and a tone-mapped
composition using the [26] method.

D. Training Phase

The proposed model is adjusted and tested on four different
sets of images. In all cases, 70% of the dataset is used for
training and the remainder for testing. The samples used for
each stage are selected at random. The Adam optimizer [27] is
used with the standard hyper-parameters. Weights are updated
in mini-batches of 8 images with varying resolution. All data
used for training is paired.

The four datasets are interspersed during the training step so
that the model can learn the problem worked on more quickly
and effectively. The idea is to use the simulated datasets at
the beginning of the training, bringing to the model the basic
characteristics of degradation, and the real ones at the end,
refining the model to what it will adjust to challenges in real
miss-exposed images.

Model PSNR MAE SSIM
UCAN 2.070.E+01 9.282E-02 8.885E-01

U-net [17] 1.913E+01 1.119E-01 8.445E-01
Can24 [13] 1.663E+01 1.640E-01 8.152E-01

DHE [4] 1.483E+01 1.709E-01 7.56E-01
Ying [7] 1.408E+01 2.241E-01 7.498E-01
Fu [21] 1.366E+01 2.310E-01 7.393E-01
Input 1.409E+01 2.441E-01 6.749E-01

TABLE I: Quantitative results of related methods.

Training for underexposed and overexposed images is car-
ried out separately, resulting in a specific model for restoring
underexposed images and a specific model for overexposed
images. Training is terminated once 300 batches of images are
processed without making improvements larger than 10−5. An
identical criterion is applied to the U-Net [17] and CAN [13]
architectures used in the comparison.

IV. RESULTS

In this section, we compare the enhancement methods from
the literature with the UCAN model on the test data. In the
quantitative evaluation, we use three image quality measure-
ments: Peak Signal-to-Noise ratio (PSNR), Mean Absolute
Error (MAE), and Structural Similarity (SSIM) [20]. With
UCAN model, three non-learning-based models [4], [7], [21]
and two learning-based models [13], [17], trained in the same
conditions, were tested. Table I shows that the proposed model
outperforms the enhancement methods with a big advantage.
In all the metrics, the learning-based models are better in
this task than the conventional ones, showing that the road to
resolve the ill-exposure degradation is with neural networks.

Qualitatively, Fig. 2 shows a pair of ill-exposed images
applied to the enhancement methods. We note a major change
in the brightness of the components, restoring texture and
re-coloring. In wide regions where all three channels are
clipped, we find that our model is still unable to restore the
surface smoothness, resulting in images that retain the JPEG
compression block artifacts. Overall, a subjective assessment
demonstrates the robustness and efficacy of the experimental
approach for difficult situations of ill-exposure.

V. CONCLUSION

In this work, we propose UCAN, a CNN-based image
enhancement model designed to optimize signal restoration
and feature restoration of poorly exposed sRGB pictures. Ucan
combines an architecture inspired by U-Net with a Receptive
Field Expander Block that enables proper global luminance
correction to be achieved. A custom-built objective function
is presented that emphasizes restoring the color on this kind
of problem and preserves the gradients of the input image. In
terms of brightness improvement, contrast enhancement, and
edge reconstruction, quantitative and qualitative assessment
utilizing four datasets has shown our model substantially
improved over the results of conventional image processing
methods. As future work, we plan to optimize the smoothness
of recovered regions (de-blocking), the synthesis of texture,



(a) Input (b) [17] (c) [13] (d) [21] (e) [7] (f) UCAN (g) GT

(h) Input (i) [17] (j) [13] (k) [21] (l) [7] (m) UCAN (n) GT

Fig. 2: Qualitative results of related methods, where [a-g] represents underexposure and [h-n] represents overexposure.

and the completion of broad clipping utilizing semantic char-
acteristics.
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