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Abstract—This thesis1 investigates the problem of transferring
human motion and appearance from video to video preserving
motion features, body shape, and visual quality. In other words,
given two input videos, we investigate how to synthesize a new
video, where a target person from the first video is placed into a
new context performing different motions from the second video.
Possible application domains are on graphics animations and
entertainment media that rely on synthetic characters and virtual
environments to create visual content. We introduce two novel
methods for transferring appearance and retargeting human
motion from monocular videos, and by consequence, increase
the creative possibilities of visual content. Differently from recent
appearance transferring methods, our approaches take into ac-
count 3D shape, appearance, and motion constraints. Specifically,
our first method is based on a hybrid image-based rendering
technique that exhibits competitive visual retargeting quality
compared to state-of-the-art neural rendering approaches, even
without computationally intensive training. Then, inspired by
the advantages of the first method, we designed an end-to-
end learning-based transferring strategy. Taking advantages of
both differentiable rendering and the 3D parametric model, our
second data-driven method produces a fully 3D controllable
human model, i.e., the user can control the human pose and
rendering parameters. Experiments on different videos show that
our methods preserve specific features of the motion that must
be maintained (e.g., feet touching the floor, hands touching a
particular object) while holding the best values for appearance
in terms of Structural Similarity (SSIM), Learned Perceptual
Image Patch Similarity (LPIPS), Mean Squared Error (MSE),
and Fréchet Video Distance (FVD). We also provide to the
community a new dataset composed of several annotated videos
with motion constraints for retargeting applications and paired
motion sequences from different characters to evaluate transfer-
ring approaches.

I. INTRODUCTION

Virtual human characters and environments are fundamental
components in graphics’ animations and in the creation of vi-
sual content. Nevertheless, creating these components requires
a large amount of manual work wherein artists apply low-
level instructions such as drawing the skeletons, manipulating
polygons, edges, and vertices for defining realistic human
appearance and motions. Due to its importance and wide range
of applications, several methods have been proposed on human
body reenactment of virtual human characters [1]–[6]. The
ultimate goal of these methods is to create a video where the
body of a target person is reenacted according to the motion
extracted from the monocular video. The motion is estimated

1This work relates to a Ph.D. thesis.

Fig. 1. Human retargeting example. The first line of each scene illustrates
the real movement. On the second line is the retargeting using our proposed
method. The red squares highlight our face generation quality.

considering the set of poses of a source person. Despite
the impressive results for several input conditions, there are
instances where most of these methods perform poorly. For
instance, the works of Chan et al. [4] and Wang et al. [7],
only perform good reenacting of the appearance/style from
one actor to another if a strict setup has complied, e.g., static
backgrounds, a large set of motion data of the target person
to train, and actors in the same distance from the camera [8].

In this thesis, we present two novel video retargeting
techniques for human motion and appearance transferring,
which incorporate different strategies to extract 3D shape,
pose, and appearance to transfer motions between two real
human characters using information from monocular videos.
To our best knowledge, this work is the first to transfer,
not only human texture or motion but both human motion
and appearance between videos, i.e., we transfer motion and
appearance in a unified way which allows us to tackle subjects
with different limb proportions and body shape without losing
the desired body proportions. We aim to advance in the
task of building a method less sensitive to the camera and
poses conditions (a stable method) and overcome the lack
of details. Experimental results presented later show that our
approaches are both stable and shape-aware. In other words,
they do not suffer from quality instability when applied in
contexts slightly different from the original ones (a small
difference in camera position, uncommon motions, pose trans-
lation, etc.) and they can handle different morphologies in



the retargeting. Moreover, we performed experiments using
a newly collected dataset containing several types of motions
and actors with different body shapes and heights. Our results
show that a technique applying 3D representation of people
can still exhibit a competitive quality compared to recent
deep learning techniques in generic transferring tests. Our
approaches achieved better results compared with end-to-end
2D learning methodologies such as the works of Wang et
al. [7] and Chan et al. [4] in most scenarios for appearance
metrics as structural similarity (SSIM), learned perceptual
similarity (LPIPS), mean squared error (MSE), and Fréchet
Video Distance (FVD).

The main technical contributions of this work are as follows:
• A unified methodology carefully designed to transfer

motion and appearance from video to video that preserves
the main features of the human movement and retains the
visual appearance of the target character;

• A retargeting technique considering physical constraints
of the motion in 3D and the image domain; and a new
image-based rendering technique that exhibits competi-
tive visual retargeting quality compared to state-of-the-art
neural rendering approaches, even without computation-
ally intensive training;

• A novel data-driven formulation for transfer appearance
and reenact human actors that produces a fully 3D
controllable human model, i.e., the user can control the
human pose and rendering parameters;

• A dataset comprising several videos with annotated mo-
tion restrictions. We demonstrate the effectiveness of our
approach quantitatively and qualitatively using sequences
from this dataset and publicly available video sequences.
The dataset containing several paired motions and virtual
actors is also publicly available to the community2.

II. RELATED WORK

3D human shape and pose estimation. Significant advances
have been recently developed to estimate both the human
skeleton and 3D body shape from images. Bogo et al. [9]
proposed the SMPLify method, which is a fully automated ap-
proach for estimating 3D body shape and pose from 2D joints
in images. SMPLify uses a CNN to estimate 2D joint locations
and then it fits an SMPL body model [10] to these joints.
Lassner et al. [11] used the curated results from SMPLify to
train 91 keypoint detectors. Similarly, Kanazawa et al. [12]
used unpaired 2D keypoint annotations and 3D scans to train
an end-to-end network to infer the 3D mesh parameters and the
camera pose. Kolotouros et al. [13] combined an optimization
method and a deep network to design a method less sensitive
to the optimization initialization. Even though their method
outperformed the works of Bogo et al. [9], Lassner et al.
[11], and Kanazawa et al. [12] regarding 3D joint error
and runtime, their bounding box cropping strategy does not
allow motion reconstruction from poses, since it frees three-
dimensional pose regression from having to localize the person

2https://github.com/verlab/ShapeAwareHumanRetargeting IJCV 2021

with scale and translation in image space. Moreover, they lack
global information and temporal consistency in shape, pose,
and human-to-object interactions, which are required in video
retargeting with consistent motion transferring.
Mesh reconstruction. Substantial advances have been made in
recent years for 3D model estimation from still images. Human
mesh reconstruction methods are also increasingly achieving
better results as shown in works such as PiFu [14], [15],
ARCH [16], or SiCloPe [17]. Despite the impressive results,
these methods are limited to estimate static 3D character mod-
els, which require additional efforts to create animated virtual
characters. In addition to the requirement that 3D models
contain a skeleton hierarchy and appropriate skin weights, it is
also necessary to fit a garment model into a human model in
various poses. Lazova et al. [18] automatically predict a full
3D textured avatar, including geometry and 3D segmentation
layout for further generation control; however, their method
cannot predict fine details and complex texture patterns.
Retargeting motion. Gleicher’s [19] seminal work of retar-
geting motion addressed the problem of transferring motion
from one virtual actor to another with different morphologies.
Choi and Ko [20] pushed further Gleicher’s [19] method by
presenting a real-time motion retargeting approach based on
inverse rate control.Villegas et al. [21] proposed a kinematic
neural network with an adversarial cycle consistency to remove
the manual step of detecting the motion constraints. In the
same direction, the recent work of Peng et al. [22] takes
a step towards automatically transferring motion between
humans and virtual humanoids. Similarly, Aberman et al. [23]
proposed a 2D motion retargeting using a high-level latent
motion representation. Their method has the benefit of not
explicitly reconstructing 3D poses and camera parameters,
but it fails to transfer motions if the character walks towards
the camera or with variations of the camera’s point-of-view.
Synthesizing views. The past five years has witnessed the
explosion of neural rendering approaches and GAN. GANs
have emerged as promising and effective approaches to deal
with the tasks of synthesizing new views against image-based
rendering approaches (e.g., [24]–[26]). More recently, the
synthesis of views is formulated as being a learning problem
(e.g., [5], [27]–[30]), where a distribution is estimated to
sample the new views. In the work of Esser et al. [5], a
conditional U-Net is used to synthesize new images based
on estimated edges and body joint locations. Despite the
impressive results for several inputs, learning-based methods
are limited to synthesize detailed body parts such as faces.

Recent works such as Aberman et al. [31] and Chan et
al. [4] start applying adversarial training to map 2D poses
to the appearance of a target subject. Although these works
employ a scale-and-translate step to handle the difference in
the limb proportions between the source skeleton and the
target, their synthesized views still have clear gaps in the test
time compared with the training time. Wang et al. [7] pro-
posed a general video-to-video synthesis framework based on
conditional GANs to generate high-resolution and temporally
consistent videos of people. Despite the impressive results



for several inputs, end-to-end learning-based techniques still
fail to synthesize the human body’s details, such as face and
hands. Furthermore, it is worth noting that these techniques
focus on transferring style, which leads to undesired distortions
when the characters have different morphologies (proportions
or body parts’ lengths).

In order to overcome these limitations, Wen et al. [6]
proposed a 3D body mesh recovery module to disentangle
the pose and shape; however, their performance significantly
decreases when the source image comes from a different
domain from their dataset, indicating that they are also affected
by poor generalization to camera viewing changes.
Differentiable rendering. As stated in Kato et al. [32],
Differentiable Rendering (DR) connects 2D and 3D processing
methods and allows neural networks to optimize 3D entities
while operating on 2D projections. Loper et al. [33] introduced
an approximate differentiable render that generates derivatives
from projected pixels to the 3D parameters. Kato et al. [34]
approximated the backward gradient of rasterization with a
hand-crafted function. Liu et al. [35] proposed a formulation
of the rendering process as an aggregation function fusing the
probabilistic contributions of all mesh triangles with respect to
the rendered pixels. Niemeyer et al. [36] represented surfaces
as 3D occupancy fields and used a numerical method to find
the surface intersection for each ray, then they calculate the
gradients using implicit differentiation. While these methods
achieved high-quality results, they generally require multi-
view data collected with calibrated cameras and have high
computational cost, notably during the inference/test time.
In this work, we propose a carefully designed architecture
for human neural appearance transfer, leveraging the new
possibilities offered by differentiable rendering techniques to
provide a fully controllable 3D human model.

III. METHODOLOGY

This section presents two human transferring methods
considering the importance of human motion, body shape,
and appearance in the retargeting. Unlike most techniques
that transfer either appearance [4], [5], [7], [31] or motion
independently [21], [22], we present techniques that simulta-
neously consider body shape, motion retargeting constraints,
and human-to-object interactions over time, while retaining
visual appearance quality.

A. General Methodology

This subsection details the steps used to design our two new
methods to transfer human motion and appearance from video
to video. As depicted in the Figure 2, our two methodologies
build upon our general methodology composed of four main
components:

1) Human Motion Estimation: This component estimates
the motion of the character performing actions in the
source video, where essential aspects of plausible move-
ments, such as a shared coordinate system for all image
frames and temporal motion smoothness are ensured;

Fig. 2. Overview of our general methodology. Each component is designed
to deal with a subproblem of the video-to-video retargeting problem. The
four subproblems are: human motion estimation in the source video (Human
Motion Estimation); appearance and shape estimation in the target video
(Target Character Processing); motion transfer from source character to target
character (Motion Retargeting); and target person synthesis into the source
video (Compositing).

2) Target Character Processing: This component extracts
the target character’s appearance and body shape in the
second video;

3) Motion Retargeting: This component adapts the es-
timated movement to the body shape of the target
character while considering temporal motion consistency
and the physical human interactions (constraints) with
the environment;

4) Compositing: This component combines the extracted
target character appearance and the adapted movement
into the background of the source video.

A central objective of our general methodology is to split the
video-to-video retargeting problem into subproblems. Dealing
with the subproblems will ensure that our retargeting methods:
i) retain the same quality for most poses (Human Motion
Estimation); ii) preserve visual quality (Target Character Pro-
cessing); iii) take into account body shape and the character’s
interaction with the environment (Motion Retargeting), which
allows handling different morphologies in the transferring; and
iv) place the target person into a new context (Compositing).

B. Shared Components

In this subsection, we detail the three components shared
by our proposed novel video retargeting techniques.

1) Human Motion Estimation: Human Body and Motion
Representation. To capture the statistics of shape variation
and limb-length proportions, we represent the structure of the
skeleton together with the 3D shape of the human body using
the Skinned Multi-Person Linear (SMPL) model [10] that
represents a wide variety of body shapes in natural human
poses. The SMPL model (M(β,θ)) is a skinned vertex-based
model, where a mean template mesh of N = 6890 vertices is
controlled by two sets of parameters, one for body shape (β),
the other for the pose (θ).
Human Pose Model Fitting. Our method builds upon the
learning-based SMPL human pose/shape estimation frame-
work of Kolotouros et al. [13]. Thus, after cropping the person



using Openpose [37]–[39] and estimating the parameters that
represents the 3D reconstruction, we map the reconstruction
of Kolotouros et al. [13] from the virtual camera coordinates
to the original camera by minimizing an objective function
that is the sum of two terms: one term that encourages the
projections of the joints to remain in same locations into the
global reference, and one term that encourages to keep the
joints’ angles. Together with this process, we force the subject
shape to have same mean shape coefficients of the video. Thus,
our energy function is given by:

E(θk, t) = λ1EJ(β
s,θk, t,K,J2D) + λ2Eθ(θ

s
k,θk), (1)

where t ∈ R3 is the translation,K ∈ R3×3 is the camera
intrinsic matrix, J2D is the projections of the joints in the
reconstruction of [13], and λ1, λ2 are scaling weights.
Motion Regularization. Since we estimate the character poses
frame-by-frame, the resulting motion might present shaking
motion with high-frequency artifacts in some short sections of
the video. To alleviate these effects, we perform a regulariza-
tion to seek a new set of joint angles θ̂s that creates a smoother
motion. After applying a cubic-spline interpolation [40] over
the joints’ motion M(βs,θs), we remove the outlier joints
from the interpolated spline. The final motion estimate is
obtained by minimizing the cost:

min
(
||θ̂s −Θ||2 + γ||FK(βs, θ̂s)−Psp||2

)
, (2)

where Θ is the subset of inlier joints, FK is the forward
kinematics, βs defines the proportions and dimensions of the
human body in the source video, Psp is the spline interpolated
joint positions, and γ is the scaling factor between the original
joint angles and the interpolated positions.

2) Motion Retargeting: After estimating the motion from
the input video, i.e., M(βs,θs), and 3D model βt of the target
human, we can proceed to the motion retargeting step. Our
second shared component (Motion Retargeting) is essential to
guarantee that some physical restrictions are still valid during
the target character animation. Similar to Gleicher [19], our
first goal is to retain the joint configuration of the target as
close as possible to the source joint configurations at instant k,
θt
k ≈ θs

k, i.e., to keep ek small such as: θt
k = θs

k+ek. We also
aim to keep similar movement style and speed in the retargeted
motion. Thus, we propose a one step speed prediction in 3D
space defined as ∆M(β,θk) = FK(β,θk+1)− FK(β,θk) to
maintain the motion style from the original joints’ motion:

LP (e) =

i+n∑
k=i+1

||∆M(βt,θs
k + ek)−∆M(βs,θs

k)||1, (3)

where e = [ei+1, . . . , ei+n]
T , and n is the number of frames

considered in the retargeting.
Rather than considering a loss for the total number of

frames, we use only the frames belonging to a neighboring
temporal window of n frames equivalent to two seconds of
video. This neighboring temporal window scheme allows us
to track the local temporal motion style producing a motion
that tends to be natural compared with a realistic-looking of the

Fig. 3. Rendering of the visibility maps and texture images. Top: We project
each target actor viewpoint in a common UV texture space using the estimated
geometry and create a binary map of visibility body parts. Bottom: Given the
goal pose (retargeted pose), we estimate its visibility body parts map, and then
select the better matching visibility body parts created from the viewpoints
from the target actor.

estimated source motion. The retargeting considering a local
neighboring window of frames also results in a more efficient
optimization.

a) 2D/3D human-to-object interactions.: Going one step
further than classic retargeting constraints defined in Gle-
icher [19] and Choi et al. [20], where end-effectors must be at
solely a desired 3D position at a given moment, we propose an
extended hybrid constraint in the image domain by defining
the motion retargeting constraints losses in respect to end-
effectors’ (hands, feet) 3D poses PR3D and 2D poses PR2D

as:

LR3D(ek) = ||FK(βt,θs
k + ek)−PR3D||1, (4)

LR2D(ek) = ||Π(FK(βt,θs
k + ek),K)−PR2D||1. (5)

where the Π(.,K) operator performs the projection taking a
3D point (x, y, z) and projecting it into the image plane given
the camera parameters K.

b) Space-time loss optimization: The final motion retar-
geting loss L combines the source motion appearance with
the different shape and constraints of the target character from
Equations 3, 4, and 5:

L = ||W1e||2 + λ1LP (e) + λ2LR3D(e) + λ3LR2D(e), (6)

where the joint parameters to be optimized are e =
[ei+1, . . . , ei+n]

T , n is the number of frames considered in
the retargeting window, λ1, λ2, and λ3 are the contributions
for the different error terms, and W1 is a positive diagonal
matrix of weights for the motion appearance for each body
joint. This weight matrix is set to penalize more errors in
joints that are closer to the root joint.

3) Compositing: The third shared component is to compose
the final image with the transferred person and the source
background. We first segment the source image into a back-
ground layer using as a mask the projection of our computed



model with a dilation. Next, the background is filled with the
method proposed by Criminisi et al. [41] to ensure temporal
smoothness to the final inpainting. We compute the final pixel
color value as the median value between the neighboring
frames. Finally, the background and the target character are
combined in the retargeted frame.

C. Method I: Image-Based Rendering

2D human neural rendering approaches [4], [7], [31], [42]
appeared as effective approaches for human appearance syn-
thesis. However, these methods still suffer in creating fine
texture details, notably in some body parts as the face and
hands. Besides, it is well known that these methods suffer
from quality instability when applied in contexts slightly
different from the original ones, i.e., a small difference in
camera position, uncommon motions, pose translation, etc.
These limitations motivate the proposal of our Image-Based
Rendering method, which is designed to leverage visibility
map information and semantic body parts to refine the initial
target mesh model while keeping finer texture details in the
transferring.

a) Target Character Processing.: In order to create a
more stable method and overcome the lack of details, we de-
sign a new semantic-guided image-based rendering approach
that copies local patterns from input images to the correct
position in the generated images. Our idea stems from using
semantic information of the body (e.g., face, arms, torso
locations, etc.) in the geometric rendering to encode patch
positions and image-based rendering to copy pixels from the
target images, and therefore maintaining texture details. We
assert which mesh points are visible by exploring the visibility
maps, as illustrated in Figure 3. Each visibility map indicates
which parts of the body model are visible per frame. Then we
select the closest viewpoint to the desired new viewpoint, for
each part of the body model from the visibility maps.

D. Method II: 3D Differentiable Human Rendering

Image-based rendering techniques like our previous tech-
nique are effective solutions to create 3D texture-mapped
models of people, capable of synthesizing images from any
arbitrary viewpoint without using a large number of images.
On the other hand, image-based rendering methods cannot
improve the visual quality of the synthesized images by
using more data when available. Furthermore, the deformation
process proposed in our previous method is not fast enough
to be used in real-time applications. Thus, we offer a strategy
to take advantage of all available data and, in addition, reduce
inference time at the cost of increasing preprocessing time
(training time).

a) Target Character Processing: In order to generate a
deformable 3D texture-mapped human model, our end-to-end
architecture has three main components to be trained during
the rendering. The first component models local deformations
on the human 3D body shape extracted from the images using
a three-stage GCN. In the second component, a CNN is trained
to estimate the human appearance map. Similar to the GCN,

Fig. 4. Overview of our data-driven formulation for transfer appearance and
reenact human actors. Our method receives a set of frames of a person, extracts
her/his mesh (left side) and outputs a fully 3D controllable human model (right
side).

the CNN is also trained in a self-supervised regime using the
gradient signals from the differentiable renderer. Finally, the
third component comprises an adversarial regularization in the
human appearance texture domain to ensure the reconstruction
of photo-realistic images of people. In the inference/test time,
we can feed our architecture with generic meshes parametrized
by the SMPL model, and then we can create a refined mesh
and a detailed texture map to represent the person’s shape
and appearance properly. Figure 4 outlines these components
during the inference phase.

IV. HUMAN RETARGETING DATASET

To evaluate the retargeting and appearance transfer with
different actor motions, consistent reconstructed 3D motions,
and with human-to-object interactions, we created a new
dataset with paired motion sequences from different characters
and annotated motion retargeting constraints. For each video
sequence, we provide a refined 3D actor reconstructed motion
and the actor body shape estimated [43]. The refined recon-
structed 3D motions and 2D-3D annotation of interactions
were collected by manual annotation. Figure 5 shows some
examples of frames from our dataset.

V. EXPERIMENTS AND RESULTS

We compare our methods against four recent methods
including V-Unet [5], Vid2Vid [7], EBDN [4] and the Imper-
sonator [6]. We adopted complementary metrics to evaluate
the quality of the approaches to asset different aspects of
the generated images such as structure coherence, luminance,
contrast, perceptual similarity [44], temporal, and spatial co-
herence. The metrics used to perform quantitative analysis
are SSIM [45], LPIPS [44], Mean Square Error (MSE), and
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b)

c)

d)

 

jump

(Avg. 100 frames)

walk

(Avg. 100 frames)

spinning

(Avg. 230 frames)

shake hands

(Avg. 110 frames)

fusion dance

(Avg. 60 frames)

cone

(Avg. 150 frames)

pull down

(Avg. 70 frames)

box

(Avg. 210 frames)

1.65m              1.85.m            1.70m             1.83m             1.76m              1.81m             1.84m              1.54m

Fig. 5. Human retargeting dataset. a) The subjects participating in our
dataset, their respective height and estimated SMPL body models. b) Overview
of all motions available in our proposed dataset. c) Paired motions (upper and
lower rows) with annotated motion constraints (3D constraints in blue and 2D
constraints in red). d) The reconstructed 3D motions.

TABLE I
Comparison with state of the art. AVERAGE SSIM, LPIPS, MSE, AND

FVD (BEST IN BOLD, SECOND-BEST IN ITALIC).

Metric
Method

V-Unet vid2vid EBDN iPER Method I (Ours) Method II (Ours)

SSIM↑ 0.849 0.862 0.861 0.859 0 .864 0.868
LPIPS↓ 0.167 0.138 0.153 0.167 0 .135 0.134
MSE↓ 368.44 303.32 334.63 350.23 274 .11 259.79
FVD↓ 1, 639.09 708 .72 732.60 1, 243.42 651.10 712.11

Fréchet Video Distance (FVD) [46]. We executed all the
methods in the motion sequences and transferred them to
the same background. This protocol allows us to generate
comparisons with the ground truth and compute the metrics
for all the generated images with their respective real peers.

A. Quantitative Comparison with State of The Art

We performed the human retargeting for actors with dif-
ferent body shapes, gender, clothing styles, and sizes for all
considered video sequences. The video sequences used in the
actor animation contained motions with different levels of
difficulty, which aims to test the generalization capabilities
of the methods in unseen data. Table I shows the performance
for each method considering all paired videos in the dataset.
We can see that our Method II achieves superior performance
as compared to the methods in most metrics.

B. Qualitative Visual Analysis

The visual inspection of synthesized actors also concur with
the quantitative analysis. In Figure 6, we provide the worst/best
frames for each movement using four actors in the dataset. Our
Method I and our Method II are the only models capable of
keeping the body scale of the authors along all scenes, while
the other methods failed, in particular in the movements shake
hands and walk. Besides generating coherent poses, our second
method also generated more realistic textures in comparison
to the other methods. Comparing the results of the movements

Fig. 6. Qualitative comparison. Transferring results considering the cases
where the person is not standing parallel to the image plane or has the arms
in front of the face. In each sequence: the first row shows the worst generated
frame for each method and the second row presents the best generated frame
for each method.

jump and spinning, one can visualize some details as the
shadow of the shirt sleeve of the actor and the shirt collar,
respectively. The Figure 1 illustrates a task of retargeting in
two different scenarios. These results demonstrate the capabil-
ity of generating detailed face and body texture, producing a
good fit of the actors in the different scenes.

VI. CONCLUSION

This thesis proposes a general methodology of transferring
human motion and appearance from video to video preserving
motion features, body shape, and visual quality. We designed
two novel methods using our proposed general methodology
and we demonstrated that this methodology is adequate to
be used as a design guide in the creation of new methods
to transfer human motion and appearance from video to
video preserving motion features, body shape, and visual
quality. From a theorical standpoint, our work exploits motion
constraints, body shape, and a 3D representation of people
to synthesizing more plausible videos and allows us to tackle
subjects with different limb proportions and body shape.
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