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Abstract—Instance-based learners habitually adopt instance
selection techniques to reduce complexity and avoid overfitting.
Such learners’ most recent and well-known formulations seek to
impose some sparsity in their training and prediction structure
alongside regularization to meet such a result. Due to the
variety of such instance-based learners, we will draw attention
to the Least-Squares Support Vector Machines and Minimal
Learning Machines because they embody additional information
beyond the stored instances to perform predictions. Later, this
thesis proposes variants constraining candidate solutions within
a specific functional space where we avoid overfitting and reduce
model complexity. The central core of such variants is related
to penalizing samples with a specific condition during learning.
For regressors, we adopted strategies based on random and
observed linearity conditions related to the data. At the same
time, we borrowed definitions from the computer vision field
for classification tasks to derive a concept we call the class-
corner relationship (in which we designed an instance selec-
tion algorithm). In the Least-Squares Support Vector Machines
context, this thesis follows the pruning fashion by adopting the
samples that share such a class-corner relationship. As for the
Minimal Learning Machine model, this thesis introduces a new
proposal called the Lightweight Minimal Learning Machine, a
faster model for out-of-sample prediction due to the reduced
number of computations inherent in the original proposal’s
multilateration process. Another remarkable feature is that it
derives a unique solution when other formulations rely on
overdetermined systems.

I. INTRODUCTION

Instance-based learners are computational models that, in-
stead of making explicit generalizations, compare instances
of new problems with instances seen in the learning process
(previously stored in memory) [1]. Such models build hy-
potheses directly from the training instances themselves, thus
implying that the hypotheses’ complexity can grow with the
data. For complex enough models with a large number of free
parameters, a perfect fit to the training data is possible [2].

In this case, reducing complexity means restricting the
amount of data used in the learning process. By this reduction,
we also restrict the space of hypotheses that the model can
generalize. Following the principle of Occam’s razor [3]:
balancing both the complexity of the induced model and the
ability to generalize ends up being a challenging task, while
it is also highly desired.
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Nevertheless, sparsity in LSSVMs and MLMs is associated
with restricting the hypothesis space since it accounts for
(and is used for restricting) the number of parameters to later
measure the model complexity. In short, one can account for
the degree of freedom via sparsity, but sparsity is not directly
related to generalization.

This thesis follows a different path from most works in
current literature. Its main object of study and contribution is
related to using an instance selection algorithm as a form of
regularization in the complexity term. In doing so, we achieved
a direct method. From that, we investigate two hypotheses,
listed as research questions:

1) Can one control the model’s complexity without sacrific-
ing the model’s generalization by directly incorporating
an instance selection algorithm into an instance-based
learner?

2) Since such a selection gets rid of some data, can some
speedup process incur an out-of-sample prediction?

Both hypotheses deal with two existing problems in instance-
based models: (i) the lack of an instance selection mechanism
wrapped up in the learning algorithm; (ii) and control of the
model’s complexity. This thesis unfolds four contributions.
The first two were evaluated together in [4], while the third
one is presented in [5]. The last part has not been published
yet. Thus, only available here and in the final thesis document.

II. CONTRIBUTION 1: CLASS-CORNER INSTANCE
SELECTION

Our first contribution is mainly based on FAST [6], an image
corner detector. The main idea is to use the definition of what
is a corner1 in FAST and then apply the same reasoning as the
Instance Selection algorithm. However, it turns out that FAST
formulation only deals with image data, i.e., two dimensional
samples that are uniformly spaced in a grid. To overcome such
limitations, [4] extended FAST so that we can apply it to high-
dimensional inputs in a straightforward way. Although, the
authors did not give it a proper name in [4], here we call it
Class-Corner Instance Selection (CCIS).

1A corner can be defined as the intersection of two edges. An edge (usually
a step change in intensity) in an image corresponds to the boundary between
two regions [6].



In FAST, all pixels are evaluated as corners or not. However,
before such a classification, two subsets are derived: the
candidate, and the actual corner set, respectively. CCIS adopts
a similar analogy but for general data points. First, CCIS
performs a greedy filtering approach to identify the input
samples that somehow lie in the class-corner regions of each
class to use them as the selected subset.

Since in real-world problems, one can not assume the data
{xi}Ni=1 is equally spaced as the pixels in an image grid, nor do
they share a piece of neighboring information. CCIS emulates
such an information it by employing the R-ball neighborhood
of a query sample x as follows:

NR(x) =
{
xi ∈ NNK(x)

∣∣ 0 < ∥xi−x∥2 ≤ R
}
, (1)

where R ∈ R+ is the radius of the circle mask and NNK(·)
yields the set with K nearest neighbors.

To identify the corner candidates and actual corner samples,

Γ(x) =
∑
xi

1[y ̸= yi], xi ∈ NR(x), (2)

where 1[·] is the indicator function equal to 1 if its argument
is true and 0 otherwise. Note that, Γ(x) is a simple counting
function that yields the number of neighbors with different
class labels than the query sample x inside the R-ball. Finally,
such an identification function can be employed to select
subsets according to a threshold P as follows:

PS =
{
(xi,yi) ∈ D

∣∣ Γ(xi) > P
}
, (3)

where D = {(xi,yi)}Ni=1. We discussed in [4] that by adopting
P = 0 and default values for K and P , we derived feasible
subsets that share this class-corner feature. We validated our
first contribution alongside the following one.

III. CONTRIBUTION 2: CLASS-CORNER LEAST-SQUARES
SUPPORT VECTOR MACHINE

Our second contribution is a well-succeded attempt to re-
duce the LSSVM complexity by directly employing CCIS. We
named such a proposal Class-Corner Least-Squares Support
Vector Machine (CC-LSSVM). Here, the SV = CCIS(D, 0)
is the set of support vectors while PS = CCIS(D, P )
represents the constraints in the model with threshold P , thus,
keeping the link between the variables and constraints since
SV ⊂ PS ⊂ D. Then, we formulate the linear system in
CC-LSVM as ΛΛΛωωω = υυυ so that[

0 111⊺

111 ΨΨΨ

]
︸ ︷︷ ︸
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, (4)

where YSV = [y1, y2, . . . , yM ]⊺ is a matrix with labels from
SV and

Ψi,j =

{
K(xi,xj), if xi ̸= xj ;

K(xi,xj) + γ−1, otherwise.

with xi ∈ PS and xj ∈ SV and γ ∈ R+ is the same cost
parameter in the original (LS)SVM.

A. Validation

In the first part, we validate CCIS and its ability to reduce
the original datasets to get both PS and SV , and later, we
employ both on CC-LSSVM. We present in Fig. 1 bar plots
showing the scaled and actual training set sizes for further
analysis concerning how CCIS works. From that, one can
see that in small data sets, CCIS not always reduce much
from the training set D to the prototype set PS . However,
the size of SV is shown to be very small compared to the
training set D, i.e., M ≪ N , thus, suggesting that our class-
corner selection considers both the model size and model
generalization capability since discarding too much data can
be harmfull for generalization.
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Fig. 1. Bar plots adopted from [4] showing the original training set D, the
number of elements in PS, and SV for CC-LSSVM via CCIS. We show
both the scaled and the actual sizes for each toy size and large size datasets.

Such a finding is also reinforced when analyzing Fig. 1,
where one can see a dramatical reduction in each step,
especially from D to PS .

Next, we investigated how CC-LSSVM behaves concerning
the following aspects: accuracy, sparseness, support vector



selection, and hyperparameter sensitivity. Although not pre-
sented in this paper, we highlight that we originated the CD
plots from the tables where we reported the metric results.
Such tables are shown in the original thesis and [4], [5]. We
hide them for space restrictions.
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Fig. 2. Critical difference plots for toy problems. We highlight that those
models which are not joined by a bold line can be regarded as different.

CC-LSSVM performed the best rank for the accuracy cri-
teria, thus, showing high generalization performance against
other variants. However, CC-LSSVM performed the last for
the sparsity criteria, see the Critical difference plots2 in Fig. 2.
Such a finding indicates that our class-corner support vector
selection via CCIS can balance between a smaller model and
a less constrained one without sacrificing the generalization
performance.

IV. PROPOSAL 3: THE LIGHTWEIGHT MINIMAL
LEARNING MACHINE

A. The original Minimal Learning Machine

The Minimal Learning Machine (MLM) [8] is a supervised
method used for pattern recognition and regression tasks.
From the general framework for supervised learning, MLM
estimates h(·) for the target function f(·) from the data
D through the distance domain. For that, the problem is
stated by employing pairwise distance matrices of each point
of D, namely, D and ∆, both representing the Euclidean
distance – in the notation of d(·, ·) – of each point from D
to the i-th reference point of D, i.e., Di,j = d(xi,xj) and
∆i,j = d(yi,yj), then they have N ×N dimensions.

For the sake of simplicity, in the following description
and notation of MLM, consider the two distance mapping
functions Φ : RD → RN and Ψ : RS → RN . Here
Φ(x) =

[
d(x,x1),d(x,x2), . . . ,d(x,xN )

]⊺
while Ψ(y) =[

d(y,y1),d(y,y2), . . . ,d(y,yN )
]⊺

. Furthermore, we call D
and ∆ the input and output spaces, respectively. Stated that,
by assuming that the mapping between the distance matrices

2In this plot, the top line is the axis on which each model’s average ranks,
while the connected group of models indicated that they are not significantly
different. Moreover, the critical difference (CD) is presented above the plot
and by adopting the significance level of α = 0.05 [7].

Fig. 3. Decision boundaries and support vector selections by LSSVM variants
in some 2D datasets. Adapted from [4].
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has a linear structure for each response, the MLM model can
be rewritten in the form ∆ = DB + E, where E being the
residuals matrix.

The learning process consists of finding the mapping be-
tween the distances in the input and output space. Since
we assumed such a mapping has a linear structure for each
response, the regression model can be rewritten in the form:

min
B

J (B) = ∥ DB−∆ ∥2F , (5)

and it can be estimated by:

B̂ = D−1∆. (6)

Predicting the outputs for new input data mainly refers to
project the new data point through the mapping and estimate
the image of such a projection. Therefore, it is necessary that
the pattern x be also represented in the domain of distances
so that we can represent it in the output space. Such a
representation is achieved by Φ(x)B.

From this, the problem is to estimate the image ŷ = h(x),
from Φ(x)B and the images of reference points. This prob-
lem can be treated as a multilateration [9]. In a geometric
viewpoint, estimate ŷ belonging to the set RS is equivalent
to solving the determined set of N non-linear equations
corresponding to the S-dimensional hyper-spheres centered on
the images of the reference points, denoted by {yi}Ni=1. The



location of ŷ can be estimated by minimizing the objective
function below:

ŷ = h(x) = argmin
y

∥ Ψ(y)− Φ(x)B ∥2 . (7)

B. Our lightweight formulation

The “Lightweight” MLM (LW-MLM) builds a regularized
system by pattern to impose sparseness, not by selection but
by using weighted information in the model. Unlike other
MLM variants, LW-MLM does not work at the error but in the
complexity term. LW-MLM has the following cost function:

min
B

JLW(B,P) = ∥ DB−∆ ∥2F + ∥ PB ∥2F (8)

which yields the following solution:

B̂LW = (D⊺D+P⊺P)−1D⊺∆, (9)

where P is a regularization matrix based on the sample
regularization factor. The role of P here is the main proposal
of our work. Although, it sounds inappropriate having a hyper-
parameter P ∈ RN×N , one can derived it by a vector p ∈ RN

by adopting P as a diagonal matrix, i.e., P = diag(p).

C. Speeding up the out-of-sample prediction

The “lightweight” in LW-MLM is not just related to the
smaller coefficient values in B but also the speedup procedure
we adopt in the out-of-sample prediction. Since we employ all
samples in the learning algorithm, we believe that LW-MLM
learns the whole known geometric structure, i.e., the domain
knowledge is “fully” represented in B. Such an assumption
encourages us to discard some components (RPs) in the out-
of-sample prediction procedure, providing a more compact one
since most of the RP projections will be close to zero. First,
let us define the discard function κ : RN → RK as

κ(a) = (ai1 , ai2 , . . . , aiK )⊺, (10)

where i1, i2, . . . , iK , . . . , iN form a random permutation of
{1, . . . , N}. Now, the location of ŷ can be estimated by
minimizing the following objective function

ŷ = h(x) = argmin
y

||κ (Ψ(y)− Φ(x)B) ||2. (11)

We discussed details concerning such speedup in the exper-
iments where we showed the relationship between the number
of components employed and the prediction error. In the end,
by employing such a fashion, we achieved up to 5% (i.e.,
K = ⌊0.05×N⌋) of dataset reduction.

D. Validation

We assessed LW-MLM’s performance alongside three
other MLM variants: Full-MLM, Random-MLM, and Rank-
MLM [10]. We investigated how LW-MLM behaves by adopt-
ing three different mechanisms of generating P, deriving three
other LW-MLM versions: LW-MLM-1, LW-MLM-2, and LW-
MLM-3.

One can notice in Fig. 4 a case where regularization and
overfit add difficulties to the learning process. Both Full-MLM

(a) Full-MLM. (b) Random-MLM. (c) Rank-MLM.

(d) LW-MLM 1. (e) LW-MLM 2. (f) LW-MLM 3.

Fig. 4. MLM variants for Mcycle dataset.

and Random-MLM presented aspects of overfitting because of
the heteroscedasticity scenario. Thus, adopting all (Full-MLM)
or some (Random-MLM) RPs is insufficient, indicating the
need for regularization. Concerning the regularized variants,
namely, Rank-MLM and LW-MLM, one can notice smoother
functions. However, the homoscedasticity behavior embedded
into Rank-MLM did not achieve a proper fit in contrast to
LW-MLM variants. From such a finding, we genuinely believe
that regularization and heteroscedasticity are beneficial to the
model.
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(a) CD plot for RMSE.
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(b) CD plot for R2.
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(c) CD plot for ¯∥ B ∥.

Fig. 5. Critical Difference plots for the black-box experiments.

The ¯∥ B ∥ stands for values were scaled between 0 and 1
by the solution of Full-MLM. In this case, B from (5) acts as
an upper bound because in other models either D and/or ∆



are not squared matrices nor they present any regularization
factor.

Moreover, to assess the lightweight pillar in LW-MLM,
we conducted an experiment discarding some RPs in the
out-of-sample prediction, thus, analyzing how such a discard
influences the error. For that, we vary the quantity of RPs from
2 points and then increase it by multiples of 5% of the actual
dataset size, see Fig. 6.
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Fig. 6. RMSE for ABA and WRE datasets. Adapted from [5].

V. CONTRIBUTION 4: CLASS-CORNER LIGHTWEIGHT
MINIMAL LEARNING MACHINE

Our last contribution is the LW-MLM formulation for
classification tasks. To fulfill the LW-MLM requirement of
providing P before training, we computed a distance factor as
regularization cost for each sample concerning the closest class
corner yielded by CCIS. Such a proposition resulted in the
class-corner samples with higher regularization costs, while
the samples far from the corners will be penalized less.

Let PS = CCIS(D, 0) be the set of sample pairs yielded by
CCIS, then, we defined the Nearest Corner Distance NCD(·)
of a given sample x as:

NCDPS(x) = min
{
||x− xj ||2

}
,∀xj ∈ PS. (12)

Then, we defined the maximum cost by class-corner near-
ness as the maximum distance of a query sample to the class-
corners for all samples in D:

ζ = max
{
NCDPS(xi)

}
,∀xi ∈ D, (13)

so that finally, we can derive the cost by class-corner nearness
of a given sample as:

ς(x) = ζ −NCDPS(x). (14)

To achieve a “Lightweight” fashion in classification tasks,
one must present a way to produce a P for LW-MLMs. Here,
we chose to regularize each sample by the complement of
its closeness to the corners. To do it so, we execute CCIS, as
usual, to get PS and employ the cost by class-corner nearness
as the regularization values in P, i.e.,

Pi,j =

{
ς(xi) if i = j;

0 otherwise.
(15)

A. Learning algorithm and out-of-sample prediction

By taking advantage of the known output space, i.e., the al-
ready known labels, we avoided the multilateration procedure
during prediction by just replacing it by directly applying the
known labels to the cost function. Firstly, let us define Y⋆ as
the set with labels (being One-Hot-Encoded) from C classes,
then we rewrite the out-of-sample prediction as:

ŷ = h(x) = argmin
yc ∈Y⋆

||Ψ(yc)− Φ(x)B||2. (16)

B. Validation

We investigated how CCLW-MLM behaves with respect
to accuracy and sparseness. Again, we reported the average
accuracy (ACC) and sparseness via the scaled ||B||F over 30
independent realizations in such a comparison, see Fig. 7.

Regarding accuracy, all models are seen as equivalents.
Moreover, we support that model regularization is advanta-
geous for MLM accuracy since Rank-MLM and CCLW-MLM
ranked best. On the other hand, when analyzing the norm
rank, we see a different perspective. There, we noticed two
groups of equivalence: one with Full-MLM, Random-MLM,
and Rank-MLM, and the second with only Rank-MLM and
CCLW-MLM. Thus, the way we define regularization impacts
the final result.
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Random−MLM
Full−MLM

(a) Accuracy rankings.
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Full−MLM

CCLW−MLM
Rank−MLM

(b) Normalized norm rankings.

Fig. 7. Critical Difference plots for the black-box experiments.

Next, we empirically assessed the decision boundary quality.
In this set of experiments, we chose three datasets from the
toy problems ∈ R2, see Fig. 8.

In Fig. 8, one can see all variants produced proper decision
boundaries able to separate the data at their best. In the cases
where there are slight class overlapping and some outliers
in the data, we noticed some overfitting. However, CCLW-
MLM is the one with less complex boundaries. Therefore,
we support it did not sacrifice the generalization performance
while keeping higher sparsity scores (less complexity), achiev-
ing higher ranks than other variants that also employ some
regularization. Thus, becoming a desirable formulation to deal
with classification tasks.

VI. SHORTCOMINGS

The class-corner concept highly relies upon distance compu-
tations. Therefore, we might deal with the effects of the curse
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of dimensionality because the Euclidean distance becomes
meaningless as the data dimension increases significantly.
Also, because we do not discard any samples during train-
ing, the memory and training costs might be prohibitive for
some problems. Thus, some other strategies regarding instance
selection might take place in the formulation.

VII. CONCLUDING REMARKS

The contribution presented in this thesis covers four con-
tributions and investigated the model complexity reduction
in two Instance-based learners: The Least-Squares Support
Vector Machine and the Minimal Learning Machine.

The common idea behind all the solutions is to reduce the
complexity in Instance-based learners from instance selection,
treating it as a regularization task. Thus, excluding our first
contribution, an instance selection algorithm, we modified the
design of such LSSVM and MLM algorithms to embed such
a complexity reduction.

We carried out some experiments to evaluate each con-
tribution’s different aspects, investigating how they behave
concerning the following aspects: the prediction error, the
goodness-of-fit of estimated vs. measured values, the model
complexity, the influence of the parameters, and the learned
models’ empirical visual analysis.

Even though our contributions strongly rely on distance
computations, thus suffering from the Dimensionality curse,
they consistently outperformed the other models in artificial
and real-world scenarios. This thesis’s apparent unfolding is
to directly apply metric learning methods to derive more
algorithms with consistent hypotheses.

VIII. PUBLICATIONS

We published the results of this thesis in Neurocomputing
[4], [5]. We also would like to highlight that Saulo A. F.
Oliveira also contributed as the main author in Computer Vi-
sion and Image Understanding [11] and co-authored two other
works in Applied Soft Computing [12] and Soft Computing
[13]. All above mentioned journals have Qualis A1.
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