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Abstract—Some strategic sectors of the economy require that
the raw material of their machines and equipment have me-
chanical properties that satisfy their use. Maraging steel is a
material of great concern since it is necessary to have a high
mechanical resistance associated with high fracture toughness.
The traditional tests to determine the fracture toughness of this
material before use in applications are the Charpy and KIC tests.
However, this process is characterized by being exhaustive and
requiring specialized and trained professionals. Thus, to reverse
this situation, this work proposes a new approach to determine
the mechanical properties of maraging steel. For this, initially,
the method removes any artifacts present in the image resulting
from the mode of acquisition. In sequence, this works tested
the method Extended Minimum Transformation (EMT) and
mathematical morphology to find these markers of the regions of
the dimples. Then, the Adaptive Thresholding, Optimal Global
Thresholdusing the Otsu Method and Watershed transformation
methods were used to segment the dimples. In the end, the
diameter of the dimples and the toughness of the material were
calculated. Tests are carried out and compared with the result
obtained by specialists using the traditional system to evaluate
the proposed approach. The results obtained were satisfactory for
the application because the proposed approach presented speed
and precision to the conventional methods.

I. INTRODUCTION

High-performance industries, such as transportation, nu-
clear, military, petrochemical, and aerospace, require opti-
mized alloys with high mechanical strength and fracture
toughness at the same time [1]. Therefore, there is an endless
search for alloys that have these properties. These industries
have turned their attention to Maraging steels.

Steel Maraging is a class of steel that has the right combi-
nation of mechanical strength and tenacity. This steel is con-
sidered ultra-high-strength steel with particular non-deformity
properties during aging hardening, good weldability, and other
characteristics that make it ideal for countless applications.

Due to the critical applicability of this type of steel, many
researchers study the mechanical properties of this material.
The studies subject steel to tests to assess or improve its
strength and toughness characteristics. In [2], samples of
Maraging 18Ni class 300 steel were subjected to different solu-
bilization temperatures and the aging procedure. The objective

was to evaluate the mechanical properties of this material
through the application of these tests and to find a combination
of heat treatments that improve its toughness.

Due to the critical applicability of this type of steel, many
researchers study the mechanical properties of this material.
The studies subject steel to tests to assess or improve its
strength and toughness characteristics. Researchers at work [2]
subjected Maraging 18Ni class 300 steel samples to different
solubilization temperatures and aging. The objective was to
evaluate the mechanical properties of this material through the
application of these tests, and to find a combination of heat
treatments that improve it is toughness.

Toughness is considered the resistance that the material
offers to the nucleation or propagation of a crack. In short,
it is all the energy that it stores from the first moment
when the stresses are applied until the moment when the
fracture suffers. The inverse relationship between strength and
toughness, well understood for other high-strength steels, is
also seen in the 18% Ni Maraging steel family. New studies
promote an increase in fracture toughness without considerable
losses in mechanical strength. An area of high relevance in
the researches is the study that aims to increase the austenite
grain, interfering in the micromechanism of crack propagation
through the hierarchical structure of the martensitic phase.

There are several ways to measure a material’s fracture
strength by performing mechanical tests. Tests can have dy-
namic characteristics, for example, Charpy and KIC tests, or
static tests, such as traction [3]–[5].

In Charpy’s test, a prismatic bar with a notch in the middle
is placed in a device known as a hammer. This device has
an articulated arm and a weight at the end of the arm. This
weight will be launched against the sample. The stick will
transfer energy to the sample. Consequently, this energy will
be accumulated in the form of deformation before fracture.

The KIc test is the most used form, and there is a prismatic
bar with a notch in the middle. After a fatigue cycle, the
machine applies to bend force to this specimen. Due to the
movement, a crack is generated that will propagate up to a
certain length. Then, on the same machine, but with a different



configuration, the sample is supported by two points, and a
third support point flexes that sample. This flexion will provide
energy with the nucleated crack. The amount of energy that
the specimen absorbs in this second stage of the test will be
the fracture resistance. This test is quite complex, as there
are several requirements that it must meet to be a valid test
and, therefore, the probability of failure is very high. The
KIc test, in addition to measuring only the crack propagation
energy, is still standardized by several associations of technical
standards, such as the American Society for Testing and
Materials (ASTM) and British Standards Institution (BSI),
among others. The main disadvantages of these techniques
and the KICs, in particular, are the complexity of the tests,
complex validation protocols, and the high associated costs.

There are many fields of application in mechanics and
metallurgy that require quantitative and qualitative analysis,
both in a scientific study in the laboratory and industrial
processes. Quantitative analysis carried out principally by
manual methods, for the definition and evaluation of param-
eters such as grain size, porosity, second phase particles,
wear particle morphology, granulometric distribution of inputs
or determination of mechanical properties, requires obtaining
accurate data and representative to allow the use of statistical
concepts, limiting the application of manual methods in the
industrial routine, being extremely dependent on the skill of
the responsible technician. On the other hand, the complexity
of the microstructures of the materials implies the need to
characterize quantitatively numerous parameters that cannot
or are difficult to be assessed by manual methods, such as
spatial distribution, size, volumetric fraction and precipitate
morphology, contiguity, etc [6].

More recently, the rapid development of electronics and
information technology has enabled the creation of systems
based on digital image processing techniques for microstruc-
tural evaluation. This scenario has become real recently, due
to the application of digital image processing techniques,
which allow the automation of these processes, significantly
reducing execution times and decreasing errors and improving
the reproducibility of measurements.

There is an increasing number of researches that employ
computational techniques in several fields of Materials Science
to assist professionals and specialists in their analytical activi-
ties. There are in the literature, studies that used computational
methods to analyze the microstructure of the cast iron [7], [8],
calculate the graphite density nodules [9], classify the electric
steels according to the electromagnetic efficiency [10]–[12],
and measures the welding dilution [13].

Given the above, it is possible to note that the toughness
is an essential mechanical property in the evaluation of the
resistance of a material. However, the existing ways of cal-
culating it involve testing, which, in addition to presenting
high cost, are quite complicated, and there is a high risk
of failure. Given the relevance of toughness in mechanical
properties in the evaluation of Steel Maraging 18Ni C300, this
article aims to use Digital Image Processing (DIP) techniques
in the images obtained in the experiments of [2] to extract the

average diameters of dimples and to find the values resistance.
Therefore, a method in a simple, less stressful, and much
cheaper way.

A. Paper organization

Section II deals with the mechanical properties of maraging
steels; Section III provides details of the methodology and
describes the proposed technique. In Section IV, the results
obtained are displayed; Section V presents the conclusions, as
well as suggestions for future work.

II. MECHANICAL PROPERTIES OF THE MARAGING STEELS

Maraging steels are alloys formed mainly by the chemical
elements iron, nickel, molybdenum, and cobalt. The most used
designation for these steels informs the nominal nickel content
and the minimum value of the stress limit in the tensile test,
measured in Megapascal (MPa), in the International System, or
kilogram-force per square inch (kpsi), more used in the United
States of America (USA) [14]. The stress limit is the stress
necessary to produce a small amount of plastic deformation,
in which the material does not return to its original state.

The term Maraging comes from the combination of the
two English words martesine and aging, which respectively
mean martensite and aging, that is, aged martensite. The term
already suggests what the heat treatments used in this type of
steel are.

There is a relative increase in the ductility of the materials
after the solubilization treatment. Then the total deformation
and the reduction of the area are observed in the tensile test.
Consequently, this characteristic reveals its capacity to undergo
plastic deformations in the processes of forming and finishing
the parts produced with these steels in this condition. Fracture
toughness is the ability of a material to resist fracture in the
presence of cracks. Therefore, a material can absorb energy by
plastic deformation before fracture. Tenacious materials resist
the propagation of defects during plastic deformation.

The Maraging steel has a Ni content between 10% and 30%.
The use of 13% Ni in the 400 series and 18% Ni in the 200,
250, 300, and 350 series is common. In these types of steel,
the carbon concentration is deficient. During cooling, there is
austenite to martensite transformation. The latter being known
as Ni martensite and has a high density of disagreements and a
high content of alloy elements in a robust solution. In this way,
it favors the precipitation of intermetallic compounds around
the discrepancies causing the material to harden [15].

To evaluate the mechanical strength, ductility, and toughness
of a type of steel, many scholars have already carried out
some tests with samples of the material, such as hardness,
tensile tests, Charpy impact toughness, fracture toughness, and
sensitivity to traction notch.

From the analysis of the microstructures visualized by op-
tical and electronic microscopy, some of these studies sought
to establish a relationship between them and the mechanical
properties of the materials. This is the aim of the work of
Koike et al. [16]. The authors analyzed the influence of the
microstructure on the apparent dynamic fracture toughness of



ABNT 4340 steel from a conventional Charpy impact test.
Koike et al. [16] concluded that for different heat treatments,
these microstructures have different characteristics.

Experimental evidence indicates that in Maraging steels, the
mechanical properties as measured by uniaxial tensile tests
and the fracture toughness behavior are influenced to different
extents by various metallurgical parameters [17].

Acording to [18], the tenacity KIC can be calculated using
Equation 1. Where d is the average diameter of the dimple (in
µm), σ is the tensile strength (in MPa) and E is the elasticity
module (in GPa).

KIC =

√
σ dE

2
(1)

Table I shows the properties of steel Maraging 300 associ-
ated with each test temperature made in [2].

By joining the information from Equation 1 and Table
I, it is possible to determine in which range the dimples
average diameter is for each of the five test temperatures. For
this, the variable d from the Equation 1 is isolated and the
elasticity module E present in the equation is used as 200GPa
associated with steel Maraging 18Ni C300.

This method is used as a parameter for evaluating the DIP
techniques to calculate the average diameter of the dimples
in each of the images obtained and provided by the research
[19].

III. MATERIAL AND METHODS

This section presents the materials and methods used in the
proposed approach. Subsection III-A describes the material
used and its mode of acquisition. In Subsection III-B shows
the steps of the computational techniques of DIP used to obtain
tenacity values. Figure 1 illustrates the methodology adopted
in the proposed approach.

A. Materials

This article used the database obtained in the research by
[2]. In total, the data set consists of 121 grayscale images
of samples from Maraging Steel 18Ni. All images have
dimensions of 484 pixels x 712 pixels. Figure 2 illustrates
some of the images from the set of images acquired.

In [2], these samples were submitted to temperatures of
820◦C, 860◦C, 1000◦C, 1050◦C, and 1100◦C in the KIC

test. Table II shows the results of the tenacity and average
diameter of the dimples obtained in the survey [2]. These
values are references in the validation of the results obtained
in the proposed approach of this work.

B. Methods

The approach proposed in this work applies the sequencing
of some DIP methods to acquire the ideal average diameter of
the dimple values. From the value of the diameter and tensile
strength and the modulus of elasticity, the toughness value is
calculated from Equation 1. Figure 1 shows the computational
steps used in this work.

a Database with images of maraging steel

c Image segmentation

Adaptative Local Thresholding

Watershed with Extended Minimum Transform

Watershed with White Top-Hat Transform

Thresholding using Otsu's method

d Calculate the centroids

f Calculate the toughness

b Removing image artifacts

e
Mean distances between centroids and edges

Minimum distances between centroids

Calculate the average diameters

Fig. 1. Diagram illustrating the steps followed until calculating the average
diameter dimples in µm.

(a) (b)

Fig. 2. Sample images of Maraging Steel 18Ni at temperatures of 860◦C
and 1000◦C, respectively, enlarged by 5000x and 1000x.

As illustrated in Figure 2, the original images have a
black region designed to present some information about the
conditions and parameters used in image acquisition. However,
such areas are considered artifacts that would hinder digital
image processing.

There is a standardization of the location of this region
with the information. Therefore, initially, for all images in the
database, this artifact was removed. In this way, the original
images had dimensions of 484 pixels by 712 pixels. With the
removal of this region, the image became 423 pixels x 712
pixels.

a) Segmentation of dimples: Some segmentation tech-
niques were tested to obtain dimples segmentations in the
image. However, due to the presence of noise and other
irregularities, it is necessary to perform pre-processing before



Solution Tensile Yield Elongation Necking Strain Charpy KIc Hardness
Temperature (◦C) Strength (MPa) Strength (MPa) (%) (%) Hardening Coef. (J/cm2) (MPam1/2) (HRC)

820 2067±31.6 2052±28.80 9.2±1.07 13.1±2.92 0.18±0.06 15.50 60 54.8
860 1994±75.3 1981±73.75 9.7±0.60 16.2±1.20 0.21±0.05 17.67 65 55.7

1000 1994±75.3 1912±62.40 10.4±0.92 17.5±2.50 0.18±0.03 22.67 76 55.3
1050 1994±75.3 1808±42.60 10.4±0.79 17.8±1.27 0.22±0.02 11.00 78 55.5
1100 1802±86.0 1776±89.70 9.0±0.44 14.7±1.92 0.21±0.02 14.00 83 52.1

TABLE I
MECHANICAL PROPERTIES OF STEEL MARAGING [2].

Temperature (◦C) Tenacity (MPam1/2) Average Diameter (µm) Margin (µm)
820 60 17.42 0.27
860 65 21.22 0.80
1000 76 29.99 1.02
1050 78 33.29 1.49
1100 83 38.32 1.83

TABLE II
AVERAGE DIAMETER OF DIMPLES RANGE DIMPLES FOR EACH TOUGHNESS

IN THE TEST.

performing the segmentation. If this step is not carried out,
there may be over-segmentation, consequently, a large number
of targeted regions.

For this, two different methods were tested to find these
markers from the regions of the dimples. The first method
was based in Extended Minimum Transform (EMT) and the
second method was based on mathematical morphology.

The Extended Minimum Transform [20], [21] is a transfor-
mation that finds brighter groups of pixels in the image that
form connected components whose gray levels are the same.
The central markers overlap the locations of the minima with
black regions in the original image. This function requires
passing a H threshold as a parameter, as can be seen in
Expression m = fimextendedmin(H).

In which, m corresponds a binary image that resultants of
the application this transform, presenting the regions of local
minimums of the original image. This threshold H consists in
a factor that be associated a quantity of minimum regions on
image. This number of regions and the H factor are inversely
proportional, so that the greater this factor, the fewer quantities
of minimum regions will be found in the image.

Another way to find the local minimums in an image
is to use Morphological Operations. They are digital image
processing techniques based on set theory. Often the White
Top-Hat (WTH) transform is utilized to extract image com-
ponents that are brighter than the background in gray-scale
image processing [21]. The Expression T (f) = f − (f ◦ b)
represents this transform. In which, f represents the image, b
the structuring element, and ◦ denotes the opening operation.

The Figure 3 represents the results of applications of these
techniques.

Once the local minimums were found, the next step was
to apply segmentation methods to obtain the well-defined
dimples. Adaptive Thresholding, Optimal Global Threshold
using the Otsu Method, and Watershed transformation methods
were tested. Figure 4 shows the results of applying each
technique.

(a) (b)

Fig. 3. Markers: (a) Application of Extended Minimum Transform. (b)
Application of White Top-Hat Transform.

(a) (b)

(c)

Fig. 4. Image Segmentation Techniques: (a) Thresholding using T = 127.
(b) Optimum Global Thresholding Using Otsu’s Method. (c) Watershed
Transform.

The Basic Thresholding consists in a segmentation tech-
nique that It is necessary a single threshold to segment the
object of interest. It is based in the histogram of image. If
the grayscale of the pixels background It is so different of the
grayscale of the object, this technique is the best to apply.

Suppose that f is the intensity of input image histogram and
g is the intensity of output image histogram. The application of
the basic thresholding technique is mathematically represented
by Equation 2. In which, T represents the single threshold
used and the values 1 and 0 are the maximum and minimum
intensity of grayscale (black and white colors), respectively.

g(x, y) =

{
1, if f(x, y) > T

0, if f(x, y) ≤ T
(2)

Optimum Global Thresholding Using Otsu’s Method deter-
mine the optimum threshold k∗ to segment the image, through



maximizing the between-classes variance. The algorithm of
this method is presented in Algorithm 1.

Algorithm 1 Optimum Global Thresholding Using Otsu’s
Method.

1: Normalize the histogram of input image;
2: Calculate P1(k), for k in [0, L-1], using

P1(k) =

k∑
i=0

pi

3: Calculate the comulative means, m(k), for k in [0, L-1],
using

m(k) =

k∑
i=0

ipi

4: Calculate the global intensity mean, mG, using

mG =

L−1∑
i=0

ipi

5: Calculate the between-classes variance σ2
B(k), for k in [0,

L-1], using

σ2
B(k) =

[mGP1(k)−m(k)]2

P1(k)[1− P1(k)]

6: Find the optimum threshold k∗, as the value of k for that
σ2
B(k) is maximum.

7: Obtain the separability measure, η∗, calculating

η∗ =
σ2
B(k)

σ2
G

Where σ2
G is the global variance, defined by

σ2
G =

L−1∑
i=0

(i−mG)
2pi

The Watershed transform [22] is a segmentation method
based on mathematical morphology. In this way, an image is
considered a topographic landscape with peaks and valleys.
The elevation of water in the landscape is represented by
the level of gray or the magnitude of the gradient. This
transformation decomposes the image in hydrographic basins
(regions). For each local minimum, a hydrographic basin
comprises all points whose steepest descent trajectory ends
at that minimum. One of the approaches to implement this
algorithm was proposed by [23].

b) Calculation of centroid and average diameter of dim-
ples: In a two-dimensional image, the centroid of a given
the segmented area A corresponds to the point of the A that
represents the midpoint at x̃ and ỹ. The values are calculated
by Equations 3 and 4. Therefore, the centroid of an area is
a weighted average of the area’s pixels. Consequently, it was
calculated the centroid in each microcavity in the segmented
image. This centroid represents the microcavity.

x̃ =
1

A

∑
(x,y)∈R

x (3)

ỹ =
1

A

∑
(x,y)∈R

y (4)

This work used two different procedures to calculate the
radius of each of these regions.

The first procedure disregards the borders that define each
region, and the relevant information is only the centroid. The
diameter value for each region corresponds to the average of
all distances from a centroid to the nearest centroid.

In the second method, the Euclidean distance from the
centroid to some edges of the region was calculated. Therefore,
this method performs the calculation of several radii. The
determination of the average radius and the average diameter
was based on the calculation of the average radius of each of
these regions.

Equation 5 mathematically expresses the calculation of the
radius of each dimple i. The parameter S is the number of
selected samples, and Ci.x e Ci.y are the x and y coordinates
of the centroid i respectively.

Ri =
1

S

S∑
j=1

√
(xj − Ci.x)2 + (yj − Ci.y)2, (5)

With the calculation of the radius of each region, the average
diameter in pixels is given by Equation 6. In which, N
corresponds to the number of regions or centroids in the image.
Figure 1 summarizes the steps previously described using a
simplified flowchart.

DM =
2

N

N∑
i=1

Ri, (6)

Figure 5 shows the partial results found until obtaining the
average diameter of the dimples for a 1000x magnified image
and referring to a temperature test of 1100◦C.

After all the procedures performed to find the average
diameter of the dimples in pixels, this value was converted to
µm. This conversion was performed by counting the number
of pixels of the ruler defined in the black stripe of the original
image and obtaining the value of a pixel in µm. Equation
7 describes the relation between a distance in pixels and a
distance in micrometer.

dmµ = dmp

(
rµ
rp

)
(7)

In which, dmµ and dmp are the values of the average
diameters of dimples in µm, and in pixels, respectively, rµ
and rp are the values of the ruler in µm and pixels.



Calculation of Centroids

Calculation of radius

Watershed result

Related Components

Input image

Meeting of Local Minima

Fig. 5. Step by step to obtain the average diameter of the dimples for an
image. (a) Original Image. (b) Meeting of Local Minima. (c) Watershed result.
(d) Related Components. (e) Calculation of Centroids. (f) Calculation of radii
from the center of a given region.

c) Calculation the tenacity: After that, the tenacity val-
ues were found by applying the average diameter values
selected in Equation 1, using the most adequate values of
average diameters for each image.

The most adequate values of the average diameter chosen
for each image were obtained by calculating the Euclidean
distance of the average diameters from those found for the
ideal average diameter, which would be the closest to the
values obtained in Table III according to test temperature
value.

C. Experiments

As presented in this section, the approach adopted in this
work used different combinations of digital image processing

methods to obtain the values of the mechanical properties
of toughness in Maraging steel. In total, eight experiments
were carried out. Table IV shows the combinations of the DIP
methods adopted.

For all the experiments was used a computer with the fol-
lowing configuration: Intel(R) Core(TM) i7-6500U processor
with 2.5 GHz, 8 GB of RAM, and running Windows 10.
Besides that, It was used the MATLAB 2017a (developed by
MathWorks) for implementation.

The parameters used in each DIP algorithm involved in the
experiments were selected from the optimization algorithm
Grid Search [24], which allows the selection of the best
settings from an exhaustive search within a range of predefined
values.

For the Extended Minimum Transform, Grid Search was
applied with values in the range of 70 to 200 with a step of
size 5 to select the parameter H.

For the White Top-Hat Transform, as seen in Section III-B,
it is necessary to define the size and shape of the structuring
elements used. For experiments with this transform, circles
were used. Their sizes were defined from the application of the
Grid Search algorithm with combinations of pairs of values.
These combinations were: (3; 9), (3; 11), (3; 15), (5; 9), (5;
11), (5; 15), (7; 9), (7; 11), and (7; 15).

The methods Adaptative Thresholding and Optimal Global
Threshold using Otsu Method do not require parameters, as
both ways are adaptive and adjust their settings automatically
according to the image.

All the experiments described above generated estimated
values for the average diameter of the dimples, which applied
to Equation 1 resulted in toughness values for each image in
the database. In the end, the mean and standard deviation of
these toughness values, associated with each test temperature,
were calculated and subsequently validated with the values
found by [2].

IV. RESULTS AND DISCUSSION

Table V presented the results of the average tenacities
obtained from the experiments described in Subsection III-C
and the results of [2].

Table V represents the mean and the standard deviation of
the tenacities obtained for each image that refers to a material
submitted to a test of a specific temperature. It’s possible to
observe that the first and second experiments came closer to
the values obtained in [2] than the rest.

In both experiments, this works used the technological
Watershed Transformation. This method is a powerful tool for
image segmentation, which is ideal for targeting regions of
gray shades that are not uniform and that are not well defined.
Consequently, it is also inversely proportional to the value of
the average diameter of the dimples. Thus, applying a grid
search with a wide range of benefits, the probability of finding
the ideal average diameter of the dimples is higher.

Although this works used two different ways of calculating
the average diameters of the dimples, the results varying only
those methods did not result in significant variations.



T (◦C) Real Tenacity (MPam1/2)
Estimated Average Diameters(µm)

Threshold 70 Threshold 80 Threshold 90 Threshold 92 Threshold 95 Threshold 100
820 17.42 8.29 11.36 17.03 17.15 20.68 29.44
860 21.22 6.39 7.89 11.23 12.03 20.14 20.67
1000 29.99 13.50 24.22 34.66 38.85 46.62 59.66
1050 33.29 12.41 18.41 31.83 36.66 45.78 51.77
1100 38.32 9.83 13.21 19.61 21.02 21.04 23.48

TABLE III
AVERAGE VALUES OF THE AVERAGE DIAMETERS OF THE DIMPLES FOR EACH TEST TEMPERATURE.

Experiments Find Markers Segmentation Calculate
1 EMT Watershed Method 1
2 EMT Watershed Method 2
3 Morphology Watershed Method 1
4 Morphology Watershed Method 2
5 - Thresholding Method 1
6 - Thresholding Method 2
7 - Otsu Method 1
8 - Otsu Method 2

TABLE IV
THE DIP METHODS THAT WERE USED IN EACH EXPERIMENT.

In experiments 3 and 4, both using mathematical mor-
phology to find the markers, it was necessary to perform
a grid search for the sizes of the structuring elements. The
small variations in these sizes cause significant changes in the
results. Therefore, either the toughness value was far below or
far above what was desired.

In experiments that used the Adaptive Threshold or Op-
timized Global Threshold Using the Otsu Method as seg-
mentation methods, there was no need to find markers or
define parameters, as the limits of these methods are set
automatically through their algorithms. Thus, as these types of
segmentation are ideal for segmenting objects whose gray tone
is very different from the gray tone of the image’s background,
we have poor segmentation, which consequently generates
unwanted tenacity values at the end of the algorithm.

Figure 6 shows the box diagrams. These graphics presented
that highlight the values corresponding to methods 1 (Figure
6.a) and 2 (Figure 6.b) compared to the traditional way
performed in the work of [2]. A black line inside the box
symbolizes the average value. The red box corresponds to the
toughness test by the traditional method and the black one with
the digital image processing methods. Results for temperatures
820◦C, 860◦C, 1000◦C, 1050◦C, and 1100◦C are displayed.

An essential factor to note is that the thresholds H and the
mean values of the diameters follow a monotonic behavior,
the functions that relate the thresholds with the values of the
mean diameters of the ripples. Therefore, both grow together.
This characteristic allows the analysis to be expanded to limit
values beyond the range established in this study.

V. CONCLUSION

Measuring the mechanical properties of maraging steels is
generally an exotic process and always requires a specialist
to perform the tests, in addition to expensive equipment. To
automatically evaluate the mechanical properties of maraging

steels, this work developed a system to carry out this analysis
automatically using digital image processing methods.

Regarding the technologies used, to find the markers
for dimpled regions, the Extended Minimum Transformation
(EMT) method, and the method based on mathematical mor-
phology were tested. For segmentation, were used the Adap-
tive Threshold, Global Optimal Limit transformation methods
using the Otsu method and Watershed to segment the dimples.
Then the diameter of the dimples and the strength of the
material were caculated. The combination of the Watershed
with the EMT method showed more significant equivalence
with the traditional techniques performed by specialists.

Thus, this article proposes a new automatic approach for cal-
culating the mechanical properties of maraging steel in digital
images using sequential digital image processing methods. The
main contribution of the developed system is the automatic
determination of the toughness of the steel without the need
for expensive equipment.

From the validation data of the described approach, it is
verifiers that the model is valid, within the allowed tolerance
range. Therefore, students, engineers, researchers, and special-
ists in engineering and materials science can use both at the
academic and industrial levels.
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00 2019.

[14] M. N. Rao, “Progress in understanding the metallurgy of 18% nickel
maraging steels,” Zeitschrift für Metallkunde, vol. 97, no. 11, pp. 1594–
1607, 2006.

[15] J. C. Lopes, “Os aços maraging,” Ciência & Tecnologia dos Materiais,
vol. 19, no. 1-2, pp. 41–44, 2007.

[16] A. Koike, R. Tokimatsu, F. Nogueira, S. Irikura,
G. de Caracterização Mecânica, and M. dos Materiais, “A influência da
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