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Abstract—The quality of the images obtained from mobile
cameras has been an important feature for modern smartphones.
The camera Image Signal Processing (ISP) is a significant proce-
dure when generating high-quality images. However, the existing
algorithms in the ISP pipeline need to be tuned according to the
physical resources of the image capture, limiting the final image
quality. This work aims at replacing the camera ISP pipeline with
a deep learning model that can better generalize the procedure.
A Deep Neural Network based on the UNet architecture was
employed to process RAW images into RGB. Pre-processing
stages were applied, and some resources for training were added
incrementally. The results demonstrated that the test images were
obtained efficiently, indicating that the replacement of traditional
algorithms by deep models is indeed a promising path.

I. INTRODUCTION

Nowadays, digital image processing and computer vision
are employed in different areas ranging from entertainment,
medical to industrial applications. Additionally, powerful mo-
bile phones endowed with state-of-the-art cameras are released
every year. They apply software-based solutions as an alterna-
tive for delivering a high-quality image since the hardware re-
sources are restricted compared to high-end professional cam-
eras. For non-professional purposes, the images captured by
smartphones have quality comparable with standard cameras
thanks to powerful image and signal processing procedures.
As a consequence, smartphones have been taking the place of
the traditional camera.

One key component in the camera image formation is the
Image Signal Processing (ISP) pipeline, which transforms
the raw data from the sensor to produce an image applying
procedure to reduce noise and other artifacts, following by a
color image processing pipeline [1]. These steps, which in-
clude Black-level subtraction, Lens shading correction, White
balance, Demosaic, Chroma denoise, and Color correction,
can be organized as the pipeline shown in Fig. 1. These
algorithms and parameters, which depend on the sensor’s
characteristics, influence the final image’s quality. Despite the
advances, the ISP is still limited in mobile cameras due to the
physical characteristics, such as small sensors and compact
lenses, that restrict the focal distance. Further, to achieve a
satisfactory quality, a tuning procedure is still necessary for a
new device production.

In this work, we propose a Deep Neural networks (DNNs)
architecture based on UNet [2] to process the raw data and

Fig. 1. Traditional camera ISP pipeline

produce a color processed image. Through this approach, the
tuning can be generalized for new devices saving manual
efforts from image quality experts, besides being more efficient
than methods based on automatic ISP algorithms [3]. During
training, we employ the loss functions used in style transfer
applications [4] to capture global information like brightness
and contrast.

This paper is organized as follows: In Sec. II we point recent
and relevant works concerning the processing of RAW images
into RGB images. In Sec. III we shed some details of the pre-
processing stage. Then, in Sec. IV, some details concerning
the architecture of the neural network are presented. In Sec. V
we show the results of our experiment. Finally, in Sec. VI, we
summarize the work and point some of the possible extensions.

II. RELATED WORKS

HDR+ [5] captures a burst of images in different exposures
to be merged before running ISP and tone mapping steps. The
project provides a dataset containing the burst, and the final
result that is used to train our network. The idea of High
Dynamic Range (HDR) images [6] is that it increases the bit
depth of the result and applies a tone mapping, converting
the result to a range allowed by the display in the device,
and it is applied to improve the visualization when the image
in processing has light and dark areas causing results with
overexposed and dark regions. Both [5] and [6] deal with
image processing using classical algorithms.

Conversely, Deep Neural networks (DNNs) have been used
in image-to-image tasks [7], [8] and it is expected for a reason-
able good network to learn this processing, assuming a decent
amount of data, without any concern to find the best algorithm
and parameters for each step. HDRNet [9], for instance,
performs the enhancement in real-time with a convolutional
architecture. Part of this architecture uses a low-resolution
image copy to extract local and global features. DeepISP [10]



was proposed with a fully convolutional network with a stage
to extract low-level features for local modifications and another
stage to high-level features for global correction. The training
and evaluation are performed in image pairs from the same
smartphone model. More recently, PyNET [11] was proposed
with a pyramidal CNN architecture that learns the ISP steps. It
processes the image in different scales combining global and
local features. Further, the work provided a dataset containing
10 thousand full-resolution RAW-RGB image pairs.

III. PRE-PROCESSING STAGES

In this section, we describe the relevant steps in our pre-
processing stage. All of these procedures are applied to the
RAW images before feeding them to the network. In our
approach we use the images from the Google HDR+ dataset
[5].

A. Fixing and Converting the Dataset

The initial treatment consists of rotating and cropping to
ensure that both the input RAW image (merged.dng) and the
ground truth image have consistent shapes and are aligned (an
issue found in Google’s HDR+ dataset). Subsequently, we
convert the RAW merged file from DNG to a 16−bit PNG
file, in which we include the following procedures.

B. Black-Level Subtraction

Black-Level subtraction is a procedure to deduct an offset
from all pixels so that pixels receiving no light become zero.
The sensor-dependent values used for the black-level and
white-level are read from the RAW files, and the channel-wise
transformation is summarized by the equation

Imbls(x, y, c) =
Im(x, y, c)− bl(c)

wl
, (1)

where bl and wl are the black and white levels, respectively,
c represents the channel in which the operation is performed,
Im is the input image, and Imbls is the resulting image after
black-level subtraction.

C. Lens Shading Correction

Lens shading correction is a procedure to brighten the
corners of the image, compensating for lens vignetting [12]
and correcting spatially varying color due to light hitting the
sensor at an oblique angle. The Google HDR+ dataset contains
lens shading masks for each capture in the burst. We select
the mask corresponding to the reference frame and resize it.
The lens shading correction is obtained by the elementwise
product (array product)

Imlsc(x, y, c) = Im(x, y, c) · LSM(x, y, c), (2)

where c represents the channel, LSM(x, y, c) is the resized
lens shading mask, Im is the input image, and Imlsc is the
resulting image after lens shading correction.

D. White Balance

White balancing [13] linearly scales the four RGGB chan-
nels so that grays in the scene map to grays in the image.
Likewise, we use values recorded in the metadata contained
in the RAW files.

Imwb(x, y, c) = Im(x, y, c) · wb(c), (3)

where wb(c) is the white-balance value for channel c, Im is
the input image, and Imwb is the resulting image after white
balance.

E. Cropping the dataset

Having the pre-processed files, and the ground truth images
provided by the Google HDR+ project, we crop the whole
dataset in small patches of size 448 × 448 that are used to
train/test. The dataset, after cropping, consists of approxi-
mately 2000 patches for validation, 2000 patches for testing,
and 82000 patches for training.

IV. APPROACH

Our goal is to synthesize a high-quality RGB image from
the RAW measurements of the camera sensor by replacing
the traditional ISP pipeline by a single convolutional neural
network (CNN). This network takes the RAW Bayer data and
produces the final RGB image. In this section, we discuss our
proposed network architecture and loss function for training
our model.

A. Modified UNet Architecture

There are many possible choices for architectures when
building convolutional networks. In [11], the authors proposes
a network to process RAW images and output RGB images.
However, running that network is very costly and slow. Due to
requirement of deploying our model on smartphones devices
and the image-to-image nature of our problem, we decided
to use the UNet [2] architecture. This architecture as lighter
when compared to the PyNet [11] and still is able to produce
high-quality results. The UNet has a sequence of double
convolutional layers in two stages. In the downstage, after each
double convolutional layer, it is applied a max pooling. In the
upstage, after each double convolutional layer, it is applied an
upsampling. The layers of downstage are skip connected with
the upstage. This allow the information to go forward before
the downscale made in the max-pooling layer. In the end, the
pixel convolutional layer with kernel size 1 × 1 reduces the
dimensionality for 3 output channels corresponding to RGB
representation. All of the convolutional layers are followed by
a ReLU function.

The UNet originally receives an input with one channel
that represents medical data and outputs a mask for the
segmentation. Since, in our case, the input is a RAW Bayer
image in CFA pattern [14] and the output is an RGB image,
the input is deinterleaved in four channels (RGGB) before the
first convolutional layer. That way, the role of the first UNet
layer, receiving just one channel, is not drastically altered (See
Fig. 2). This reduces the height and width by a factor of 2,



Fig. 2. Architecture based on UNet. The input is a RAW Bayer image and the output is RGB.

thus needing an additional upsample to restore the original
dimensions.

B. Loss Function

The loss function gives a measure of how far is the network
output Î to the ground truth I , steering the manner the
optimizer updates the network’s weights. The choice of the
loss function is critical in each learning system. Our goal is to
synthesize images high visual quality, compared or superior
to the conventional ISP pipelines. Ideally, the loss function
must capture perceptually important differences between the
estimated and reference images. Inspired by recent image-to-
image approaches [4], [15], [16], we train our network using
a perceptual loss function. Specifically, our loss function is a
combination of the MSE loss LMSE and a perceptual measure
which is obtained by the VGG loss LV GG, style loss LStyle,
and total variation LTV regularization [4], as follows:

L = λ1LMSE + λ2LV GG + λ3LStyle + λ4LTV (4)

where λ1 = 1.0, λ2 = 0.8, λ3 = 120.0 and λ4 = 0.1 in our
implementation.
a) MSE Loss: Encourages local similarity by computing the

pixel-wise l2 difference between the output and the ground-
truth, as follows:

LMSE = ‖I − Î‖2. (5)

b) VGG Loss: To encourage perceptual similarity between
the output image and the ground-truth, we leverage the

VGG loss. To compute this term, we use the pre-trained
VGG-19 [17] to obtain features from network output Î and
the ground truth I and then compute l2 between them, as
follows:

LV GG =
∥∥∥ÎV GG − IV GG

∥∥∥
2

(6)

where ÎV GG and IV GG are the VGG-19 features of the
network output and ground-truth respectively.

c) Style Loss: Measures the differences in style (e.g., colors,
textures, etc) by comparing global statistics with a Gram
matrix. [18], [19] propose the style loss defined as:

LStyle =
∥∥∥G(ÎV GG

)
−G

(
IV GG

)∥∥∥
1

(7)

where G(.) is the Gram matrix [20].
d) Total Variation: To induce spatial smoothness in the net-

work output Î we follow prior work [4], [16] and use the
total variation regularizer [21] defined as follows:

LTV =
1

N

∑
x,y,c

(
Î(x, y + 1, c)− Î(x, y, c)

)
+(

Î(x+ 1, y, c)− Î(x, y, c)
)
, (8)

where N is the number of elements in Î .

C. Implementation

a) Group Normalization: Both the input image and the
hidden features can be normalized. The Group Normalization
[22] normalizes the distribution of a group of channels along



the height and width dimensions by the same mean and
standard deviation. It learns the scale and shift of a linear
projection of the normalized feature. As pointed out in [22],
Group Normalization is stable under batch size variations,
whereas Batch Normalization [23] yields large errors when the
batch size is small. Therefore, for image-to-image applications,
where memory plays a significant role and batch sizes should
be small, Group Normalization is recommended. Therefore,
unless stated the contrary, we use Group Normalization within
each layer of our model.

b) Optimization: We initialize our network using the
Xavier approach [24]. We train the network during 50 epochs
with a learning rate of 0.001. We use the Adam optimizer with
AMSGrad [25] enabled and its default parameters β1 = 0.9
and β2 = 0.999 and mini-batch size of 8.

V. EXPERIMENTS

A. Training Data

We use the Google HDR+ dataset [5] for training with
the split described in Sec. III-E. This dataset contains images
taken using several devices in a myriad of scenarios (Fig. 3),
which is an important factor to avoid overfitting and allow
generalization. The validation set is used to get the weights
from the epoch of minimum loss, which we use to the test
images.

Fig. 3. Samples patches from HDR+ dataset used to train the network

B. Test

For testing our method we captured several images from
a mobile camera in different scenarios, such as indoors,
outdoors, different illumination settings, etc. The device model
used for capturing these test images is not included in the list
of devices used in the training dataset. Finally, 50 images were
selected to evaluate the results in terms of the SSIM and RMSE
quality metrics [26], [27].

C. Results

For the best network configuration we also display the
absolute difference between the ground truth and our output.
Fig. 4 shows an example of a RAW/ground-truth pair of a
picture taken against the Sunlight. Next, we show the incre-
mental results of the network adding resources for training the
proposed architecture.

The first training configuration of the network included an
Adam optimizer, MSE and VGG losses. In this setting we did
not use the pre-processing described in Sec. III. Instead, we
divide the input RAW data by its bit depth value. As we can
see in Fig. 5, with this setup the network produces results with
color shift on the sky.

(a) RAW

(b) Ground truth

Fig. 4. Example of RAW and ground-truth images

Fig. 5. The church image result with Adam optimizer, MSE and VGG losses,
and bit-depth normalization

The metadata read from the RAW files provide values
for the black-level, white balance, and lens shading. This
information is used to normalize the data as described in Sec.
III (Fig. 6). We adopt the metadata normalization as default
since it fixes an observed red casting caused by the bit-depth
normalization.

Fig. 6. Metadata normalization of input raw data



The style loss and total variation regularization were incor-
porated into training (Fig. 7). These functions were introduced
to bring global information, although in some cases it put
blemishes in some regions of the processed image.

Fig. 7. Result of training with style loss and total variation regularization

The AMSGrad was enabled in the Adam optimizer reducing
some artifacts introduced by the loss used before (Fig. 8).

Fig. 8. Result of training with AMSGrad optimizer

The group normalization is used with 16 channels per group,
resulting in an image with enhanced contrast (Fig. 9). The
SSIM and RMSE when comparing with the ground truth (Fig.
4) are 0.881 and 0.0497, respectively.

In day light conditions (Fig. 10 and Fig. 11), the network
result was satisfactory and very similar to the reference with
high SSIM and low RMSE values.

In low-light conditions (Fig. 12 and Fig. 13), the device
processing brightens the image and as a drawback adds noise
in the resulting image. The dissimilarity obtained by the
metrics is justified by the device employing an algorithm
to automatically enhance the illumination in dark scenes.
Nonetheless, the net result has more fidelity to the real scene
and no significant noise.

The distribution of SSIM (Fig. 14) is in high values and
RMSE (Fig. 15) in low values indicating a strong correlation
with the reference for most test images. The image with the
highest SSIM in the test dataset is a landscape with the sunset
(Fig. 16). And the lowest RMSE is an indoor image with good
illumination (Fig. 17).

VI. CONCLUSION

This work proposed a deep neural network architecture
to process RAW into RGB images, replacing the traditional

(a) Network output

(b) Difference from ground-truth

Fig. 9. Result using group normalization. SSIM=0.881 and RMSE=0.0497.

(a) Network output (b) Ground-truth (c) Difference

Fig. 10. Leaves in direct sunlight. SSIM=0.842 and RMSE=0.0485.

(a) Network output (b) Ground-truth (c) Difference

Fig. 11. Outdoor capture in good light conditions. SSIM=0.8375 and
RMSE=0.0817.

ISP steps. The resulting images were successfully processed,
exhibiting reasonable perceptual quality, SSIM, and RMSE
when compared with their corresponding ground truth images.
It was observed that the best results were obtained when
processing scenes with good illumination. The results indicate



(a) Network output (b) Ground-truth (c) Difference

Fig. 12. Low light scenario: picture of the Moon. SSIM=0.3123 and
RMSE=0.1892.

(a) Network output (b) Ground-truth (c) Difference

Fig. 13. Low light scenario: picture of a plant with landscape. SSIM=0.303
and RMSE=0.157.
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Fig. 14. SSIM distribution
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Fig. 15. RMSE distribution

that the deep learning model can be employed to replace a
traditional ISP, with possible generalization for other devices

(a) Network output

(b) Ground-truth

(c) Difference

Fig. 16. Landscape scenario: picture of the sunset. SSIM=0.946 and
RMSE=0.0303.

(a) Network output (b) Ground-truth (c) Difference

Fig. 17. Indoor capture with good light conditions. SSIM=0.9005 and
RMSE=0.03.

without fine-tuning the parameters.
To yield better results, the network can be improved by

including global components in its architecture, as well as
the usage of data augmentation to include different types of
camera sensors into the training data.
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