Study of Convolutional Neural Networks applied to
Image Stereo Matching

Jodo Pedro Poloni Ponce, Ricardo Suyama
Universidade Federal do ABC
Santo André - SP, Brazil
Email: poloni.ponce@aluno.ufabc.edu.br, ricardo.suyama@ufabc.edu.br

Abstract— Stereo images are images formed from two or more
sources that capture the same scene so that it is possible to infer
the depth of the scene under analysis. The use of convolutional
neural networks to compute these images has been shown to be a
viable alternative due to its speed in finding the correspondence
between the images. This raises questions related to the influence
of structural parameters, such as size of kernel, stride and pooling
policy on the performance of the neural network. To this end,
this work sought to reproduce an article that deals with the
topic and to explore the influence of the parameters mentioned
above in function of the results of error rate and losses of the
neural model. The results obtained reveal improvements. The
influence of the parameters on the training time of the models
was also notable, even using the GPU, the temporal difference in
the training period between the maximum and minimum limits
reached a ratio of six times.

I. INTRODUCTION

In different computer vision applications, such as robot
control and autonomous vehicles, it is required that the system
be able to extract depth information from the acquired images,
often provided by a binocular imaging system. In this scenario,
depicted in Figure I, a single scene is captured from two
different angles and the pixel disparity [1] (i.e., positional
deviations of the corresponding points in the left and right
images) provides information to estimate the depth. This
information is often presented in the form of a Depth Map,
as illustrated in Figure 2, in this case, a gray scale image
indicating how further the objects are in the scene.

u n

(:L‘Fsz)

Right Camera

Fig. 1. Diagram of stereo caption.

A crucial step to obtain the depth maps is performed by
stereo matching algorithms, which are used to find correspon-

Fig. 2. Original scene and the corresponding Depth map in gray scale formed
from a stereoscopic pair, where darker colors means further objetcs, while light
colors means near objects.

dances between pixels (or regions) in the left and right image.
Several stereo matching algorithms have been proposed in the
literature [2], [3], and are traditionally structured as a four
step procedure: matching cost computation, cost aggregation,
disparity computation/optimization and result refinement [4].

More recently, other approaches exploring deep learning
techniques [5]-[7], performing one or more steps in the
traditional stereo matching approach [4], or designed as an
end-to-end solution [1], [8], have been proposed. The use of
neural networks in stereo matching have led to significant
improvements in accuracy and speed [6], [8].

One such approach explores convolutional neural networks
(CNN) for stereo matching [1], [5], processing each image
through a set of convolutional layers, followed by rectified
linear units. The representations of both images are then
compared with a product layer, which computes the inner
product between both representations to obtain the matching
score. For example, Figure 2 illustrates the general struture
used in [1], [5], composed of siamese branches, each one
processing an image of the stereoscopic pair.

The purpose of this work is to study the approach described
in [5], expanding the experiments already presented to assess
the influence of structural parameters in the final result. Hence,
the paper is organized as follows. First, a short introduction
with the main concepts is presented and related papers ex-
ploring CNN for stereo matching are revisited. Afterwards,
the methodology used in the paper is described and simulation

Inner product

[L
1 1

CNN
Layers

I e B
o I

Fig. 3. Diagram representing the matching process of [5].

results are discussed. Finally, the conclusions and perspectives
for future works are indicated in the final section of the paper.

II. CONVOLUTIONAL NEURAL NETWORKS FOR STEREO
MATCHING

CNNs are powerful structures for image processing and
basically work by learning filters to extract characteristics for
the different objects present in the scene [9]. Nevertheless, the
configuration of a CNN can involve a large number of parame-
ters, and its training may be computationally demanding. That
is why dedicated Graphics Processing Units (GPU) are often
used when working with these structures.

The use of CNN in stereo matching received a new burst
since the publication of [6]. The structure proposed in [6] is
trained with a small group of images with known disparities,
and it is composed of nine layers: the first three layers are
structured as two equal branches, each one for an image of
the stereoscopic pair; the results of both branches are then
concatenated and processed through the subsequent layers.
A similar structure was studied in [5] and [10], but using
more convolutional layers in the processing pipeline. Figure 3
illustrates the process of matching proposed in [5].

The result of stereo matching can then be used to estimate
the depth in a stereo image [11]. It uses the model proposed
in [6], incorporating few modifications such as the method
proposed in [12], which compares the intensity for the three
color channels. Another interesting approach related to this
subject was proposed in [13], which uses a CNN cascade
composed of two stages, where the first stage is responsible
for producing an initial disparity space image (DSI) while the
second takes on the task of refining the result [13].

III. METHODOLOGY

In this work we consider the structure proposed in [5],
and presented in detail in Figure 4. The performance of the
structure is evaluated in terms of the: 1- Size of convolutional
kernel; 2- Size of pooling kernel; and 3- Differences between
max and average pooling values.

Following the same approach as [14], in this work we
consider a pixel to be correctly estimated if the disparity is
<3px or if flow end-point error is <5%. The flow end-point
error is a good metric for moving objects because it measure

Inner product

L10 | Pool Layer I | Pool Layer |

L9 I Conv Layer | I Conv Layer | Lo | Conv Layer I | Conv Layer |

L8 I Conv Layer | I Conv Layer | L8 I CO""TLaYe’ I | CoanLayer |

L7 I Conv Layer | l Conv Layer | L7 I Conv Layer I | Conv Layer |
f f f f

6 [Conviayer | [Conviayer | L6 [Conviayer | [Convlayer |
f f f f

L5 I Conv Layer | I Conv Layer | L5 | Conv Layer I | Conv Layer |
f f f f

L4 I Conv Layer | I Conv Layer | L4 I Conv Layer I | Conv Layer |
f f f f

L3 I Conv Layer | I Conv Layer | L3 l Conv Layer I l Conv Layer |
f f f f

L2 I Conv Layer | I Conv Layer | L2 | Conv Layer I | Conv Layer |

L1 | Conv Layer | | Conv Layer | L1 | Conv Layer | | Conv Layer |

(a) Structure proposed in [S] and (b) Modifications proposed in this
used for convolutional kernel ex- paper for pooling kernel study.
periment.

Fig. 4. Digram of architecture structure.

the euclidina distance between true point of the pixel and
the detected point [15]. In this sense, the Stereo Error Rate
(SER) is used as a performance metric and was calculated
by identifying how many pixels did not match over the set.
An additional metric, the cross entropy loss, is also used in
the comparison, with values can go from O to infinity, where
values closer to 0 indicate better models.

It is necessary to comment that the original network setup
in [5] does not include a pooling layer, and the analysis in the
paper does not make clear the reasons why it is not used.
Therefore, as another contribution of this work, it will be
added so that its effect in the performance can be evaluated.
So just the kernel size experiment is able to compare with [5].

Simulation results are obtained varying a single parameter
at a time. Performance is evaluated in terms of SER and loss
values for the training and test set for each parameter change.
Analysis will focus on understanding and explaining the
observed behaviors, investigating the influence and efficiency
of the parameter on the final values of the obtained model.

An implementation of the method presented in [5] was
made available by the authors. It was written using the Lua
programming language and makes use of the Torch framework
to efficiently compute the final solution. Although the original
software is public, a new version in Python was developed
with Tensorflow as a library to efficiently manipulate machine
learning models, and the results presented in this paper are
based on the code described in [16]. The hardware used in
this paper and in [5] is compared in Table I.

The pre-processing established in [5] is necessary to adapt
the image to the neural network. The process consists of
accessing the files that contain the images, already in the
form of DSI, partition the files in training and validation, and
identify in each image of the dataset which pixels will be
analyzed, extracting their respective positions, both in the left

TABLE I
ENVIRONMENT USED IN [5] AND THIS PAPER.

Original This paper
Hardware - Virtual Machine cloud based
RAM - 60 GB
SO - Ubuntu 18.04
GPU NVIDIA TITAN-X NVIDIA TESLA P100
Prog. Language Lua Python 3.6
Framework Torch Tensorflow

and right images. At the end, three files will be generated:
two containing the position information of the pixels and
the identification of which image is being analyzed because
they have been exchanged and will be used for training and
validation; and a file that identifies the images exchanged.

A. Dataset

The dataset used in the simulations was the Kitti dataset,
which has been used as benchmark for applications involving
machine learning applied to images. It contains 200 images,
all composed by the stereoscopic pair [14].

B. Kernel size

The experiment was set up in order to obtain the accuracy
and loss values of the network. The procedure adopted con-
sists of creating a model for odd kernel sizes - three, five,
seven, nine and eleven. This experiment follows the structure
ilustrated on Figure 4a. For each kernel size the SER, and
models’s loss were evaluated. The SER value was acquired
when the model has finished the training process and it is
evaluated with a test image.

C. Size of pooling kernel

The experiment to verify the influence of the size of the
pooling kernel has some interesting peculiarities. Since the
original network does not include a pooling layer, its structure
was modified, bearing in mind that structural change within
the network might deteriorate its original properties. For this
experiment it was applied the structure ilustrated in Figure 4b.

The pooling layer was inserted right after the last convolu-
tional layer. Its location was chosen based on the purpose of
the convolutional layer, which is to enhance the image charac-
teristics by means of the convolution operation. Hence, after
nine convolutional layers, the characteristics sought would
already be well highlighted and ready to be pooled.

The measures acquired were the same as the experiment for
the convolutional kernel size, this means the metrics extracted
from the experiment were the SER and the model’s loss. The
loss was displayed during the training process and the SER
when the model was ready, the test software extracts this value.

IV. EXPERIMENTAL EVALUATION

As described in the Methodology section, the experiments
were divided into two parts, the first focused on reproducing
the results of the original article within the existing limita-
tions; while the second focuses on varying parameters of the

TABLE 11
METRICS COMPARISON BETWEEN THE ORIGINAL PAPER AND THIS ONE.
Execution Time(s) | SER(%)
Original 0,34 7,23
This paper 0,3110 6

convolutional neural network in order to verify their influence
on the model’s error rate and loss values.

For the first part of the experiment, two metrics were
considered: the execution time for the stereo matching of one
image and the Stereo Error Rate (SER). Table II presents the
results obtained in the simulations.

As can be seen in Table II the execution time of the
experiment reproduction was close to the original, varying
only 8.59%, difference is within the expected, since it is
impossible to reproduce the original environment. Next, was
acquired the SER and the results are found in Table II.

According to Table II the reproduction results are compati-
ble with the original, despite the difference of 1.23% between
the measurements, the difference seems reasonable to affirm
that the reproduction of the results was guaranteed and ensured
that it was possible to proceed with the proposed changes.

A. Size of convolutional kernel

The influence of the convolutional kernel size was evaluated
in terms of the SER and the Loss function value, and the
results are presented in Table III.

TABLE III
SER AND LOSS ACCORDING OF CONVOLUTIONAL KERNEL.
Kernel size SER Loss
3 6,442 | 2,095
5 6,482 | 1,870
7 7,662 | 1,805
9 2,726 | 1,675
11 2,308 | 1,800

The value of the error rate decreases with the increase in
the size of the convolutional kernel, the only exception having
occurred with the kernel size equal to 7. This fact is intriguing
since larger kernels produce an increase in the area covered
by the convolution, and therefore a greater generalization
of the analyzed region, which should cause enhancement of
the characteristics. The values of loss also decrease with the
increase of kernel size, indicating that model is improving,
the only exception was the size equals to 11, although the
diference is less than 7%. It must be remembered that these
values were obtained without making any structural changes
to the original network, that is, at this point there is still no
addition of a pooling layer within the network.

Regarding the training time, as expected, it was directly
related to the kernel size. For the smallest kernel the training
time was about five hours, while with the largest kernel took
approximately 24 hours, using the GPU.

B. Size of the pooling kernel

Following the methodology presented in the previous sec-
tion, it was inserted a max-pooling layer in the network and
its kernel was evaluated for the following values: three, five,
seven and nine. The previous nine convolutional layers were
kept with kernel size set to five to preserve the original network
in [5]. The impact of the pooling kernel size for max value
extraction is summarized in Table IV.

TABLE IV
SER ACCORDING POOLING KERNEL SIZE WITH CONVOLUTIONAL KERNEL

SET TO 5.

Kernel size SER Loss

3 5,510 | 1,964

5 4,176 | 1,755

7 5,186 | 2,253

9 6,276 | 2,261

Looking at Table IV one can notice that the best result
is obtained when the size of the pooling kernel is equal to
five, the same size used in the convolutional layer. It is also
interesting to observe the loss values obtained by the models
built. The model with the lowest loss value in this experiment
used a pooling kernel with size five, thus representing the
best setting for minimization of losses and maximization of
accuracy, a situation diametrically opposite to the kernel of
size nine, which obtained the highest values of loss and error
rate among the analyzed values.

It should also be mentioned that the pooling layer is able
to improve the performance of the network. Comparing the
results with those presented in Table III for a convolutional
layer kernel of size 5, it is clear that the additional processing
layer is able to reduce the SER and the Loss value.

C. Diferences between max and average pooling values

As presented in the methodology section, simulations to
compare pooling strategies were carried out and the results
are displayed in Table V.

TABLE V
SER ACCORDING TO THE TYPE OF POOLING.
Kernel size SER Loss
Maximum | average | Maximum | average

3 5,510 6,734 1,964 1,881
5 4,176 9,406 1,755 1,719
7 5,186 3,862 2,253 1,994
9 6,276 7,432 2,261 2,088

Observing Table V we can compare the values for the
two different pooling techniques, one trying to extract the
maximum value of the area analyzed by the pooling kernel,
whose values are the same as the experiment on the analysis of
the effect of the layer of pooling on the structure; and another
that extracts the average value of the analyzed region. Such
a comparison considered a convolutional kernel of size five
and convolutional and pooling strides set to one, with only
the values of the pooling kernel being varied for both pooling
techniques.

Analyzing the accuracy of the values found in the Table
V, the maximum strategy outperforms the average strategy in
most of the cases, with the only exception when the pooling
kernel was seven. On the other hand, in terms of the loss
value, the average strategy seems to perform better, the only
exception being the kernel of size three.

The experiment showed that depending on the kernel size, it
may be interesting to consider a different pooling strategy. It is
not clear, however, how the choices are related. Nevertheless,
as discussed in the previous subsection, these results reinforce
that a additional pooling layer may be an interesting asset in
structures for stereo matching.

V. CONCLUSION

In this work we studied the influence of structural param-
eters, such as size of kernel and pooling strategies on the
performance of the neural network for stereo matching. To
this end, this work sought to reproduce the results of an
article that deals with the topic and to explore the influence of
the parameters mentioned above in function of the results of
error rate and losses of the neural model. The results obtained
modifying the parameters, and inserting an additional pooling
layer, revealed to be beneficial.

REFERENCES

[1] J. Zbontar and Y. LeCun, “Stereo matching by training a convolutional
neural network to compare image patches,” 2015.

[2] F. Remondino, M. Spera, E. Nocerino, F. Menna, and F. Nex, “State
of the art in high density image matching,” Photogrammetric record,
vol. 29, no. 146, pp. 144-166, 2014.

[3] R. A. Hamzah and H. Ibrahim, “Literature survey on stereo vision
disparity map algorithms,” Journal of Sensors, vol. 2016, 2016.

[4] D. Scharstein, R. Szeliski, and R. Zabih, “A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms,” in Proceedings
IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001),
2001, pp. 131-140.

[5] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning for
stereo matching,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 5695-5703.

[6] J. Zbontar and Y. LeCun, “Computing the stereo matching cost with a
convolutional neural network,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 1592-1599.

[7]1 S. Tulyakov, A. Ivanov, and F. Fleuret, “Practical deep stereo (pds):
Toward applications-friendly deep stereo matching,” 2018.

[8] J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching network,” 2018.

[9] J. Schennings, “Deep convolutional neural networks for real-time single

frame monocular depth estimation,” 2017.

S. Zagoruyko and N. Komodakis, “Learning to compare image patches

via convolutional neural networks,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2015, pp. 4353-4361.

T. S. Jordan, S. Shridhar, and J. Thatte, “Usings cnns to estimate depth

from stereo imagery.”

K. Zhang, J. Lu, and G. Lafruit, “Cross-based local stereo matching

using orthogonal integral images,” IEEE transactions on circuits and

systems for video technology, vol. 19, no. 7, pp. 1073-1079, 2009.

J. Pang, W. Sun, J. S. Ren, C. Yang, and Q. Yan, “Cascade residual

learning: A two-stage convolutional neural network for stereo matching,”

in Proceedings of the IEEE International Conference on Computer

Vision, 2017, pp. 887-895.

M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,”

in Conference on Computer Vision and Pattern Recognition (CVPR),

2015.

S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski,

“A database and evaluation methodology for optical flow,” International

Journal of Computer Vision, vol. 92, no. 1, pp. 1-31, Mar. 2011.

Y. Wang, “stereo_matching,” Oct. 2019. [Online]. Available: https:

//github.com/wangy 12/stereo_matching

[10]

(1]

(12]

[13]

[14]

[15]

[16]

