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A Generative Adversarial Network approach for
automatic inspection in automotive assembly lines

Joceleide D. C. Mumbelli , Giovanni A. Guarneri , Yuri K. Lopes , Dalcimar Casanova ,
Marcelo Teixeira

Abstract—In manufacturing systems, quality of inspection is
a critical issue. This can be conducted by humans, or by
employing Computer Vision Systems (CVS) which are trained
upon representative datasets of images to detect classes of defects
that may occur. The construction of such datasets strongly
limits the use of CVS methods, as the variety of defects
has combinatorial nature. Alternatively, instead of recognizing
defects, a system can be trained to detect non-defective standards,
becoming appropriate for some application profiles. In flexible
automotive manufacturing, for example, parts are assembled
within a reduced set of correct combinations, while the amount
of possible incorrect assembling is enormous. In this paper,
we show how a CVS can be extended with a Deep Learning-
based approach that exploits a Generative Adversarial Network
(GAN) to detect non-defective production, eliminating the need
for constructing defect image datasets. The proposal is tested
over the assembly line of Renault, in Brazil. Results show that
our method returns better accuracy in inspection, compared with
the current CVS solution, besides generalizing better to different
components inspection without having to modify the method.

Note to Practitioners—In manufacturing, the variety of pos-
sible defects limits the training of computational algorithms to
automatically detect them. In this paper we show how industry
practitioners can conduct training only upon non-defective im-
ages, thus treating any other case as a defect and dispensing the
construction of specific image datasets to represent defects. The
approach is tested over a real automotive assembly line and the
results are shown to be sound from an applied point of view.

Index Terms—Automatic inspection; Deep learning; Genera-
tive Adversarial Networks; Automotive manufacturing.

I. INTRODUCTION

As Manufacturing Systems (MSs) [1], [2], [3] progress
towards digitalization, they require more flexibility to process
multiple types of products over the same plant. An example
emerges from the automotive domain, where different models
of vehicles are manufactured, each one using its own set of
components. Environments like this create new challenges and
requirements for classic control and automation practices, such
as the need for visual inspections to be integrated at many steps
of manufacturing and over many types of assembly sets [4].
Inspections aim to guarantee that manufactured products are
zero-defect and meet certain security and quality requirements.

In practice, several types of defects can be inspected, e.g.,
component placement, position, soldering and type consis-
tency. The inspection task is in general conducted by a human
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agent, so those faulty components are sent back to rework,
while the others progress through the process. As this is error-
prone and unproductive, there are many attempts to replace
human inspection with automatic decisions taken by CVSs [5].
A CVS includes a capture camera and embedded computing
that allow inferring visual details into an image.

Unfortunately, the accuracy of a CVS still fails to match
visual inspections for most applications, despite the efforts in
the literature [6]. The main barrier is that the result of a CVS
inspection varies according to the problem nature, suffering
from environmental influences, such as noise, lighting, and
angle of image capturing [7]. In the classic view of CVS-
based inspections, each type of defect requires a specialized
computational method to be detected, implying substantial
efforts in research, engineering, and implementation.

Novelties in Deep Learning (DL) have improved CVS and
made them more applicable and accurate for industry [8], [9],
[10], with promising impacts, e.g., on the automotive domain
[11], [12], [13]. However, classical DL approaches (i.e., based
on supervised training) still rely on the dataset quality and
its representativeness. They are usually trained over datasets
that include a significant number of images, representing each
type/class of defect that may occur in manufacturing. When the
diversity of defects is wide and combinatorial, the construction
of such a dataset imposes a strong limitation for the use of
most DL CVS in a supervised way, making them weakly
generalizable to industry.

Alternatively, instead of training the DL method in a su-
pervised way, with a reasonable set of image samples for
each possible defect, a system could be trained to detect
only non-defective standards, so that any situation otherwise is
considered a defect. This becomes appropriate for applications
where the number of defects is (much) greater than the non-
defective cases. In flexible automotive manufacturing, for
example, parts are presumably assembled within a reduced
set of correct combinations, while the number of possible
incorrect assembling is enormous. Thus, training a CVS to
recognize a variety of incorrect cases may be an exhaustive,
sometimes unfeasible, task that delays the production flow and
allows errors to survive post-production.

Computationally, this scenario can be seen as an anomaly
detection task, and the Generative Adversarial Networks
(GANs) are nowadays the most promising unsupervised learn-
ing method to address it [14]. GANs dispense the construction
of image datasets to represent defects, as their training requires
only correct images, which are in general easier to find on
factory floors. Therefore, GANs are expected to generalize
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better for the automatic inspection of several types of defects,
evidencing practical appeal for different areas, such as agricul-
ture [15], optimization problems [16], general manufacturing
[17], [18], machining [19], and surface inspection [20]. Yet,
applications for visual inspection in the automotive domain
are still incipient.

This paper extends a production line verification CVS cur-
rently used by Renault, in Brazil. This system faces limitations
related to the number of points that need to be verified,
the speed required for image processing, and the verification
angle. Those difficulties, in conjunction with the classical
CVS embedded in the capturing system, reduce the quality of
inspection, affecting the advantages of the CVS. The approach
proposed here is a DL-based inspection system that exploits
a GAN to improve the automatic inspection tests along the
flexible assembly line of Renault. By dismissing defective
image examples in the training phase, our approach recognizes
more defective types with a single model, evidencing better
performance in comparison with the current CVS system.
Tests suggest an increase of 2,13% in the mean accuracy for
detecting defects that, comparably, are also detected by the
current CVS, and identification of countless other defects that
currently have not been detected.

Structurally, the manuscript is organized as follows: a liter-
ature review is presented in Section II; Section III discusses
the related concepts; Section IV introduces the main results;
while conclusions and perspectives are discussed in Section V.

II. RELATED WORK

In industry, human inspections have been gradually replaced
by robots that use embedded CVSs to perceive the envi-
ronment, collect and process information, and take decisions
accordingly. A sketch of this relation is shown in Fig. 1.

A CVS takes pictures of a certain region of interest in
objects that include points to be verified. Images may be pro-
cessed with or without automatic learning. Feature extraction
via contour detection [21], for example, checks the edges of
an image to determine the classes within which it belongs. Its
main gap is to depend on human effort to complete each test.

Recent advances in Machine Learning (ML) and DL have
shown the potential to eliminate human dependency, to some
extent. This has been demonstrated by industrial inspections
such as in aircraft fuselage [22], cement cracks [23], con-
formances in automotive assembling [13], and metallurgical
checks [24], [25]. Inspections like these are simple to be done
when defects have minor diversity, i.e., when they belong to a
limited set of types, facilitating them to be mapped by images
and learned after training by employing supervised learning.
In some applications, e.g., automotive manufacturing, defects
have high diversity, challenging the construction of a dataset
that reasonably reflects this.

One option is to complement the dataset with images
generated artificially to represent a defect. DL itself can be
used to generate images that improve the defects diversity. Re-
current Neural Networks (RNNs) [26], Restricted Boltzmann
Machines (RBMs) [27], [28], and Variational Autoencoders
(VAEs) [29], are examples of such techniques. They work well

for low resolution images, but may be unsuitable when defects
are sensitive and require more precise images.

In this case, an alternative is to assume that, instead of
recording every possible manufacturing defect, one can record
and learn/model only over correct cases, so that any other
possible variation is a defect. Computationally this defect is
called an anomaly/outlier on the dataset. More specifically,
when training data is not polluted by outliers, and we are
interested in detecting whether a new observation is an outlier,
we refer to this task as novelty detection. Novelty detection is
a semi-supervised task, as it is known that the training step in-
cludes only normal (i.e. non-defective) samples. A DL method
that implements this idea of novelty detection as a semi-
supervised task is the GANs. This method simultaneously
trains a generator, to produce fake images, and a discriminator,
to distinguish between real and fake images. Images generated
by GANs have in general good quality and are qualified to
enrich image datasets for classification tasks subject to a high
diversity of defects.

Variations of GANs include: Deep Convolutional Gener-
ative Adversarial Networks (DCGANs), which uses convo-
lution to ensure stability and convergence during training
[30]; Wasserstein Generative Adversarial Networks (WGANs)
[31], which uses the Wasserstein distance to effectively solve
the problem of gradient disappearance during training; Cycle
Generative Adversarial Networks (CycleGANs) [32], which
allows images from two domains to be generated without
paired images; among other variations [14].

In industry, GANs have been tested in steel defect classifi-
cation [33], palm print recognition [34], people identification
[35], vehicle license plate recognition [36], medical image
synthesis [37], [38], texturing industry [39], etc. However,
applications in the automotive domain are still emerging and
are limited to detecting longitudinal errors of sensors in
autonomous vehicles [40], or to generate sensor errors as an
attempt to test safety in advanced driver assistance systems
[41]. No results on GANs detection over assembly lines
have been found so far. Thus, this paper exploits GANs for:
(i) increasing image datasets that map critical manufacturing
defects in vehicles production; and (ii) learning how to dif-
ferentiate defective and non-defective images without having
images for all possible defects that may occur.

III. BACKGROUND

Parallel and multidisciplinary advances in engineering have
allowed the industry to produce flexibly, on-demand, quickly,
and under reduced costs [42]. Adapting the factory floor to
these requirements is non-trivial and presupposes the inte-
gration of multiple and complex technologies. Among them,
there are cognitive approaches, which aim to enrich automatic
production systems with abilities hitherto only perceived by
humans, such as context recognition, touch, hearing, and
vision [43], [44], where the latter is of interest here.

An application domain that benefits from visual inspections
is the automotive manufacturing, where the quality of the
manufactured product is associated with aesthetics, safety, and
human life risks [45], besides being linked with the high added
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Figure 1. Overview on the detection of manufacturing defects based on human-centered and automatic approaches. In bold, we identify the path pursued in
this research, while the dashed lines highlight options in the literature that are not exploited here.

value of the product. Thus, any anomaly in manufacturing
implies restarting a long, complex, and expensive chain of
rework, sometimes after the product is already in use.

Ensuring the quality of a vehicle depends directly on the
quality of the parts, their compatibility of type, and how
they are assembled. Defects can emerge physically (e.g., the
morphology of a part), or logically (e.g., the use of a non-
defective part in the wrong vehicle). Detecting and preventing
possible defects is decisive [46], and this can be done auto-
matically or not. Usually, the diverse mix of features makes
visual inspection difficult to be fully automated, and it remains
human-centered. As such, it is monotonous, not rarely harmful
the human health [47], besides being imprecise.

A way to reduce human dependence is by adopting CVSs
[48]. A CVS includes the orderly steps of acquisition, pre-
processing, feature extraction, segmentation, and classification,
with the purpose of reproducing human reasoning, to some
extent. The first two steps extract and process images obtained
from the environment, making them suitable for identifying
features, after mathematical treatment, and isolating segments
containing such features. Then, classifier algorithms identify
patterns in those segments, usually by evaluating similarities
between regions of interest and predefined templates, compar-
ing the values of pixels within an acceptance threshold.

In general, commercial CVSs do not generalize well for
real problems in manufacturing. Although image acquisition
systems include modern equipment, they require manual setup
of templates for classification, both for pre-processing methods
and for lighting and distance adjustments. These are strong
limitations for a CVS, as experts are needed anyway, and
their profile may vary from one application to another. Also
the manual definition of thresholds for classification requires
experienced knowledge [49], [50], [51].

The use of DL-based techniques has shown potential to
reduce these limitations and automate some of the expert-
dependent tasks [52], [53]. Yet, this alternative still faces a
crucial problem: the number of possibilities in which a defect
can be created and interpreted. When a manufacturing system
requires this type of multiple-objects flexibly-assembled in-
spection, the use of CVSs becomes practically unfeasible due

to their weak generalization capabilities to recognize multiple
and unexpected defects [54], [55].

The proposal in this article emerges from this reasoning
and hypothesizes that those limitations can be overcome, to
some extent, by applying modern learning systems based on
Generative Adversarial Networks (GANs) [39].

A. Generative Adversarial Networks

A Generative Adversarial Network (GAN) is part of a
deep neural network architecture that consists in training two
models (players) to take decision by competing against each
other. One player, called generator (G), is a neural network
that generates new (fake) data instances, while the other, called
discriminator (D), evaluates their authenticity. By analogy, G
acts like an intruder who tries to create and spread false leads
to make its identification harder, while D is a detective who
tries to filter the leads that make sense.

In order to make the false leads, G applies random noises
to generate new data as real as possible to those in a training
dataset. This aims to fool D, which then has to decide whether
or not each data instance belongs to the training dataset, or it
has been created by G. The Fig. 2 illustrates a GAN scheme.

Figure 2. General overview of a GAN architecture.
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The game challenge can then be summarized as follows:
given a dataset with training data samples, a generator of fake
samples G, and a discriminator of instances D, consider that
D is trained to maximize the chances of assigning a correct
label for samples coming indistinctly from the dataset or G;
inversely, G is trained to minimize the hits of D.

Remark that the rules for G and D to compete can be
intuitively seen as a two-player minimax game, inherited
from the Games Theory [56]. It assumes that there is always
a rational solution to a well-defined conflict between two
individuals whose interests are opposite. By following this
reasoning, G and D can be seen as two opposite players that
take optimized decisions though a value function V (G,D)
[57], as follows:

min
G

max
D

V(D,G) = Ex∼pd(x)[log(D(x))]

+ Ez∼pz (z)[log(1-D(G(z))]

where: x is the real data sample, with distribution pd(x), that
approximates the expected value Ex; and pz(z) is a latent
variable associated with an input noise vector with random
uniform distribution z ∼ U(−1, 1), that approximates the
expected value Ez . Then, G(z) generates data from the input
noise pz(z), while D(x) ∈ [0, 1] discerns how likely its input
is to be true, or inversely fake.

The GAN training converges when Nash-equilibrium is
reached in the minimax (zero-sum) game [58], i.e., when the
actions of one player do not change depending on the actions
of the opponent. Here, this means that the GAN generator
G(z) produces realistic images and the discriminator D(x)
outputs random predictions (probabilities close to 0.5) [59].

However, GANs are typically trained using gradient descent
techniques that are designed to find a minimum for a cost
function, instead of finding the Nash-Equilibrium, as it may
lead the search not to converge [60]. In other words, achieving
Nash-equilibrium often proves difficult due to training insta-
bility [61], and approaches such as Wasserstein GANs arise.

1) WGAN: The Wasserstein GANs (WGANs) are alter-
natives for training conventional GANs that tend to improve
the learning stability. This also prevents problems like the
mode collapse, and provides meaningful learning curves that
are useful for debugging and hyperparameter searches [31].

Here, D(h) ∈ R is an auxiliary scalar function, which is
used to calculate the Wasserstein distance that replaces D(x),
in the minimax game, so that:

min
G

max
D

V(D,G) = Eh∼pd(h)[(D(h))]

− Ez∼pz(z)[D(G(z))]·

In this way, the D function moves from a classifier to a
critic, producing an authenticity score. This tends to assign
high scores to real samples, and low scores to simulated
samples. More details on WGANs can be found in [62], [63].

In addition to the WGANs, other variations of GANs have
emerged to optimize the original theory, such as the BiGANs
and the CBiGANs, explained in the following.

2) BiGAN: These are GANs improved to optimize the
latent space, exposing this space to the discriminator along
with the images generated from it [64]. A codifier module,
denoted E(h), is introduced and trained in conjunction with
G, in a way to map the real samples to their respective
latent spaces. The discriminator D(h, z) ∈ [0, 1] is trained
to discern whether the couple (h, z) comes from a real or
generated image. The minimax problem for BiGANs can then
be introduced as follows:

min
G,E

max
D

V(D,E,G) = Eh∼pd(h)[logD((h), E(h))]

+ Ez∼pz(z)[log(1-D(G(z)), z)))]·

Thus, fooling D causes G and E to minimize the difference
between the ordered pairs (G(z), z) and (h, E(h)).

3) CBiGAN: The Consistency BiGAN (CBiGAN) [39]
aims to combine features from WGAN and BiGAN. This
approach improves the modeling of the latent space by ex-
posing it to the discriminator (BiGAN) and also produces
authenticity scores (not classification) from WGAN. In this
way the CBiGAN tackles anomaly detection as a one-class
classification problem, assuming for the training only non-
anomalous samples. Given a test sample, the CBiGAN labels
it as normal/nonanomalous/defect-free (considering a negative
class) or anomalous (otherwise).

CBiGAN can be seen as a GAN that captures the dis-
tribution of latent space Z = Rn. The generative model is
a BiGAN and the loss function is modeled as Wasserstein
distance. Then, the new minimax problem can be stated as:

min
G,E

max
D

V(G,E,D) = Eh∼pd(h)[D(h, E(h)]

- Ez∼pz(z)[D(G(z), z))],

where:
• G : Z → h is the generator that produces false images

of latent variable associated with an input noise vector.
• E : h → Z is an encoder that map real samples to the

corresponding latent space and trained together with G.
• D : h × Z → R is the discriminator/critic that produces

authenticity scores to each samples using Wasserstein
distance.

This model is of particular interest in this work, since our
training is performed only on non-anomalous/defect-free sam-
ples. They are easily acquired in the industrial environment,
while samples with defects are more rare and variable.

IV. PROPOSED APPLICATION

This section introduces our approach to detecting defects
that remain after checking in the experimental CVS at the Re-
nault manufacturing. A condensed version of the real process
is shown in Fig. 3. This environment is called image island.
It was created by Renault to carry out the final inspection of
the underside of vehicles, just before they are attached to their
painted bodywork. It consists of a CVS that includes robotic
arms, two high resolution cameras, and a computing system.
Assume that the production line aims to deliver 60 cars per
hour, and the cycle time is 54 seconds. Therefore, at each
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point on the line, employees or equipment have 54 seconds to
complete their work, while the remaining 6 seconds are spent
for a vehicle to pass from one checkpoint to another.

Figure 3. Representation of an image island at Renault, with a car positioned
under the two cameras that capture images from points of interest.

Each car that passes though the island is seen as two parts,
A and B, that are positioned in front of two cameras, 1 and
2. They both collect images of certain regions of interest, first
from A and then from B. Remark that cars belong to different
models, so that the image processing consists in automatic
inspection of many components of several car models.

For the automated checking, assume that A and B are
conceptually split in 4 sections. Each section has a number of
points to be verified, which varies from one section to another.
In total, at most 11 points are checked through the 4 sections,
which may vary according to the model. The line does not stop
during the verification, so that a sensor detects the presence of
a new vehicle and starts the verification process automatically.

When a car enters the inspection cell, a PLC controller
receives an “ok” signal and informs the robot controller of the
coordinates of the point to be checked. When the arm reaches
that correct position, its controller reports this to the PLC,
which finally authorizes the camera controller to collect an
image of the item to be verified. The lighting ring switches on
and off for each image capturing to achieve the best possible
shooting condition. After the image is captured, the native
verification algorithm is triggered for that particular point and
returns a Boolean value associated with the anomalous/defect
or non-anomalous/defect-free assembled component. The test
result is informed to the main PLC, which interfaces it through
a human–computer interface. The same procedure repeats for
the other verification points.

The main problem with the current system is that it uses
classic CVS methods that are limited in training due to the
lack of images representing defects. As a result, it returns a
substantial rate of false negatives (FN) (i.e., defect-free images
detected as defective), and some false positives (FP) (i.e.,
images for which it has not been possible to be sure about
correctness, but the equipment detected as correct).

Implications of mistaken inspections can be severe. All cars
detected as defective need to leave the line and go through a

thorough manual inspection. Cars detected as defective that are
really defective, would have to be reworked anyway, so they
are an inevitable problem; cars that are not really defective but
have been classified as such (i.e. FN ones – these are more rare
events in this case study, but still) are also a problem because
they are removed from the line unnecessarily, consuming time
and resources. However, the main problem comes from FP
classification, i.e., with defective cars that are detected as
normal by the CVS. This type of verification error is quite
unacceptable in practice, as it takes effort and time, as well
as increases production costs, besides jeopardizing the final
integrity of the product and human lives. The next section
quantifies the error rate of the existing CVS.

A. Problem quantification

The production line was observed for a time window during
which 10 cars were inspected. Among these cars, 7 were of
the same model and included 11 verification points in their
underbase. The current automatic inspection system resulted
in 77 verified points, from which 62 were evaluated as non-
defective, and 15 as defective.

After manual inspection, it was confirmed that the 15
points initially classified as defective were actually correctly
assembled, i.e., FN points. This outcome corresponds to an
error rate of 19.5%, which is impractical and makes the
equipment unfeasible to be used, as implied in 15 completely
unnecessary rechecks.

Tables I and II show respectively the confusion matrix and
the accuracy for the checked points. Defect-free inspections
are represented as positive classifications (P), while a defect
is expressed as negative (N), which are further associated with
a Boolean value to form the following assertions:

• TP = Positive evaluated as positive (true defect-free).
• TN = Negative evaluated as negative (true defect).
• FP = Negative evaluated as positive (false defect-free).
• FN = Positive evaluated as negative (false defect).

Component TP TN FN FP
C20 102 0 1 1
C60 105 0 1 0

C100 270 0 0 0
C147 256 1 5 3
C231 96 0 28 0
C259 238 0 34 2
C267 232 10 32 0
C287 101 5 8 17
C329 40 0 0 1
C369 247 0 0 0
C492 254 4 14 0

Table I
CONFUSION MATRIX OF THE CURRENT CVS MODEL. IT CONSIDERS EACH

COMPONENT OF A GIVEN CAR MODEL THAT WAS CHECKED OVER A
CERTAIN TIME WINDOW.

Table I reveals a large amount of classification errors (FN
and FP), reaching 34 FN cases for component number C259,
and 17 FP cases for component C287. These were the most
extreme cases of errors observed on the dataset.

For testing, we selected the sets of components that included
a reliable amount of TN images, which were the components
C147 and C287. Component C369 was also selected for
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testing, as it refers to a part similar to others available outside
the factory environment, which facilitates us to better compare
our results. Table II shows the accuracy of the tested items.

Component Accuracy
C147 96.88
C287 76.41
C369 100.00

Table II
ACCURACY OF THE CURRENT CVS WHEN CHECKING THE COMPONENTS

OF A GIVEN CAR MODEL OVER A CERTAIN TIME WINDOW.

Components C147 and C287 have low accuracy when it
comes to industrial standards. Although C369 has acceptable
accuracy, it is a component that has not been exposed to any
possibility of failure, and the result is unclear when exposed
to defects. Therefore, the practical use of the equipment is
compromised by the lack of classification confidence.

B. Image dataset and experimental setup

Our experiments exploit two distinct setups: one including
images collected directly from the assembly line; and another,
called controlled setup, constructed with images of real work-
pieces, that were collected outside the factory floor. For this
second setup, workpieces have been physically modified to
simulate a number of possible anomalies to be detected by
the proposed inspection system. The two setups are described
as follows.

1) DATASET 1 - real images: The first dataset (DS1)
is composed of images collected from the real production
environment. With the factory in full production, the images
were captured from the island by cameras attached to robotic
arms. This dataset includes 3 distinct partitions, each one
referring to a distinct type of component, each type is further
divided into train and test data, as follows:

• Component C147: Steering Case Pin Rubber.
• Component C287: Gearbox Sensor.
• Component C369: Exhaust Pipe Screw.
Samples of each type of component are shown in Figures 4a,

4b, and 4c. The configuration of training and testing datasets
is presented in Table III. All images in the training set are TP
images, i.e., without defects, while the testing dataset includes
indistinctly TP and TN images.

Partition Profile C147 C287 C369
Train dataset Defect-free Real 165 48 176

Defect-free Real 35 20 25
Test dataset Defect Manual 65 63 46

Total 100 83 71
Total dataset 265 131 247

Table III
DS1 PARTITION SETTINGS FOR TRAINING AND TESTING.

As the capturing camera is positioned considerably distant
from the components (about 40 cm) the resulting images
include fragments that do not belong to the zone under analysis
(e.g., background and borders). Thus, a preliminary region
of interest (ROI) was defined to allow focusing on particular
objects under consideration. The result of this preprocessing
phase can be seen in Figures 4d, 4e, and 4f.

Figure 4. Original images (a), (b), and (c), for the components C147, C287,
and C369, captured directly from the assembly line, and respective ROIs
version (d), (e), and (f).

For the training dataset, a data augmentation (DA) [55]
technique was applied to increase the number of training
images. We applied variations in rotation, width and height
shifts, zoom scale, and filling modes. The final number of
images of each component after DA can be seen in Table IV.

Partition Profile C147 C287 C369
Train Defect-free Real 165 48 176

Defect-free DA 1650 1344 1760
Total dataset 1815 1392 1936

Table IV
TRAINING DS1 AFTER DA.

Remark that training our method requires only non-defective
images to be available, which is a huge advantage in compari-
son with other approaches in the literature. In fact, TP images
are usually more frequent and easier to obtain, in contrast with
DL-based approaches that require collecting a reasonably large
set of TN images, including all possible types of defects.

After the training phase, it is necessary to evaluate the
accuracy and stability of the trained model when subject to an
independent dataset that may include both TP and TN images.
As images are captured in a real environment, real defects are
less frequent events. Therefore, to fairly test the model face
to more complex classification tasks, we conducted a manual
DA over the test images so that more instances of TN parts
are produced. The imposed defects are similar to real defects,
observed in real TN images, extended with new features of
possible defects. The defects have been separated into small
and large size defects, as listed in Table V. Examples of TN
images in the testing dataset with real defects (when they exist)
and manually added defects, can be seen in Fig. 5.

2) DATASET 2 - controlled images: The second dataset
(DS2) was composed of images of parts collected by a camera
apart from the island. This controlled image generation allows
to represent a large number of possible defects and test
whether or not the model is capable of recognizing them.

Table VI summarizes the number of images in DS2. As DS2
consists of only 1 part, and this part is the same as C369 of
DS1, the total of images contained in DS2 is equal to DS1
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Figure 5. Production line DS1 parts defects

Partition Class Profile C147 C287 C369
Train Defect-free 1815 1392 1936

Defect-free 35 20 25
Real 04 22 00

Test Defect Manual small 32 19 23
Manual huge 29 22 23
Total 65 63 46

Total 1925 1475 2007
Table V

NUMBER OF IMAGES IN TRAINING AND TEST DS1 AFTER DA.

for this part. Analogous to DS1, DA was also applied to the
training images in DS2 to make them comparable.

Partition Profile CR
Training dataset Defect-free 1936

Defect-free 25
Test dataset Defect 46

Total 71
Total dataset 2007

Table VI
DS2 PARTITION SETTINGS FOR TRAINING AND TESTING DATASETS.

From the controlled dataset DS2, we can simulate a wide
diversity of defects. The test dataset did not undergo any
computational manipulation, so the defects present in this
DS2 partition are defects that would actually pass through the
assembly line, i.e., the photographed part was defective, with
no need to create defects via software. Examples of images
used for training and testing are shown in Fig. 6.

3) Experimental analysis: To assess the performance of
both experiments, we used the 2-way holdout (training/test
split) method, with confidence interval via normal approxima-
tion. We feed the training data to the method to learn from,
and then estimate the performance over unseen data, i.e., the
test was entirely conducted over images not used for training.
No cross-validation or hypermeter adjustment schemes were

(a) (b)

Figure 6. Images with (a) and without (b) defects, from the dataset DS2.

applied to perform the model selection since this is already
known in the literature [39], and also due to the involved
computational cost.

As our primary evaluation, we measured the accuracy of
correct classifications between TP and TN assembly parts.
Accuracy is a simple metric that represents the number of
correct model predictions. It can be defined as the number of
correctly classified test cases, divided by the total number of
test cases. We then compare these results with those returned
by the CVS installed on the real manufacturing line. Figures
7, 8, and 9 show examples of the images created by CBiGAN.
The network was trained with images of parts from the
industrial environment, i.e., the generated images are very
similar to factory floor images.

Figure 7. Image produced by CBiGAN for part C147, which shows in its
lines the training and test images, in addition to the images generated by
CBiGAN and the difference between the input and generated images.

Figures 7, 8, and 9 are seen as two partitions split hori-
zontally. Each partition is formed by three lines: the line at
the top shows images of parts belonging to the test dataset
(one different part in each column); the line in the middle has
images of these parts recreated by the network; and the third
line shows the difference between them. The same follows for
the second partition, at the bottom.

Table VII shows the accuracy of our tests, which can be
compared with Table II to reveal their differences with respect
to the real equipment performance to classify each type of part.

An accuracy increase from 96.88% to 98.4% was observed
to classify the component C147. The improvement seems
to be minor for this case, which is explained by the low
amount of images of defects of this component. Differently,
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Figure 8. Image produced by CBiGAN for part C287, which shows in its
lines the training and test images, in addition to the images generated by
CBiGAN and the difference between the input and generated images.

Figure 9. Image produced by CBiGAN for part C369, which shows in its
lines the training and test images, in addition to the images generated by
CBiGAN and the difference between the input and generated images.

Component Accuracy %
C147 98.4
C287 85.9
C369 100.0

Table VII
ACCURACY ACHIEVED IN THE TEST WITH CBIGAN FOR EACH SET OF

COMPONENTS.

when classifying components C287, the accuracy increases
from 76.41% to 85,9%, i.e., more than 10%. This could be
further improved by a more robust training step, including
more images of real defects to feed the model. For component
C369 the obtained accuracy was on the order of 100%, both
for DS1 and DS2.

Upon comparison, we conclude that our model was capable
of improving, or at least maintaining, the accuracy of the
real vision system for all the image profiles we tested. We

highlight, however, that our model is further advantageous
in the sense that it also identifies abnormal components and
is able to identify all possible defective components, as it
considers defective anything different from a good component
used for training. We claim this is a significant improvement
from a practical point of view.

We now test how our model performs when processing DS2.
This is expected to be harder, as DS2 was constructed with the
purpose of simulating a broader diversity of defects. Fig. 10
shows examples of images generated by the CBiGAN using
DS2.

Figure 10. In the picture we can see some real images, some produced by
CBiGAN, and the different between them for the DS2 set of components.

As DS2 is composed of the same C369 component as
DS1, we were able to compare how CBiGAN behaves with
controlled images. In our tests, the result was considered
excellent, keeping accuracy of 100%. Although more real tests
on the factory floor are needed, it is a good indication that the
method can bring real benefits to the identification of defects.

V. CONCLUSIONS AND PERSPECTIVES

In industry, ensuring the quality of products is increasingly
important and challenging, especially in flexible manufac-
turing plants. In the automotive industry, for example, a
single production line is usually responsible for manufacturing
several models of cars, each one with its own set of multiple
components to be assembled. When a car shows after-sales
defects, it denigrates the brand image and increases costs due
to a posteriori repairs. In this context, applying only manual
inspection as the quality control mechanism may not be the
most effective way to ensure quality, and require support from
automated visual inspections.

This type of solution, however, has two strong limitations:
(1) it requires a specialized solution for each type of defect to
be detected, in each product type; and (2) it needs input data
(e.g., images) of all types of defects to be possibly recognized,
from all components to be inspected. This work presented
a method that allows tackling both limitations at the same
time. The proposed GAN model only needs defect-free images
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to be trained, thus solving limitation (2) and, additionally, it
also solves limitation (1) as the same model can be used for
different components, requiring only one retraining with the
images of the component to be inspected.

The proposal was validated using 2 different scenarios. The
first exploited a real industrial manufacturing environment
with multiple components. The second used images with
acquisition and simulation of controlled defects. In scenario
1, the same method was used to inspect 3 different com-
ponents, without the need for adaptations in the GAN. The
result evidenced an increase in accuracy of inspection and
identification of defects, compared with the current system
used in the factory floor. In scenario 2, it was concluded that
a wide variety of defects can be identified without the need
for them to be part of the training step.

The obtained increase in the quality of inspection results
in substantial gains along the manufacturing process, as each
anticipated error implies less manual re-checking and avoids
having to stop the production line. In future research, we aim
to extend the GAN-based approach to cover other types of
inspection, such as conformance tests, which is the kernel for
successful applications in flexible manufacturing.
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[13] M. Mazzetto, M. Teixeira, Érick Oliveira Rodrigues, and D. Casanova,
“Deep learning models for visual inspection on automotive assembling
line,” International Journal of Advanced Engineering Research and
Science, vol. 7, no. 1, pp. 473–494, 2020.

[14] F. Di Mattia, P. Galeone, M. De Simoni, and E. Ghelfi, “A survey on
gans for anomaly detection,” arXiv preprint arXiv:1906.11632, 2019.

[15] D. Wang, R. Vinson, M. Holmes, G. Seibel, A. Bechar, S. Nof, and
Y. Tao, “Early detection of tomato spotted wilt virus by hyperspectral
imaging and outlier removal auxiliary classifier generative adversarial
nets (or-ac-gan),” Scientific reports, vol. 9, no. 1, pp. 1–14, 2019.

[16] D. Mukherjee, A. Guha, J. M. Solomon, Y. Sun, and M. Yurochkin,
“Outlier-robust optimal transport,” in 38th International Conference
on Machine Learning (M. Meila and T. Zhang, eds.), vol. 139 of
Proceedings of Machine Learning Research, pp. 7850–7860, PMLR,
18–24 Jul 2021.

[17] F. A. Saiz, G. Alfaro, I. Barandiaran, and M. Graña, “Generative adver-
sarial networks to improve the robustness of visual defect segmentation
by semantic networks in manufacturing components,” Applied Sciences,
vol. 11, no. 14, 2021.

[18] A. Kusiak, “Convolutional and generative adversarial neural networks in
manufacturing,” International Journal of Production Research, vol. 58,
pp. 1–11, 09 2019.

[19] A. Deshpande, A. Minai, and M. Kumar, “One-shot recognition of man-
ufacturing defects in steel surfaces,” Procedia Manufacturing, vol. 48,
pp. 1064–1071, 01 2020.

[20] R. S. Peres, M. Azevedo, S. O. Araújo, M. Guedes, F. Miranda, and
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