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Abstract—Rendering materials with a realistic appearance
requires considering how they interact with the light. Bidirectional
Reflectance Distribution Functions (BRDFs) are often used to
achieve this goal. There are different ways to represent materials
from BRDFs, which include tabular BRDFs, analytical models,
and linear combinations of a BRDF database. In the last decade,
the search for more realism in rendering increased the interest
in using tabular BRDFs. However, this approach requires a
long acquisition process and high storage space. This master
dissertation proposes a pipeline to create new materials from a
tabular BRDF database. During this process, we also explored
two related topics: we compiled and proposed techniques to
evaluate BRDFs, and developed an approach to preprocess and
cluster a BRDF database. These researches presented insights
and contributions that are useful for contexts other than ours
and provided analysis that reinforced our choice of techniques
to reach our goal. As a final result, our method creates new
materials with realism and consistency.

I. INTRODUCTION

Representing materials from the real world in computer
graphics requires considering how they interact with light.
A way to model the appearance and behavior of a material
is through Bidirectional Reflectance Distribution Functions
(BRDFs). These functions describe the reflectance of a point p
on the surface through the quotient between reflected radiance
and incoming irradiance in this point. For this purpose, BRDFs
often use incoming (ωi) and outgoing (ωo) light directions
as parameters, which, respectively, mean the radiance and
irradiance directions (see Figure 1).

Fig. 1. Parameters of a BRDF: ωi = (θi, ϕi) and ωo = (θo, ϕo) represent,
respectively, the incoming and outgoing light directions. Vector n means the
surface normal vector and h the halfway vector between ωi and ωo. Figure
extracted from Nunes et al. [1]

A BRDF can be directly estimated from a real-world
material through device and image-based methods, which

sample reflectance data and store them in a tabular format.
This approach is precise but requires high storage space and a
long time of measurement acquisition [2]–[5]. An alternative
is using analytical reflectance models, which are functions that
aim to approximate tabular data [6]–[11]. Another approach is
to estimate a linear combination of preexisting tabular BRDFs
to provide materials based on data captured from real-world
materials [12], [13]. A similar technique uses analytical BRDFs
as components of the linear combination [14], [15].

Sampled tabular data enable rendering materials with the
closest appearance to reality. However, this approach requires a
large number of samples to reproduce the reality with fidelity.
Thus, there are few tabular BRDF databases estimated from
real-world materials, and they usually contain a relatively small
amount of materials (e.g., 100 [5], 150 [16], and 62 [17]
materials). To avoid long acquisition processes, approaches
that take advantage of existing databases to create new materials
based on tabular data are emerging [5], [18]–[20]. Besides, it is
possible to personalize the new materials by choosing desired
features about the appearance of materials or editing them [5],
[19], [21].

This master’s dissertation’s [22] primary goal is to develop
a pipeline to create new custom materials from a tabular
BRDF database [23]. We provide an appearance-driven space
of materials according to the user’s interest. In this space,
navigating and retrieving novel, personalized materials is
feasible. The navigation in this space provides a smooth
appearance variation between neighboring points. We also
performed two additional extensive studies. These studies
provided analysis that reinforced our choice of techniques
in the pipeline and presented insights and contributions that
are useful for other contexts in the literature.

Our first study compiles and proposes techniques to evaluate
BRDF representations [23]. Using such techniques help to
verify if two BRDF representations are similar. Regarding our
primary goal, we adopted a comparison function that stood
out in this study to evaluate if the materials obtained from the
navigation using our pipeline provided a smooth transition.

The second study develops an approach to preprocess and
cluster a BRDF database [24]. To separate materials from a
BRDF database into groups regarding their reflectance features
helps to find materials with similar appearance and properties.
This work developed an experimental study to investigate
the use of image slices and dimensionality reduction as a



preprocessing stage for clustering of BRDF database. Finding
the best clusters of materials is an essential step in creating
our appearance-driven space.

This way, we summarize our main contributions:
• A pipeline to create new and personalized materials [1];
• A compilation and proposal of techniques to evaluate

BRDFs [23];
• An approach to preprocess and cluster a BRDF

database [24].
Our proposed pipeline creates new materials according to

the user’s interest. It can be used in 3D artistic applications
that range from the entertainment industry to computer-aided
design and manufacture. In addition, techniques to evaluate
BRDFs can be used to analyze if BRDFs are similar and as
distance functions in cluster algorithms. The study about the
clustering of the BRDF database can help researchers to group
materials regarding their main reflectance features, selecting of
basis BRDFs, reconstruction of BRDFs, and editing of material
appearance.

This paper is organized as follows. Section II introduces
related works on creating new materials from a tabular
BRDF database, our primary goal. Sections III, IV, and V
present an overview of the three main contributions of this
master dissertation: an appearance-driven space to create new
BRDFs [1], techniques for BRDF evaluation [23], and an
approach to preprocess and cluster a BRDF database [24]. The
reader is encouraged to refer to each referenced paper for more
details. Finally, Section VI concludes this paper and presents
our challenges, limitations, and future work perspectives.

II. RELATED WORKS

The search for more realism in rendering provided a
greater interest in using tabular BRDFs to represent a material
appearance. However, capturing the tabular BRDFs from real-
world materials requires a long acquisition process and high
storage space, bringing on few databases available. Thus,
previous work developed approaches that use existing tabular
BRDF databases to create new materials. The works presented
in this section are related to our primary goal of creating new
BRDFs. Please refer to Nunes et al. [23] and Nunes et al. [24]
for related works regarding our other two main contributions
(techniques for BRDF evaluation and an approach to preprocess
and cluster a BRDF database).

Matusik et al. [5] captured the appearance of 100 isotropic
materials from the real world and stored them in a tabular data
structure. They proposed an approach that uses this tabular
BRDF database to create new materials. To this end, it was used
both linear and nonlinear dimensionality reduction methods,
i.e., respectively, Principal components Analysis (PCA) and
Charting [25], to find a low-dimensional manifold for their
database. That approach contains a mapping between original
and low-dimensional space, which makes possible the creation
of new materials through interpolation or extrapolation. Also,
it allows changing the material’s properties through a set of
parameters.

Wills et al. [26] developed a Multidimensional Scaling
(MDS) variant to provide a low-dimensional perceptual em-
bedding from a BRDF database. Through this variant of
MDS, perceptual interpolation, and color integration techniques
developed, they presented an approach to create new materials.
This perceptual interpolation aims to represent the brightness of
the material. The authors used Delaunay triangulation to obtain
a convex hull from the embedding, and barycentric coordinates
to interpolate the materials inside of triangles of this convex
hull.

Representing a measured material requires a large number
of samples to be captured from the real world. Nielsen et
al. [18] showed that it is possible to reconstruct a measured
BRDF from a limited number of samples. They used a log-
relative mapping of the BRDF space, which consists of a linear
approach combined with principal components from a tabular
BRDF database. Furthermore, they find the best sampling
directions and use these optimized and limited samples to
reconstruct a tabular BRDF.

Serrano et al. [19] presented approaches to creating and
editing materials. To create materials, the authors used a
mapping strategy similar to Nielsen et al. [18]’s approach,
which applied a log-relative linear mapping and used PCA to
provide a low-dimensional space of BRDFs. Then, they built a
convex hull for this low-dimensional space through a uniform
distribution with Gibbs sampling [4]. To edit the appearance
of materials, they built a set of attributes, a mapping between
each attribute, and coefficients of the principal components
that uses a radial basis function network. That mapping defines
the control of space to edit the appearance of materials.

Aiming to create new materials based on tabular BRDFs,
Nunes et al. [20] presented an approach that uses PCA to
generate a low-dimensional space of BRDFs. Besides, they used
Delaunay triangulation to provide a mesh of points, in which
these points represent the materials of the low-dimensional
BRDF space. Thus, any point inside this mesh can be used to
create a new material in the original space through interpolating
the materials within it. The authors proposed a navigation
strategy in the low-dimensional space that provides a set of
novel materials between two existing materials of the database.

Hu et al. [27] developed an approach to creating new mate-
rials, which uses deep learning to provide a low-dimensional
manifold from the measured BRDF database. The authors
represent each BRDF as a sequence of image slices. This low-
dimensional manifold makes it possible to navigate and create
new materials with a smooth transition. They also proposed
BRDF editing using the set of attributes proposed by Guo et
al. [28]. Furthermore, they perform BRDF recovery from a
single image of material using another deep neural network.

In this work, we present our pipeline to create new materials
considering the user’s interest. Previous works such as Wills et
al. [26] and Nielsen et al. [18] used the linear dimensionality
reduction method to achieve the same goal. Here, it is feasible to
choose between linear and nonlinear dimensionality reduction
methods. Unlike Matusik et al. [5] and Serrano et al. [19], the
user does not need to know about specific BRDF properties



since our approach only requires the user to choose the desired
appearance through the selection of existing materials. Our
reduced space is based on the selected materials by the user. We
differ from most works presented in this section by using image
slices to preprocess tabular BRDF database before applying
a dimensionality reduction method and clustering a BRDF
database. Hu et al. [27] also used image slices in their approach
to creating new materials. However, Hu et al. represent a BRDF
as a sequence of image slices while we represent a BRDF with
only one image slice. This choice enables us to keep the main
reflectance features while maintaining a compact representation.

III. AN APPEARANCE-DRIVEN SPACE TO CREATE NEW
BRDFS

This section presents our pipeline to create new materials
from a tabular BRDF database [1]. In addition to that database,
the pipeline receives as input a set of indexes of materials
belonging to that database, selected by the user according to
appearance of the desired material. This information will guide
the generation of a BRDF space.

The pipeline first preprocesses a tabular BRDF database
using image slices, which cosiders the main reflectance features
of a material, such as diffuse reflectance, specular peak, Fresnel
effect, retro-reflection, and retro-reflection in grazing angles.
The clustering of that preprocessed database is performed (the k-
means and k-medoids algorithms were compared in this stage).
Then, the dimensionality of the database is reduced. Here, MDS
and ISOMAP (Isometric Feature Mapping) were compared.
From the reduced space obtained, clusters of materials, and
indexes of the materials chosen by the user, we build an
appearance-driven space of BRDFs. In addition, a mapping
from that space to the original tabular BRDF space is defined.
It is also possible to navigate in this appearance-driven space
to create new materials. Figure 2 shows a summary of the
pipeline stages.

A. Results

New materials were created using the proposed pipeline. We
used the Mitsubishi Electric Research Laboratories (MERL)
BRDF database, which contains 100 isotropic materials cap-
tured from the real world. In addition, we also used image
slices from BRDFs of that database.

The complexity of our pipeline is the sum of the complexities
of the dimensionality reduction method (MDS or ISOMAP,
which are, respectively, O[N3] [29] and O[2N3] [30]), Delau-
nay Triangulation (O[N⌈h/2⌉] [31]), and clustering algorithm
(k-means or k-medoids, which are, respectively, O(kNi) and
O(k(N − k)2) [32]). Here, N represents the number of image
slices, h is the dimension of the low-dimensional space, k
is the number of clusters, and i is the number of iterations.
Thus, for instance, the cost of our method using ISOMAP and
k-means is O[2N3] +O[N⌈h/2⌉] +O(kNi).

We selected the best clustering results according to the
average silhouette index. K-means presented the greatest
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Fig. 2. Summary of the stages of the proposed pipeline. The space RH

represents the image slice database in its original dimension, the space Rh

represents the image slice database in its low dimension, and the space RG

represents the tabular BRDF database, in which G > H > h. Figure extracted
from Nunes et al. [1].

average silhouette for all elements of the database compared to
k-medoids. The MDS and ISOMAP dimensionality reduction
methods were compared in our pipeline. Please refer to Nunes
et al. [1] for a comprehensive comparison of the results.

Figures 3 and 4 show examples of renderings of materials
created using our pipeline. The first material is defined by the
average of the blue-metallic-paint2 and green-metallic-paint2,
and the second is pearl-paint. In this experiment, the results
from the MDS and ISOMAP methods were compared.

Figures 5 and 6 show the Root Mean Square Error (RMSE)
results for the sequence of all materials generated in this
experiment. Comparing the renderings and RMSE results,
notice that for the MDS method, the sequence started with
a smooth transition in the appearance of the materials. As
the materials approach of the pearl-paint, the new materials
did not present an appearance next to this material. For the
ISOMAP method, as the materials approach the pearl-paint, the
new materials presented an appearance next to this material.



t = 0.00 t = 0.08 t = 0.24 t = 0.32 t = 0.40 t = 0.48

t = 0.56 t = 0.72 t = 0.80 t = 0.88 t = 0.96 t = 1.00

Fig. 3. Renderings of the materials obtained from the transition between
two materials of interest. The first material (t = 0) is defined by the average
of blue-metallic-paint2 and green-metallic-paint2, and the second (t = 1) is
pearl-paint. MDS method was used in this experiment. Figure extracted from
Nunes et al. [1], [22].

t = 0.00 t = 0.08 t = 0.24 t = 0.32 t = 0.40 t = 0.48

t = 0.56 t = 0.72 t = 0.80 t = 0.88 t = 0.96 t = 1.00

Fig. 4. Renderings of the materials obtained from the transition between
two materials of interest. The first material (t = 0) is the average of the
blue-metallic-paint2 and green-metallic-paint2, and the second (t = 1) is
pearl-paint. ISOMAP method was used in this experiment. Figure extracted
from Nunes et al. [1], [22].

These renderings illustrate the navigation performed in the
appearance-driven space and show a smooth transition between
the materials in the original space of BRDFs.

B. Conclusions

This study proposed a pipeline to create new custom
materials from a tabular BRDF database. To illustrate our
approach the MERL BRDF database [5] was used. Thus,
new materials were created using the pipeline with MDS and
ISOMAP dimensionality reduction methods. They presented
interesting results with smooth transition through navigation in
the appearance-driven space and fidelity to material proprieties.

For a sequence the new materials created, the ISOMAP
method presented transition that changed more smoothly the
appearance of the materials compared to MDS method (see
examples in Figure 7). In addition, materials from pipeline
using ISOMAP method provided transitions that also contain
appearance of materials different from those selected by the
user as reference, increasing the variety of materials.

IV. TECHNIQUES FOR BRDF EVALUATION

BRDF evaluation techniques compare different BRDFs to
know how similar they are. This is an essential topic during the
development of a new BRDF representation since it enables the
researcher to compare reflectance data from this new BRDF
representation with reference tabular or analytical data. This
way, different techniques can be used to evaluate BRDFs.

In Nunes et al. [23], we classified a set of 12 techniques
from the literature into three categories: comparison functions,
rendered images, and plots. These techniques were used to
evaluate three classical reflectance models and one state-of-
the-art BRDF representation. In addition, we proposed a new
comparison function called Mean Absolute Error Peak Signal-
to-Noise Radio that showed to be robust and stable.

A. Results

To illustrate the techniques studied, the MERL BRDF
database [5] was used as ground truth. The reflectance models
chosen were Blinn-Phong [6], Cook-Torrance [7], Ashikhmin-
Shirley [10], and the start-of-art Bagher et al. model [11]. To
represent the MERL BRDF database materials, we adopted,
for the classical models, the parameters from Ngan et al. [33],
and for the Bagher et al. model, the parameters provided by
the model author [34]. Figure 8 shows the results obtained
from this analysis for 86 materials, in which it is noticed that
Bagher et al. model stood out.

Regarding rendered images and polar plots, during the
evaluation of the 86 materials, the Bagher et al. model was
the best model to represent the appearance of these materials.
However, for reflectance features such as specular and Fresnel
peaks, that model presented difficulty in reproducing them. An
alternative would be using the Ashikhmin-Shirley model that
represented these features well but sometimes demonstrated
exceeded reflectance values.

B. Conclusions

This study classified 12 techniques to evaluate BRDFs into
three categories: comparison functions, rendered images, and
plots. Based on comparison functions, we presented a new one.
These techniques were used to evaluate Blinn-Phong, Cook-
Torrance, Ashikhmin-Shirley, and Bagher et al. models fitting
materials from the MERL BRDF database. The results showed
that the Bagher et al. model was the best among the reflectance
models.

Using the three categories helps to better evaluate the BRDF
fit, since they provide complementary information. We suggest
using at least one technique from each of the three categories to
get a comprehensive evaluation. From the ones we explored, the
set of techniques that we suggest is RMSE, visual comparison
and color-coded difference images, image slices and polar plot.

V. AN APPROACH TO PREPROCESS AND CLUSTER A BRDF
DATABASE

Clustering a BRDF database provides materials separated
into different groups. It can help in research that involves
the selection of basis BRDFs, reconstruction of BRDFs,
personalization of the appearance of materials, and finding
material properties. Aiming to provide clusters of materials
regarding their reflectance features, we propose a strategy to
preprocess the BRDF database using image slices to provide an
image slice database [24]. Thus, each material is represented by
its main reflectance features, such as diffuse reflection, specular
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Fig. 5. RMSE of the comparison of materials obtained from the transition between two materials of interest. For this result the MDS method was used. The
errors were mapped through a log transformation on base 10. Each different color represent a specific simplex in the appearance-driven space, in which the
material belongs to. Figure extracted from Nunes et al. [1], [22].
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Fig. 6. RMSE of the comparison of materials obtained from the transition between two materials of interest. For this result the ISOMAP method was used.
The errors were mapped through a log transformation on base 10. Each different color represent a specific simplex in the appearance-driven space, in which
the material belongs to. Figure extracted from Nunes et al. [1], [22].

peaks, Fresnel effect, retro-reflection, and retro-reflection in
grazing angles.

We performed an experimental study about the use of a
dimensionality reduction method applied to the image slice
database before clustering it. This study compared three
clustering algorithms using statistical tests and their image
slices from cluster results. In addition, we compared the results
obtained with and without applying a dimensionality reduction
method to the image slice database before clustering it.

A. Results

We chose the Locally-Linear Embedding (LLE) method to
reduce the image slice database dimension before clustering
it. The k-means, k-medoids, and spectral clustering algorithms
were selected to perform the clustering of that database
and compared. RMSE was used as a distance measure for
these algorithms. It was a promising measure since the
resulting cluster of materials presented similar reflectance
features found in image slices. LLE presents a complexity
of O(N logN) + O(Nhd3) + O(sN2), where d and s are,
respectively, the number of nearest neighbors and embedding
dimension [35]. Compared to k-means and k-medoids com-
plexities (see Section III-A), spectral clustering is O(N3) [36].

The best low-dimensional image slice databases were se-
lected to be used as input to the k-means, k-medoids, and
spectral clustering algorithms. Thus, statistical tests were
applied to the results of the clustering of such databases using
these algorithms. According to the Friedman test, there is a
statistically significant difference among the medians of the
silhouette index of the clustering algorithms. The best overall
results according to the median silhouette index for k-means, k-
medoids, and spectral clustering were 0.5808, 0.5716, 0.5233.
Thus, k-means presented the best overall result compared to
the other algorithms.

B. Conclusions
This study presents a strategy to preprocess and cluster a

BRDF database that considers the main reflectance features of
the BRDFs. To preprocess the BRDF database, the image slice
representation and the LLE dimensionality reduction method
were used, resulting in low-dimensional image slice databases.
To this end, the MERL BRDF database [5] was adopted, and
the best low-dimensional image slice databases were found.

K-means presented the best overall result compared to the
other algorithms. However, for some low-dimensional image
slice databases, k-medoids presented better results. Therefore,
we suggest finding the best low-dimensional representation of
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Fig. 7. Materials obtained using our approach with ISOMAP, illustrating
transitions with: (first line) variation in the diffuse and specular colors (from
blue-metallic-paint to silver-paint); (second line) variation in the material
diffuse color (from green-latex to blue-rubber); (third line) variation in
the material specularity (from orange-paint to specular-yellow-phenolic and
yellow-matte-plastic); (forth line) variation in the material glossiness (from
maroon-plastic to red-metallic-paint); (fifth line) different diffuse and specular
reflectance properties (from alum-bronze to chrome-steel and grease-covered-
steel); ISOMAP with 6 principal components and 29 neighbors and nearest-
neighbor with 29 neighbors were used in this experiment. Figure extracted
from Nunes et al. [1].

the database and using our evaluation approach to choose the
clustering algorithm according to the best result of clustering
of that database.

As the k-medoids algorithm keeps an original element of the
database as representative of the cluster, it is an alternative to
k-means for applications that requires using existing materials.
Examples of these applications are the reconstruction of BRDFs
and editing the appearance of materials.

From an analysis of the resulting clusters, we realized that the
image slices had an influence in their results since the clusters,
in general, presented predominantly specific reflectance features
found in image slices. This analysis showed that our proposed
approach is promising.

VI. CONCLUSION

This work aims to create new custom materials from a
tabular BRDF database. Our pipeline presented interesting
results, creating new materials that are influenced by the
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Fig. 8. Evaluation of 86 materials from the MERL BRDF database [5] fitted
by reflectance models. It shows the number of materials that the reflectance
model did the best fit according to the comparison function. Figure extracted
from Nunes et al. [23].

appearance of the reference materials (selected by the user).
Besides, the results showed new plausible materials with
visual richness and fidelity to the material properties. Through
navigation in the appearance-driven space of BRDFs, our work
generated sequences of materials presenting smooth appearance
transitions.

Correlated to the main goal of this work, two studies were
performed. The first one researched techniques to evaluate
BRDFs. It presented promising results since these techniques
presented a comprehensive evaluation that includes numeric and
visual analysis. In addition, based on the results of this study,
we adopted the RMSE comparison function to evaluate the
transition of the new materials created. The second study refers
to preprocessing and clustering a BRDF database. Its results
showed that using image slices contributes to the clustering,
providing materials separated into groups according to the main
reflectance features. This improvement is a contribution to the
development of the appearance-driven space.

A. Challenges and limitations

While developing the contributions presented in this master’s
dissertation, some challenges and limitations were found. In
the first contribution (Section III), we needed to perform
validation strategies with more subjective criteria to evaluate
the appearance of the new materials. To this end, we adopted
a comparison function and compared materials belonging to a
sequence of materials. In the second contribution (Section IV),
we had to compare the proposed comparison function with an
existing one. Then, we developed a voting strategy regarding a
set of comparison function results. In the third one (Section V),
we needed to perform the proposed experiments in an extensive
BRDF database. Thus, we divided the materials of the database
into three parts, providing three databases.

B. Future Work

In future work, we propose to investigate the use of other
nonlinear dimensionality reduction methods in clustering image



slices and during the creation of the appearance-driven space.
We also intend to develop a strategy to navigate the appearance-
driven space that receives the contribution of the materials
belonging to the minimum path. To evaluate the sequence
of the new materials created, we would like to investigate
strategies that use perceptual analysis and subjective criteria.
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