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Abstract—Data clustering is widely recognized as a fundamen-
tal technique of paramount importance in pattern recognition
and data mining. It is extensively used in many fields of the
sciences, business and engineering, covering a broad spectrum of
applications. Despite the large number of clustering methods,
only a few of them take advantage of optimum connectivity
among samples for more effective clustering. In this work,
we aim to fill this gap by introducing a novel graph-based
data clustering framework, called Iterative Optimum-Path Forest
(IOPF), that exploits optimum connectivity for the design of
improved clustering methods. The IOPF framework consists of
four fundamental components: (i) sampling of a seed set S, (ii)
partition of the graph induced from the dataset samples by an
Optimum-Path Forest (OPF) rooted at S, (iii) recomputation of
S based on the previous graph partition, and, after multiple
iterations of the last two steps, (iv) selection of the forest with the
lowest total cost across all iterations. IOPF can be regarded as a
generalization of the Iterative Spanning Forest (ISF) framework
for superpixel segmentation from the image domain to the feature
space. Herein, we present four IOPF-based clustering solutions
to illustrate distinct choices of its constituent components. These
are thereafter employed to address three different problems,
namely, unsupervised object segmentation, road network analysis
and clustering of synthetic two-dimensional datasets, in order to
assess their effectiveness under various graph topologies, and
to ascertain their efficacy and robustness when compared to
competitive baselines.

I. INTRODUCTION

A vast amount of data is generated by a wide range of
sources in the current digital age. This data needs to be
processed, analyzed, and transformed into valuable insights to
support decision-making tasks. However, intensive computing
resources and sophisticated techniques are required to effi-
ciently and effectively extract the requisite information. Con-
ventionally, these techniques are categorized into supervised,
unsupervised and semi-supervised based on their reliance on
labeled data. Supervised and semi-supervised methods depend,
in different degrees, on labeled datasets, whose construction
may become a time-consuming and tedious task in most
situations. Unsupervised approaches can considerably alleviate
this issue by not taking labels into consideration. Among the
available unsupervised techniques, data clustering has become
a crucial and widely used technique to discover hidden patterns
and relationships in the data. It can considerably reduce the
dependency on labeled data by assuming that samples in a
cluster share the same label.

Clustering is a fundamental process that seeks to identify
the intrinsic grouping in a set of unlabeled data based on some
similarity measure. The goal of clustering is to partition a set
of unlabeled objects into subsets (clusters) so that those within
the same subset are more closely related (similar) to each
other than to those falling in different subsets. Accordingly,
designing practical clustering algorithms aiming to maximize
both intra-subset similarity and inter-subset dissimilarity ac-
cording to a similarity criterion remains a relevant research
challenge. Clustering has a variety of applications in a broad
range of domains, including plant and animal ecology, se-
quence analysis, human genetic clustering, medical imaging,
market research, social network analysis, image segmentation,
evolutionary algorithms, crime analysis, petroleum geology,
physical geography, and so forth [1].

The most widely used clustering technique is k-means, a
partitional clustering algorithm that stands out for its simplicity
of implementation and intuitiveness. It is a numerical, non-
deterministic, and iterative method that approximates each
cluster’s center by representing the objects as data points in
the Euclidean space and measuring the dissimilarity between
a pair of points by their Euclidean distance [2]. Despite being
extensively used, k-means presents some shortcomings, such
as that it can only identify spherical-shaped and symmetrical
clusters [3]. Several extensions have been proposed to over-
come these limitations [4], [5], which, however, address only
a subset of these issues.

A. Objectives

In this context, the present work aims to explore graph-
based clustering solutions for different applications through
the proposal of a novel graph-based iterative clustering
framework consisting of a sequence of Optimum-Path Forest
(OPF) [6] executions. The objectives of this work are as
follows: (a) formally present the Iterative Optimum-Path
Forest (IOPF) framework, which is capable – through the
different selection of its components – of creating a variety
of clustering solutions that preserve connectivity among the
samples of a dataset; (b) study and analyze the applications of
IOPF-based solutions under different graph topologies while
showcasing its flexibility, extensibility, and applicability to
a wide range of problems; (c) analyze the effect of using
IOPF with dynamic arc-weight estimation – an approach



that has proven its effectiveness for superpixel and object
segmentation [7], [8], and whose application to the feature
space is still unaddressed.

B. Contributions

Our main contribution is the proposal of a graph-based
clustering framework, which, through a sequence of OPF
executions, each followed by a seed recomputation stage, aims
to partition a dataset while preserving connectivity within
each cluster. A previous work [9] presented an algorithm
with a similar formulation. However, it restricted its choice
of components to the general Image Foresting Transform
(IFT) [10] algorithm with the fsum connectivity function.
Thus, the inclusion of IFT with dynamic arc-weight estimation
along with the fmax connectivity function as part of the set of
framework components becomes also part of our contribution.
Furthermore, we explore the effectiveness of IOPF-based so-
lutions in various applications, which allows us to show the
framework’s flexibility under different graph configurations.

Our contributions also include the analysis of IOPF-based
solutions under the following graph settings: (a) the adjacency
relation and arc-weights are established from the problem defi-
nition; (b) only the adjacency relation comes from the problem
definition; and (c) neither the adjacency relation nor the arc-
weights are determined from the problem definition. Moreover,
we propose strategies to build suitable graph topologies for the
graph setting given in (c).

The interested reader is also referred to our paper [11]
presented at the CIARP 2021 Conference (https://ciarp25.org/)
and to the book chapter [12] published by Elsevier in 2022.

II. RELATED WORK

Most of the more popular graph-based clustering algorithms
do not exploit optimum connectivity between samples and
seeds for cluster delineation. In this context, several OPF-
based clustering algorithms have been introduced to bridge
this gap, which can be broadly categorized into density-based
and centroid-based algorithms.

Among the density-based techniques, Rocha et al. [13]
introduced a first clustering method based on optimum con-
nectivity – the maxima of a probability density function (pdf)
compete among themselves to conquer the remaining samples
of the dataset, and each maximum (dome of the pdf) defines a
cluster as an optimum-path tree rooted on it. The pdf is esti-
mated from a k-Nearest Neighbor (kNN) graph, and the choice
of k is attained by finding the solution that minimizes a nor-
malized graph-cut measure. Costa et al. [14] propose nature-
inspired optimization techniques to speed up the selection of
k for pdf estimation with application to intrusion detection in
computer networks. Cappabianco et al. [15] extended the OPF-
based clustering approach for large datasets by subsampling
training samples, generating candidate solutions and selecting
the most plausible one. The authors of the aforementioned
work demonstrated the advantages of the method for MR-brain
tissue segmentation. Montero and Falcão [16] propose a two-
level divide-and-conquer clustering approach based on density-

based OPF clustering. Such technique is well suited to handle
large datasets. Chen et al. [17] presented an improved OPF-
based clustering algorithm for segmentation of remote sensing
images based on the principle that cluster centers display
high local densities, whereas samples surrounding centers
usually exhibit relatively low local densities. Afonso et al. [18]
introduced a multi-layered OPF-based clustering algorithm
inspired by hierarchical clustering. This algorithm, called Deep
Optimum-Path Forest, builds a model comprised of a fixed
number of stacked layers, such that the last layer contains
the desired number of clusters. Recently, this algorithm was
used in [19] to design visual dictionaries for the automatic
identification of Parkinson’s disease.

On the other hand, among the centroid-based techniques,
Soor et al. [9] proposed Iterated Watersheds (IW), a graph-
based clustering algorithm based on iterative applications of
watershed transforms in a feature space from sets of enhanced
cluster prototypes (seeds). This algorithm is a modified version
of k-means with connectivity constraints, which, in turn, can
be regarded as a particular configuration of the IOPF frame-
work proposed herein.

III. ITERATIVE OPTIMUM-PATH FOREST

An IOPF-based method can essentially be summarized into
four steps: (i) sampling of an initial seed set S, (ii) graph
partition by OPF from S into a graph derived from the
dataset, (iii) recomputation of S based on the previous graph
partition and, after multiple executions of steps (ii) and (iii),
(iv) selection of the forest with the lowest total path-cost across
all iterations.

Let Z be a dataset such that for every sample s ∈ Z , there
is a feature vector v(s) ∈ Rn. For a given adjacency relation
A ⊆ Z × Z , the pair G = (Z,A) defines a graph. The
adjacency relation A can be defined in different ways, based
on the specification of the problem at hand. In some cases, the
adjacency relation of the graph is given beforehand, whereas
in other situations it must be built from scratch. For instance,
if Z is the set of pixels s = (xs, ys) in the bi-dimensional
domain of an image, A may be defined as Ar = {(s, t) ∈
Z × Z | 1 ≤ ∥(xt, yt) − (xs, ys)∥ ≤ r}. In this regard, the
most notable adjacency relations on this domain are A1 and
A√

2, referred to as 4- and 8-neighborhood, respectively. As r
increases, the local image feature space is explored with less
spatial constraint. On the other hand, for arbitrary datasets, we
may define A as follows:

1) A = {(s, t) ∈ Z × Z | s, t ∈ Z and s ̸= t}, so that G
represents a complete graph; or

2) A = {(s, t) ∈ Z × Z | v(t) is a k-nearest neighbor of
v(s)}, for a fixed k.

Nonetheless, in 2, it is essential to make sure that all nodes in
Z are reachable from any seed in the seed set S. Therefore,
two conditions should be met: (a) if (s, t) ∈ A, then (t, s) ∈
A, and (b) G must be connected.

A simple graph with terminus t is a sequence of sam-
ples πt = ⟨s1, s2, . . . , sn = t⟩,(si, si+1) ∈ A, for i ∈
{1, 2, . . . , n−1}, whereas πt = ⟨t⟩ is called a trivial path. We
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Fig. 1. IOPF pipeline. Initial seeds are selected randomly and recomputed at the end of each OPF execution. In this example, seed convergence is attained
at the fourth iteration. Lastly, the partition that minimizes

∑
∀s∈Z C(s) across all iterations is returned as the final clustering.

Fig. 2. Object delineation using the IDT algorithm with random initial seed set.

consider two types of connectivity functions, fmax and fsum,
with the same rule f∗, ∗ ∈ {max, sum}, for trivial paths:

f∗(⟨t⟩)) =

{
0 if t ∈ S ⊂ Z
+∞ otherwise

fmax(πs · ⟨s, t⟩) = max{fmax(πs), w(s, t)} (1)
fsum(πs · ⟨s, t⟩) = fsum(πs) + w(s, t), (2)

where w(s, t) is an arc-weight of ⟨s, t⟩ and πs · ⟨s, t⟩ denotes
the concatenation of πs and ⟨s, t⟩, with the two instances of
s merged into one. The OPF algorithm minimizes a path-cost
map C(t) = min∀πt∈Πt

{f∗(πt)}, where Πt is the set of all
possible paths rooted at S with terminus t, while it outputs an
optimum-path forest P – i.e., an acyclic map that assigns to
each t ∈ Z either its predecessor P (t) ∈ Z in the optimum
path π∗

t rooted at S or a distinct marker nil if t is a root of the
map (i.e., t ∈ S). Thus, each seed t ∈ S defines an optimum-
path tree Tt (i.e., cluster) in P , and may also propagate its
corresponding label L(t) ∈ {1, 2, . . . , k} to its most strongly
connected samples in Tt.

An IOPF-based solution aims to estimate the graph partition
that minimizes the total path-cost given by the sum of path
costs between samples and their most strongly connected seeds
in G. The minimization of this objective function is addressed
following an iterative approach consisting in, given a fixed
number of clusters k, partitioning the graph G into k optimum-

path trees by multiple OPF executions from enhanced sets
of seeds. Each OPF execution will output a triplet (L,C, P )
consisting of a label map L, a cost map C, and a predecessor
map P , leading to the computation of the total path-cost given
by

∑
∀s∈Z C(s). The set of enhanced seeds is recomputed

at the end of each iteration, selecting the samples closest to
each optimum-path tree’s mean feature vector. The iterative
procedure is repeated until either seed set convergence is
achieved or a fixed maximum number of iterations is executed.
Figure 1 depicts the pipeline of the IOPF framework, where
initial seeds are randomly selected, and seed convergence is
achieved at the fourth iteration. In this example, the third
iteration minimizes

∑
∀s∈Z C(s), and is, then, returned as the

final clustering.

A. Iterative Dynamic Trees

Since IOPF is a generalization of the Iterative Spanning
Forest (ISF) framework [20] from the image domain to the
feature space, its application to image segmentation is straight-
forward. We call the methods for object delineation Iterative
Dynamic Trees (IDT) [11]. A two-dimensional image is a
pair (DI , I), such that I(p) assigns local image features (e.g.,
color space components) for each pixel p ∈ DI ⊂ Z2.
An image can be rendered as a graph (N ,A) under various
configurations, depending on how the nodes N ⊆ DI and the
adjacency relation A ⊂ N ×N are defined. We define pixels



TABLE I
AMI, ARI, BOUNDARY RECALL AND CLUSTER ACCURACY (MEAN +/- STD. DEVIATION) FOR WEIZMANN 1-OBJECT AND 2-OBJECT DATASETS FOR

IDT VARIANTS, DISF, IW-MAX AND IW-SUM.

Method AMI ARI BR CA

1-
O

bj
ec

t

IDT1 0.564673 ± 0.283 0.613058 ± 0.317 0.657833 ± 0.241 0.908387 ± 0.091
IDT2 0.344623 ± 0.270 0.363208 ± 0.323 0.433819 ± 0.276 0.841895 ± 0.114
IDT3 0.366932 ± 0.307 0.372370 ± 0.363 0.458131 ± 0.285 0.860064 ± 0.107
DISF 0.304520 ± 0.282 0.282088 ± 0.347 0.398606 ± 0.296 0.836631 ± 0.112

IW-max 0.397320 ± 0.278 0.419055 ± 0.318 0.473212 ± 0.276 0.856288 ± 0.112
IW-sum 0.352781 ± 0.257 0.373990 ± 0.300 0.330048 ± 0.243 0.847699 ± 0.108

2-
O

bj
ec

t

IDT1 0.589247 ± 0.278 0.600024 ± 0.345 0.748527 ± 0.194 0.953605 ± 0.054
IDT2 0.587252 ± 0.278 0.614408 ± 0.333 0.730065 ± 0.207 0.946522 ± 0.064
IDT3 0.386087 ± 0.279 0.334149 ± 0.328 0.518125 ± 0.263 0.902305 ± 0.100
DISF 0.420036 ± 0.295 0.376453 ± 0.352 0.582483 ± 0.263 0.919615 ± 0.078

IW-max 0.435559 ± 0.330 0.544933 ± 0.311 0.615948 ± 0.231 0.921671 ± 0.086
IW-sum 0.395757 ± 0.242 0.347743 ± 0.299 0.496769 ± 0.224 0.895421 ± 0.097

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 3. Segmentation results for Weizmann 1-Object and 2-Object datasets. (a)–(f) Original images, (g)–(l) IDT1.

as nodes (N = DI), such that I(p) represents the CIELab
color components of pixel p, and the 8-neighborhood relation
defines the arcs.

All the framework components presented in the previous
sections remain valid for this application. Nevertheless, given
the nature of the problem, some other strategies can be intro-
duced as components for the framework. Following this line of
thought, we present a new seed recomputation strategy in the
image domain. During iteration j, new seeds are selected as
the nodes closest to the mean feature vector for each optimum-
path tree Tij , i ∈ {1, 2, . . . , k}. Nonetheless, in the image
domain, we may also select the new seeds as the nodes closest
to the mean pixel of each optimum-path tree. The mean pixel
is defined as the arithmetic mean of pixel coordinates of the
elements of clusters Cij , i ∈ {1, 2, . . . , k}. Thus, each seed
ri,j+1, for i = 1, 2, . . . , n, for iteration j +1 is computed as:

ri,j+1 = argmin
p∈Ci

{∥p− 1

|Ci|
×

∑
∀q∈Ci

q∥}. (3)

Figure 2 illustrates the application of the IDT algorithm to
a natural image from a random initial seed set.

IV. EXPERIMENTAL RESULTS

In this section, we present three applications to illustrate the
robustness and flexibility of the IOPF framework by designing
suitable and effective IOPF-based methods for each problem’s
context.

A. Object Delineation by Iterative Dynamic Trees

To demonstrate the advantages of step (iv) and random seed
sampling in step (i), we compare three versions of IDT. IDT1

is the proposed version, as described in the previous section.
IDT2 is IDT1 without step (iv), selecting the optimum-path
forest of the last iteration, as commonly adopted by ISF-based
methods, such as DISF [8]. IDT3 is IDT1 using grid sampling
in step (i), as used by DISF and most superpixel segmentation
methods.

To demonstrate the improvement of IDT for object delin-
eation, we compare it against DISF and IW [9] with two
path-cost functions: IW-max computes the cost of a path
as the maximum arc weight along it, for fixed arc weights
∥I(q) − I(p)∥, whereas IW-sum computes the cost of a path
as the sum of its arc weights. DISF begins from a set of 150
seeds selected by grid sampling for all images, and reduces
the seed set size in every iteration until it reaches the number



of desired objects. IW has already been demonstrated to be
superior to spectral clustering, isoperimetric partitioning and
k-means for the task of object delineation [9].

For evaluation of object segmentation, we use the Weizmann
1-Object and 2-Object datasets [21], containing 100 images
each, along with ground-truth segmentations. Images in these
datasets (available at http://www.wisdom.weizmann.ac.il/∼vision/
Seg Evaluation DB/) depict one or two objects in the fore-
ground. Table I shows the effectiveness of object segmentation
for all methods according to four different metrics (AMI, ARI,
BR, and CA). IDT1 stands out as the best approach, obtaining
a better border delineation and accuracy than its counterparts.
Moreover, it can also be stated that random sampling suffices
for step (i), and step (iv) included by the proposed approach
into the ISF framework improves object segmentation.

B. Analysis on Road Networks

The adjacency relation in road networks is defined before-
hand by the road network map, where edges, represented by
roads, connect a pair of reference points.

The problem this experiment addresses is described as
follows: given a road network instance, identifying appropriate
points for placing emergency stations, such that the emergency
station reaches the point of an incident in the minimum time
possible. The devised solution must comply with the following
constraints: (a) The emergency station must be reachable from
the point of an incident in a short time interval (i.e., the
distance between these two points must be minimized), and
(b) the number of emergency stations layed out across the map
must be as low as possible to reduce the establishment costs.
A road network will induce a weighted graph G = (Z,A),
where the nodes are defined by a set of reference points spread
across the road map. Such points, uniquely identified by a
pair of coordinates x = (x1, x2), constitute the dataset Z .
An emergency station is established at one of such points.
The adjacency relation A that defines the arcs of the graph
is given by a set of pairs (x, y) ∈ Z × Z , such that x and
y are connected by a road. The arcs are weighted by their
corresponding road lengths, which are provided in advance
for the experiment.

Based on the above definition, this problem may be for-
mulated as that of discovering a set of k emergency points
ci ∈ Z, i ∈ {1, 2, . . . , k}, such that the sum of path-costs
between each reference point s ∈ Z and its closest emergency
station – i.e.,

∑
s∈Z f(πs) – is minimized across all reference

points, for a given connectivity function f . As it happens,
the application of the IOPF framework to this problem is
straightforward. In this context, the problem described above
can be divided into two subproblems: (a) discovering the
set of k emergency stations through the IOPF framework,
and (b) computing the sum of path-costs between each of
those emergency stations and its closest points. After repeating
the experiment with a sequence of increasing values, the
ideal number of stations is determined so that the reduction
of

∑
s∈Z f(πs) does not compensate the placing cost for

establishing an additional station.

The road networks for this experiment were obtained
from [22] (available at https://figshare.com/articles/dataset/
Urban Road Network Data/2061897). In this experiment,
our objective is to determine the IOPF configuration that
suits the problem described above. Hence, we compare four
versions of IOPF, namely, IW-sum and IW-max using fsum
and fmax with fixed arc weights ∥x − y∥, and IOPF-dynsum
and IOPF-dynmax using fsum and fmax with dynamic arc-
weight estimation. In [9], a similar experiment was conducted
where IW exhibited better performance than k-means and
greedy k-center. This experiment uses the road networks
corresponding to the Brazilian cities of São Paulo, Rio de
Janeiro, Belo Horizonte, Recife, Porto Alegre, and Salvador.

Figure 4 (a) shows the graph induced by the road networks
of the city of Recife, where blue dots represent the nodes or
reference points, while black lines linking pairs of reference
points represent the edges or roads. Figure 4 (b) shows the
clustering result of IW-sum with 15 centers for each city’s
network, where each cluster is colored with a different color
and the centers (i.e., emergency points) are marked with an
encircled point.

(a) (b)

Fig. 4. Road map network of the city of Recife, Brazil in (a) and the clustering
result of IW-sum for 15 emergency stations in (b).

The experiments were carried out using the same sets of
initial seeds for the four clustering solutions. For the road
network of every one of the cities, each method was executed
thirty times for a varying number of centers. Next, the sum of
path-costs across all nodes

∑
s∈Z f(πs) was averaged across

all executions to assess their effectiveness. From the results1, it

1The reader will find the tables and figures corresponding to the complete
set of results in text of the master’s thesis [23].



Fig. 5. Clustering results on the synthetic datasets using IW-max for the complete-graph topology.

can be concluded that IW-sum is the most suitable IOPF-based
method in most cases, since it achieves a lower value than
its counterparts and is worse than IOPF-dynsum and IOPF-
dynmax in only a few cases where the difference in values is
not significant.

C. Experiments on Synthetic Datasets

In order to verify the performance and robustness of the
IOPF framework in a wider variety of datasets, we evaluate
several IOPF-based methods on synthetic datasets that ex-
hibit a broad spectrum of shapes and distributions. In such
datasets, we do not possess enough information regarding
the underlying relationship among the samples to establish a
suitable graph topology, as opposed to what we considered in
Sections IV-A and IV-B.

Let Z be a dataset such that each sample s ∈ Z is
represented in the feature space by a feature vector v(s) ∈ Rn.
The adjacency relation A ⊆ Z × Z may be defined in such
a way that the induced graph G = (Z,A) can be established
either as a complete or a k-nearest neighbor graph.

We conducted experiments with four configurations of
IOPF, namely, IW-sum, IW-max, IOPF-dynsum and IOPF-
dynmax, to determine their effectiveness under the complete
graph topology. We compared the four methods with k-means
to assess their performance against the most widely used
clustering algorithm. In this setting, IW-max is the IOPF-
based method that best separates the groups for all synthetic
datasets among all those tested. Figure 5 shows the results
of this experiment for the IW-max method. Alternatively,
we may also define G as a k-nearest neighbor graph, where
each sample s ∈ Z is linked through an edge to its k closest
neighbors for a fixed k. From the results2, we conclude
that IW-sum is now able to successfully separate all the
groups, achieving the same performance as that of IW-max.
Therefore, imposing restrictions on the graph topology leads
to improvements in the clustering capabilities of IW-sum.

To ascertain the framework’s effectiveness and robustness
against other state-of-the-art clustering algorithms, we com-
pared IW-max using a complete graph topology, and a seed
selection algorithm consisting in a sequence of OPF execu-
tions, described in more detail in the master’s thesis text [23],
against five popular clustering algorithms: (a) mean shift, (b)

2Again, the reader is referred to text of the master’s thesis [23] to see all
tables and figures corresponding to the complete set of results.

spectral clustering, (c) DBSCAN, (d) Gaussian mixture, and
(e) agglomerative clustering. We are able to conclude2 that, in
contrast to its counterparts, IW-max successfully separates the
groups for all synthetic datasets. To further assess the frame-
work’s performance, we employed seven additional datasets
obtained from [24]. Each dataset presents its own challenges
due to their inherent structure and distribution. Once again,
the IW-max method is the only method to correctly identify
all the groups for all datasets.

V. CONCLUSION

We introduced a flexible and robust graph-based clustering
framework, called Iterative Optimum-Path Forest (IOPF), that
employs consecutive executions of the OPF algorithm from
re-estimated seed sets to partition an input dataset, while
allowing the design of connectivity-based clustering methods
by suitable choices of its components. Moreover, we intro-
duced an algorithm to select initial seeds for data clustering,
improving the results presented in [9]. In this context, we
described four IOPF-based clustering methods, IW-sum, IW-
max, IOPF-dynsum, and IOPF-dynmax. We evaluated them
for object delineation, identification of emergency stations
in road networks, and group identification in synthetic two-
dimensional datasets with different shapes and sizes. We ob-
served that IW-sum improves effectiveness when the graph
topology is constrained to the k-nearest neighbors. On the
other hand, IOPF-dynmax, previously called IDT [11], appears
as the best approach for object delineation, while IW-sum is
the best suited for identification of emergency stations in road
networks, and IW-max is the winner for clustering of two-
dimensional datasets.

We intend to investigate new techniques for seed recomputa-
tion in order to further improve the effectiveness of the IOPF-
based methods, to include local density information in the
identification of initial seeds, and to explore new applications
for the IOPF-based methods.
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