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Abstract—Studying and analyzing crime patterns in big cities is
a challenging Spatio-temporal problem. The problem’s difficulty
is linked to different factors such as data modeling, unsophis-
ticated hotspot detection techniques, Spatio-temporal patterns,
and study delimitation. Previous works have mostly focused on
the analysis of crimes with the intent of uncovering patterns
associated to social factors, seasonality, and urban activities in
whole districts, regions, and neighborhoods. Those tools can
hardly allow micro-scale crime analysis closely related to crime
opportunity, whose understanding is fundamental for planning
preventive actions. Visualizing different patterns hidden in crime
time series data is another issue in this context, mainly due to the
number of patterns that can show up in the time series analysis.
In this dissertation, we propose a set of approaches for interactive
visual crime analysis. Relying on machine learning methods,
statistical and mathematical mechanisms, and visualization, each
proposed methodology focus on solving specific crime-related
problems. These proposed tools to explore specific city locations
turned out to be essential for domain experts to accomplish their
analysis in a bottom-up fashion, revealing how urban features
related to mobility, passerby behavior, and the presence of public
infrastructures can influence the quantity and type of crimes.
The effectiveness and usefulness of the proposed methodologies
have been demonstrated with a comprehensive set of quantitative
and qualitative analyses, as well as case studies performed by
domain experts involving real data from different-sized cities. The
experiments show the capability of our approaches in identifying
different crime-related phenomena. 12

I. INTRODUCTION

The hardness of the crime spatio-temporal analysis problem
is linked to the patterns’ great variability among the different
types of crimes and the large amount of data involved in such
analysis. In recent years, it is undeniable that crimes have not
only grown but also become more violent and modernized.
In contrast, agencies in charge of law and order (e.g., police
and the criminal justice system) have not kept up with these
trends. The gap between the dynamics of crime and violence
and the state’s ability to contain them within the law rule
has widened. Therefore, introducing modern instruments for
managing public order and crime containment is imperative to
make public security policies more efficient in any big city.

Crime hotspot analysis has been one of the main resources
employed by public security agencies to plan police patrolling
and design preventive actions. Although sophisticated mech-
anisms have been proposed to detect hotspots, the search for
a high prevalence of crimes ends up neglecting sites where
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certain types of crimes are frequent but not sufficiently intense
to be considered statistically significant, which can be more
harmful to the community than intensive crime waves that
occur in a short period of time. Moreover, most techniques
enable only rudimentary mechanisms to analyze an essential
component of unlawful activities, the temporal evolution of
crimes, and corresponding patterns.

There is another important aspect in the context of crime
analysis, the spatial discretization of the urban areas un-
der analysis. The spatial discretization directly impacts the
computation and detection of hotspots. Moreover, according
to environmental criminology, the concentration and persis-
tence of crimes in certain locations are not random; that
is, they occur due to prevalent characteristics present in
those locations (demography, socioeconomic level, and un-
employment). Therefore, characteristics’ changes of particular
locations impact crime activity over time, making Spatio-
temporal hotspot analysis a fundamental task. Crime events
are typically examined across various discretizations, such as
states, cities, neighborhoods, and blocks. Nevertheless, urban
crime activities happen on micro-places (i.e., street segments
and corners), which are thus a more meaningful representation
of locations than arbitrarily-defined regions.

Understanding the dynamic of crime patterns over time is
another important aspect of crime analysis. Space-time hotspot
researchers sustain empirical evidence that locations of crime
incidents tend to exhibit both spatial and temporal concen-
trations. Moreover, spatial and temporal crime concentration
patterns are deciding factors for planning crime prevention
measures. However, most hotspot-based analytic tools, mainly
those used by security agencies, do not enable resources
to identify and group hotspots according to their temporal
behavior, hampering the identification of factors that can make
crime viable or not over time.

This dissertation’s core consists of presenting different
methodologies that allow a visual Spatio-temporal crime pat-
tern analysis of urban areas considering different characteris-
tics (socio-economic, infrastructure, and social factors). To do
this, we have to sort out different problems: hotspot defini-
tion and detection, space modeling, and identifying patterns
related to the dynamics of crime patterns. Our approaches
faced these problems from different fronts: (1) Given the
crime events in an urban space, we propose two different
methods to identify and present hotspots considering not only
the intensity but also the frequency of crimes; (2) street-



FIG. 1: Pipeline overview of the CrimAnalyzer System.

level domain discretization, switching from grid-based to a
street-based spatial discretization; (3) Spatio-temporal crime
patterns analysis, supported by visualization and machine
learning mechanisms to extract and visually present different
Spatio-temporal patterns. Considering these solutions, we have
divided our proposals into three projects presented above.

Essentially, this document presents three proposed method-
ologies (CrimAnalyzer [1], Mirante [2], and CriPAV [3]) for
interactive visual crime analysis developed in close collabora-
tion with domain experts. Moreover, for each project, we have
presented different qualitative and quantitative experiments
with real data from large and mid-sized cities, which have
been validated by domain experts.

II. CRIMANALYZER

CrimAnalyzer is a new visual analytic tool customized
to support the analysis of criminal activities in urban areas
with specific characteristics, that is, high criminality rates
with great variability in the pattern of crimes, even in geo-
graphically close regions. CrimAnalyzer enables several linked
views tailored to reveal patterns of crimes and their evolution
over time, assisting domain experts in their decision-making
process; providing guidelines not only for repressive but,
above all, preventive actions, strengthening the planning and
implementation of institutional actions, especially from the
police.

In collaboration with a team of domain experts, we have
designed visual analytic functionalities that allow users to
select and analyze regions of interest in terms of their hotspots,
crime patterns, and temporal dynamics. The modules and
system architecture are illustrated in Fig. 1. Furthermore,
CrimAnalyzer implements a methodology based on Non-
Negative Matrix Factorization to identify hotspots based not
only on the number of crimes but also on the rate they occur.

A. Hotspot Identification Model

As discussed, hotspot identification is one of the most
important tasks for crime analysis. Here, hotspots have a more
general connotation than in previous works, corresponding
to sites where criminal activity is high but also to locations
where the number of crimes is not large but frequent enough
to deserve detailed analysis. For instance, in a given region,
sites whose number of crimes is much larger than in any

other sites are clearly important hotspots. However, the region
can also contain a particular site where crimes are frequent
but happening in a much smaller magnitude compared to the
prominent ones. The region can also contain sites where crimes
are not frequent at all but present spikes in particular time
frames. We consider the three different phenomena as hotspots,
seeking to identify: (i) sites where crimes are frequent and in
large number, (ii) sites where crimes are frequent but do not
in large number, and (iii) sites where crimes are not frequent,
but happen in large numbers in particular time frames.

To get around the difficulties pointed above, we opted
to an approach based on Non-Negative Matrix Factorization
(NMF), which worked pretty well for us in identifying hotspots
according to our needs. As far as we know, this is the first
work to employ NMF as a mechanism to detect hotspots in
the context of Crime Mapping.

B. Non-Negative Matrix Factorization

An m × n matrix X is said non-negative if all entries
in X are greater or equal to zero (X ≥ 0). The goal of
NMF is to decompose X as a product W · H , where W
and H are non-negative matrices with dimensions m × k
and k × n, respectively (the roles of m,n, and k will be
clear in Subsec. II-C). In mathematical terms, the problem
can be stated as follows, argminW,H ∥X−WH∥2 subject to,
W,H ≥ 0.

A solution for the minimization problem provides a set of
basis vector wi, corresponding to the columns of W , and a set
of coefficients hj , corresponding to the columns of H , such
that each column xj of X is written as the linear combination
xj =

∑
i hijwi, (or xj = Whj). In other words, for each line

in X we have a corresponding column in H whose entries are
coefficients associated to the columns (basis vectors) of W .

There are two important aspects in an NMF decomposi-
tion that will be largely exploited in the context of hotspot
detection, namely, low rank approximation and sparsity. Low
rank approximation accounts for the fact that the basis matrix
W usually has much lower rank than the original matrix X ,
meaning that (the columns of) X is represented using just a
few basis vectors. As detailed in the next subsection, we rely
on low rank approximation to define the number of hotspots,
that is, by setting the rank of W , we also set the number
of hotspots. Sparsity means the basis and coefficient matrices
contain many entries equal (or close) to zero, which naturally
enforces only relevant information from X to be kept in W
and H . This fact is important to identify particular sites within
a hotspot and the time slices where each hotspot shows up.

C. Identifying Hotspots with NMF

We rely on NMF to identify hotspots, their rate of occur-
rence and “intensity”. The matrix X to be decomposed as the
product W · H comprises crime information in a particular
region of interest. Specifically, each row in X corresponds to
a site of the region and each column to a time slice. In order to
facilitate discussion, we present the proposed approach using
a synthetic example. Fig. 2 shows a region made up of 25



(A) Region of Interest (B) Data matrix X

(C) Hotspots (columns of W )
and their occurrence (rows of
H)

(D) The same as c) but with
rank 5

FIG. 2: (A) Region of interest. (B) Data matrix containing
crime information from the regions in a). Rows correspond
to sites while columns are time slices. The darker the color,
the closer to zero the number of crimes is. (C) Rank 3 NMF
decomposition from X . (D) Rank 5 NMF from X .

sites and we generated synthetic crime data in 60 time slices,
representing months over five years. For sites denoted as A
and B, we draw 60 samples from a normal distribution with
mean 8 and variance 4, ensuring that A and B are correlated,
that is, when the number of crimes in A is large the same
happens with B (the number of crimes in B is generated by
perturbing the values of A using a uniform random distribution
with values between −3 and 3). This construction is simulating
two regions with high prevalence of crimes over time. Crimes
in the site denoted as C in Fig. 2 follows a normal distribution
with mean 1 and variance 4, corresponding to a location
where crimes are not large in number, but happening quite
frequently. Finally, for site D we draw 60 samples from a
normal distribution with mean 0 and variance 0.25, except for
time slices 35 and 47, where we set the number of crimes equal
to 15 and 10 respectively, simulating a site where crimes are no
frequent, but happen in large numbers in particular time slices.
For all the other sites we associated 60 samples drawn from
a normal distribution with mean 0 and variance 0.25. Values
for all sites are rounded to the closest integer and negative
values set to zero. Fig. 2b illustrates the matrix X built from
the synthetic data described above. Notice that the simulated
crime dynamics is clearly seen in X .

Given an m × n matrix X ≥ 0, an NMF decomposition
of X results in matrices W ≥ 0 and H ≥ 0. In practice, the
rank of W is significantly less than both m and n, i.e., k =
(W ) ≪ m,n. In our context, the columns of W correspond to
hotspots while entries in the rows of H indicate the “intensity”
of the hotspot in each time slice. Fig. 2c illustrates matrices
W and H obtained from matrix X in Fig. 2b using a NMF
decomposition with rank k = 3. Notice that the entries in the
first (left most) column of W have values close to zero almost
everywhere, except in the entries corresponding to the sites A
and B. Therefore, the hotspot derived from the first column

of W highlights sites A and B as the relevant ones. The high
prevalence of crimes in those regions can be seen from the
first (top) row of matrix H , which has most of its entries
with non-zero values. The second column of W is mostly
null, except in the entry corresponding to site D, where crimes
are not frequent but happen with high intensity in particular
time slices. Notice that the second row of H has two entries
different from zero, corresponding exactly to the time slices
35 and 47, when the site D faces a large number of crimes.
Finally, the last column of W gives rise to a hotspot that
highlights site C, where crimes are frequent but in smaller
magnitude when compared to A and B. The incidence and
intensity of crimes in C are clearly seen in the third (bottom)
row of H .

One can argue that the results presented in Fig. 2c worked
so well because we wisely set the rank of W equal k = 3
and that in practice, it is difficult to find a proper value for
the rank. To answer this question, we have presented many
experiments in the manuscript; for instance, Fig. 2d shows an
experiment with rank k = 5. With the experiments, we have
noticed that increasing k tends to split meaningful hotspots
while creating some noisy, not-so-important ones, which can
easily be identified from almost zero rows in H .

D. Experimental Results Summary

CrimAnalyzer provides visual resources supported by math-
ematical and computational machinery and validated by do-
main experts. To show its effectiveness and usefulness, we
have reported qualitative and quantitative comparisons as well
as case studies run by domain experts involving real data. We
have validated the outperforming of our new methodology to
identify crime hotspots over statistical methods by quantitative
comparisons in 300 regions over 30, 815 census blocks of São
Paulo (the largest city of South America). We also reported
three case studies revealing interesting phenomena in the
crime dynamic. Finally, we have presented experts’ evaluation
reporting about their experience and methodology feedback.

III. MIRANTE

An important aspect of crime mapping is the spatial distri-
bution. Most techniques rely on regular grids with crime data
aggregated on grid cells, each possibly covering hundreds of
square meters. However, crime events rarely concentrate on re-
gions larger than street segments or corners since those places
attract distracted and vulnerable people who carry money and
valuables. Therefore, relying on spatial discretizations such
as the regular grids renders fine-grained crime analysis a
quite challenging task since the definition of a proper grid
resolution and the identification of urban factors impacting
the crime opportunity is not so straightforward when crimes
are aggregated in a cell containing several street blocks. Even
when a small grid resolution is used, the alignment of the
grid cell, streets’ segments, and other urban structures are not
easy to do, hampering the detailed analysis of crime patterns
and their possible causes. In addition, the grid representation
also limits the analysis of the temporal behavior of crimes.



FIG. 3: (A, B) Two ways to build a crime-based street-network
by closest node based on: (A) Euclidean distance, and (B)
edge-node strategy. (C, D) Street-level heatmap construction
in two steps: Color assignation and linear interpolation.

For instance, suppose that a type of crime occurs consistently
on a street corner during a period and, after a while, moves
to a nearby corner. In a grid representation, such a temporal
behavior can hardly be caught if both corners lie on the same
grid cell.

Mirante is a scalable and versatile visualization tool de-
signed in close collaboration with domain experts that has
been tailored to explore crime data in a street-level of detail.
Considering street corners as nodes and street segments as
edges, Mirante assumes the city street network as the spatial
discretization. Crime data is spatially aggregated on street
corners using an edge-node strategy rather than Euclidean
distance, which avoids several issues presented in grid cell
aggregation. The result is a graph-based heatmap when a
region of interest is selected. Fig. 3 (C and D) show the
street level heatmap construction (aggregation and interpola-
tion). The heatmap is updated according to interactive users’
filters applied to the data. Mirante provides several interactive
resources to explore the spatial distribution of crimes and their
dynamics over time, making it possible to identify temporal
patterns such as the shift of crime hotspots among nearby
locations. Interactive filters allow users to focus their analysis
on particular hours of the day, days of the week, and months
of the year, making it easy to scrutinize crimes seasonality.
Using different selection mechanisms, users can interactively
select regions of interest on various scales, enabling the Spatio-
temporal analysis of large regions and specific city locations,
a trait not available in most crime analysis tools. Simplicity
and ease of use are other characteristics that render Mirante
an interesting alternative in crime mapping.

A. Building the spatial representation

To build the graph corresponding to the spatial discretiza-
tion, we use the OpenStreetMap API, which allows for gen-

erating a street-graph containing roads and intersections for
entire cities. It is possible to define the type of map to use,
e.g., pedestrian, bike, and car drive roads. We opt to use the
pedestrian map, as it comprises drive roads and pedestrian
walkways.

The number of nodes and edges derived from the map varies
considerably depending on the city. However, a large number
of vertices do not correspond to street intersections. To remove
non-intersection vertices and all the points along a single street
segment, we run a procedure that topologically simplifies the
graph.

B. Assigning data to the nodes of the spatial graph represen-
tation

Let Lcrime = {c0, c1, ..., cn} be a list of n crime records,
where each ci contains information such as record id (unique
identifier), location (latitude, longitude), crime type, date,
number of people involved, among other information. Let
G = (V,E) be the graph corresponding to the city’s spatial
representation. Each vertex has a unique geo-referenced coor-
dinate (identifier, latitude, longitude), and each edge represents
a segment joining two intersections.

In our context, each crime record ci must be assigned to a
vertex of the graph G. The easiest solution would be to assign
each ci to its nearest vertex using the Euclidean distance.
However, using Euclidean distance is not appropriate because
it does not consider the topology of the spatial representation.
We illustrated this issue in Fig. 3 (A, B). Notice that using
Euclidean distance the crime records “a” and “b” are properly
assigned vertices, however, records “c” and “d” are not, since
it is clear that the corresponding crimes took place on the street
segments closer to them, so they should be assigned to one of
the vertices defining the segments. Fig. 3 (B) shows the correct
procedure, which we call edge-node strategy, where first, the
nearest edge (enear) is found and then the closest vertex.

The crime-vertex assignment starts by traversing the list of
crime records Lcrime to compute their nearest edge enear in
the graph G. Different strategies can be used to efficiently
perform this step, e.g., using a spatial data structure as Quad-
tree or Ball-tree. In our case, we use an R-tree implemented
in the OSMnx library (enear = G.get nearest edge(ci)).
Once the nearest edge enear and end-nodes ((v1, v2) =
G.get vertices(enear)) is found for each record, it is assigned
to the closest edge node. For that, we compute the distance
to both nodes (d{1,2} = greatCircleDistance(ci, v{1,2})) and
crime record in ci are stored into the list crimes associated
to each node, that is, v1.crimes.append(ci) if d1 < d2 or
v2.crimes.append(ci) otherwise. List per-vertex is used to
temporally aggregate crime records (hourly aggregation in our
case), giving rise to a time series associated to each vertex.

C. Experimental Result Summary

We have employed real data set of two different-sized cities
to show the effectiveness of Mirante in identifying crime
patterns, making it easier to establish relations between crimes
and other factors, such as urban infrastructure. Moreover, the



FIG. 4: The proposed street-level crime visualization methodology, CriPAV, comprises three main steps. Hotspot Identification:
identifying hotspots based on crime intensity and crime probability. Finding Similar Hotspots: hotspot time series embedding
(Hotspot2Vec), clustering, and projection into a visual space. Cripav system: finding the relation between urban infrastructure
and crimes.

case studies were addressed in colaboración of domain experts
who gave us positive feedback; more details can be found in
https://youtu.be/SeFNScNMgQY.

IV. CRIPAV

The problem of hotspot detection methods described in
Sec. II derives from the fact that there is no consensus
about the definition of a hotspot, as such definition strongly
depends, among other factors, on the spatial discretizations
that support hotspot computation. The most common spatial
discretization is a regular grid with cell granularity varying
according to the scale of the analysis, which can range from
dozen of meters to large areas covering entire neighborhoods.
However, crimes are mostly concentrated in ‘micro’ places
that are relatively stable over time. Therefore, fine-grained
crime analysis demands a level of discretization that should
reach the scale of streets, which is difficult to be obtained
with regular grids, as the density and arrangement of streets
may vary considerably across the city.

Another important aspect related to hotspot analysis is
related to the reasons that lead to the appearance of a hotspot
in a given location. Crime events are related to each location’s
features; consequently, changes in the characteristics of par-
ticular locations impact crime activity over time, making the
temporal analysis of hotspots a fundamental task.

In collaboration with domain experts and supported by
mathematical and machine learning tools, we have designed a
visual analytic methodology to scrutinize crime activities in a
street-level of detail. Specifically, we use the same modeling
of Mirante, which avoids the issue of finding a proper level of
refinement to accomplish the analysis. The proposed method-
ology relies on mathematical theories to identify hotspot based
not only on the intensity of crimes but also on the probability.
Moreover, we rely on a deep learning model to embed crime
time series in a high-dimensional space so as to make possible
the identification of hotspot groups with similar temporal
behavior, a task difficult to be performed with conventional
hotspot analysis tools. The proposed methodology, illustrated

in Fig. 4, has been assembled in a visualization system called
CriPAV, which, besides enabling a more general characteriza-
tion of hotspots, provides visual resources to identify hotspot
locations with similar temporal behavior. The identification
of hotspot locations with similar temporal crime behavior
helps the understanding of how changes in urban infrastructure
impact criminal activity over time.

A. Hotspots Detection

As illustrated on the left of Fig. 4 (Hotspot Detection),
hotspot identification is a primary component of CriPAV.
Hotspots are visually defined from a ‘Probability × Intensity’
scatter plot, where each dot corresponds to an anchor point.
The intensity axis of each anchor point is the temporally
aggregated number of crime events in the anchor point divided
by the maximum number of crime events among all anchor
points. The computation of how likely crimes are in each
anchor point is more intricate, and it will be detailed below.

Probability of Crimes The probability of crimes take place
in each particular anchor point is derived from the stationary
state of a stochastic matrix built from the temporal crime data.

In our context, the probability of crimes in each anchor point
is given by the stationary vector of a stochastic matrix built
from the crime time series in each anchor point. The construc-
tion of such stationary matrix is detailed in the following.

Computing the Stochastic Matrix
Given a street network with a set of n anchor points

V = {τ1, τ2, . . . , τn} associated to m time units T =
{t1, t2, . . . , tm} describing crime events aggregated into m
time instants. We can define a function f : V × T → R that
associates the number of crime events f(τi, tj) in the anchor
point τi in the time slice tj . We denote by D the n × m
matrix where each entry Dij corresponds to f(τi, tj). From
f(τi, tj) we define an occurrence matrix D̂ where D̂ij = 1

if f(τi, tj) > 0 and D̂ij = 0 if f(τi, tj) = 0. D̂ is a binary
matrix where each entry D̂ij indicates whether crimes took
place in the anchor point τi in the time slice tj .

https://youtu.be/SeFNScNMgQY


From D̂ we define the n×n co-occurrence matrix P̂ : P̂ =
D̂ · D̂T . Each entry P̂ij of P̂ corresponds to the number of
times that the anchor points τi and τj faced crime events in
the same time slice, that is, the number of times that crimes
took place simultaneously in τi and τj . A large value of P̂ij

indicates that τi and τj present similar crime activity over time.
Dividing each row of P̂ by the sum of its values, we end up
with a stochastic matrix P , that is, Pij = P̂ij/

∑n
k=1 P̂ik. The

entry Pij corresponds to the probability Pr(τi, τj) of a crimes
take place simultaneously in τi and τj .

The reasoning behind the construction of the stochastic
matrix P is that certain crime types are seasonal, occurring
concurrently in different city locations depending on the day of
the week, the fortnight of the month, and the month of the year.
Matrix P , as defined above, captures such a seasonality, being
able to point as likely an anchor point where crime activity is
not intense, but occur concurrently with other anchor points.

Given the stochastic matrix P the probability of crime
occurrence in each anchor point is given by the stationary
vector π of P , that is, the probability of a crime event occur
in τi is the value in the i-th entry in π.

Selecting Hotspots The probability and intensity values
summarizing crime activities in each anchor point enable the
use of a Probability vs. Intensity scatter plot to visually identify
anchor points based on their intensity, probability, or both.

In order to filter out relevant anchor points (i.e., high
probability and/or high intensity), we use a function g =
[0, 1] × [0, 1] → [0, 1] that assigns a value to each anchor
point, as for example g(probability, intensity) = ((1− α) ∗
probability+α∗intensity). The value of α is the weight one
wants to give to intensity and probability when filtering the
hotspots. The scatter plot in Fig. 4-Hotspot Detection shows
the selection with α = 0.5.

We have implemented the linear hotspot selection mecha-
nism as an alternative to the interactive brush-based interactive
tool. Domains experts deemed the linear approach easier to use
than a brush-based one.

B. Finding Similar Hotspots

Another essential task that our methodology must accom-
plish is identifying hotspots with similar temporal behavior
(see Fig. 4-Finding Similar Hotspots). Finding the temporally
similar hotspot means searching for a similar time series,
which is a difficult problem. Methods such as Discrete-Time
Wrapping can be used to this end but with the price a high
computational cost and instability to noise. Instead, we opt for
a deep learning embedding technique we called Hotspot2Vec.

Hotspot2Vec. We use an autoencoder to map each time-
series TS = {ts1, ts2, . . . , tsm} to a feature space. The
autoencoder model is trained with a set of time-series T̂ S =
{t̂s1, t̂s2, . . . , t̂sm}, where t̂si = 1 if tsi > 0 and t̂si = 0
otherwise, for all i ∈ {1, . . . ,m}. The idea is to train the deep
learning model to capture the temporal behavior of crimes,
without taking into account the intensity of crimes. Therefore,
anchor points with crimes happening at the same time interval

will be considered similar, no matter the intensity of crimes
in each location.

Autoencoder is a well-known neural network model in
which the input and output are the same. The middle layer
of the network has a bottleneck that creates a compressed
representation, aiming to reduce the data’s dimensionality.
Grouping Similar Hotspots. The encoder’s output is used as
feature vectors, and a clustering algorithm is applied to group
hotspots based on their proximity in the feature space. We
choose a hierarchical variant of BDSCAN called HDBDSCAN
because it can automatically find the number of clusters (as
DBSCAN) without tuning several parameters, relieving users
of this task, which is essential for domain experts with little
training in machine learning.
Projection. Empirical tests showed that reducing the dimen-
sionality of time series preserve good properties in terms of
capturing their similarity. To visualize the resulting embed-
ding, we relied on a modified version of the LAMP projection
technique, which maps the embedded time series to a 2D
visual space. LAMP is a computationally efficient projection
method that can be tuned to preserve labeled clusters during
the mapping. Fig. 4 (Finding Similar Hotspots) shows an ex-
ample of the HDBSCAN clusterization and LAMP projection.

C. Experimental Result Summary

We have validated the proposed approach from different
fronts. We have validated the hotspot detection and Finding
similar hotspots (Hotspot2Vec) techniques in a region with
more than 14, 000 street intersections. Moreover, in addition
to some qualitative comparisons, we have presented three case
studies considering São Paulo city, with about 1, 650, 000
crime incidents. Each case study addresses different analytical
tasks. Finally, we have presented a user study considering ex-
perts with a large experience in crime analysis; the quantitative
metrics and comments highlighted CriPAV as a helpful, useful,
friendly, and innovative tool.
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https://www.saocarlosagora.com.br/cidade/artigo-de-pesquisadores-do-icmc-sao-carlos-e-premiado/131481/
https://jornal.usp.br/podcast/momento-tecnologia-53-projeto-ia-criminalidade-determina-a-periculosidade-de-regioes-usando-inteligencia-artificial/
https://agencia.fapesp.br/sistema-usa-inteligencia-artificial-para-prever-ocorrencias-de-crimes-em-areas-urbanas/33768/
https://impa.br/noticias/luiz-gustavo-nonato-a-ciencia-de-dados-no-combate-a-violencia/
https://g1.globo.com/sp/sao-carlos-regiao/noticia/2020/07/22/projeto-da-usp-pretende-identificar-padroes-e-dinamica-do-crime-em-sao-carlos.ghtml
https://www.saopaulo.sp.gov.br/ultimas-noticias/sistema-usa-inteligencia-artificial-para-prever-ocorrencia-de-crimes-em-cidades/
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