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Abstract—The study of epileptic seizure often involves animal1

models to simulate the human behavior. Such models demand2

monitoring the evolution of the animal behavior continuously.3

Detecting seizure in this setup remains a challenge, because it4

typically requires trained personnel to annotate video sequences5

looking for the timestamps of seizure events. Deep Learning6

methods can help to solve this task in a more automatic and7

efficient manner due to their capacity of retrieving patterns8

from data. In this work, we conducted a pilot study to detect9

epileptic seizure from the images of small rodents using Con-10

volutional Neural Networks (CNN) and the Continuous Wavelet11

Transform (CWT). We used the Social LEAP Estimates Animal12

Poses (SLEAP) framework for animal recognition to extract13

the morphological skeleton. Then, our CWT-CNN method used14

information of the frequency, magnitude and temporal evolution15

of head and thorax displacements to classify the animal behavior.16

The results showed a mean accuracy of 82.7% in the classification17

of epileptic seizure events.18

I. INTRODUCTION19

Epilepsy is a neurological disease with one of the highest20

incidences in the world [1]. Thus, it is essential to study the21

mechanisms behind the epilepsy genesis, the seizure genera-22

tion, and the resistance against anti-epilepsy drugs. Animal23

models are the baseline in these studies. The pilocarpine-24

induced model [2] is one of the most famous models because it25

manifests spontaneous and random seizures, which are typical26

human conditions that can be classified respecting the 5-stage27

Racine scale [3]. In particular, the Racine stage 5 is char-28

acterized by a generalized tonic clonic seizure that presents a29

forelimb clonus, dorsal extension and rearing followed by loss30

of motor control and falling [4].31

However, the randomness of the seizure events in the32

pilocarpine model difficult the prediction of its occurrence.33

The animals must be continuously monitored through video34

recordings, which requires trained personnel to manually an-35

notate the occurrence of seizure events.36

In such context, Deep Learning methods are helpful due to37

their high performance in pattern recognition tasks [5]. Since38

the pilocarpine model manifests abrupt motion in the thoracic39

region during seizures, the Deep Learning approach can be40

used to address the seizure detection problem.41

In this pilot study, we used a Convolutional Neural Network42

(CNN) in combination with the Continuous Wavelet Transform43

(CWT) to automatically analyze the video recordings of rats44

with chronic epilepsy induced by pilocarpine. Our method-45

ology involves methods for automatic animal recognition,46

posture tracking, extraction of motion signals, training and47

testing the CNN to classify animal behavior in Pilocarpine- 48

induced rodents regarding epileptic seizures. 49

II. MATERIALS AND METHODS 50

A. Data set 51

The videos were recorded with resolution of 1280 x 720 52

pixels in the .avi extension. Five Wistar rats were video- 53

monitored during eight months. The videos were captured with 54

an RGB Camera Infra 1010 D Multi HD VHD. A total of 201 55

hours were recorded. 56

The scenes show five boxes containing the species, as de- 57

picted in Fig. 1. In order to analyze the individuals, we marked 58

five regions of interest (ROI) that matched the boundaries of 59

each box. The ROIs are separated and treated as independent 60

videos. 61

Figure 1. Location of the five ROIs.

B. SLEAP – Estimation of the animal posture 62

The description of the animal posture can be related to 63

several behaviors [6], [7]. Such description can be achieved 64

with an Animal Posture Estimative (APE), in which the animal 65

motion is tracked using specific points on the body that can be 66

related with behavior information [8], [9]. Therefore, precise 67

posture tracking is essential to build accurate models of the 68

animal behavior. 69

One of the most advanced APE methods based on Deep 70

Learning is the Convolutional Neural Network (CNN) [10] 71

[11]. In this method, the keypoints are predicted using a 72

statistical model that, once trained, it can infer keypoints on 73

new datasets. 74

We used the Social LEAP Estimates Animal Poses 75

(SLEAP), which is an open-source framework for posture 76
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classification [11]. The SLEAP framework allows posture77

estimation of multiple targets, even in the presence of complex78

social interactions. SLEAP is a pre-trained neural network and79

very user-friendly.80

The first step was to manually label local keypoints on the81

animals. Since we used low-resolution images, we defined just82

two keypoints, the head and the thorax (see Fig. 2).83

Figure 2. Local keypoints on two different animal postures.

Secondly, we set UNet as the CNN model in SLEAP (Fig.84

3). This is a encoder-decoder network, originally created for85

image segmentation, that can achieve great precision in small86

datasets [12]. The UNet network can be trained in a Google87

Collaboratory environment, since SLEAP allows exporting the88

training parameters containing the network weights.89

Figure 3. UNet code-encoder architeture example.

C. The CWT–CNN method90

The Continuous Wavelet Transform (CWT) is a signal91

analysis technique that transforms a temporal signal into a92

scalogram 4. The scalogram is an image containing both93

the temporal and frequency information of the signal. As an94

image, the CWT can be analyzed using a CNN to extract95

patterns from it.96

However, instead of analyzing posture by means of p(t) =97

(X(t), Y (t))T , the 2D position of keypoints over time, we98

used99

v(t) =
dp(t)

dt
=

(
dX(t)

dt
,
dY (t)

dt

)T

=

(
vX(t)
vY (t)

)
, (1)

the velocity components of motion for each frame. Our100

analysis is based on a key observation: Epileptic seizure101

implies abrupt changes of position, thus, the velocity can better102

highlight such changes.103

Figure 4. Scalogram outputed by CWT method from temporal signals.

Then, we applied a mexican and a morlet wavelet kernel 104

[13], generating N image matrices of 60 × 240 size. The 105

first dimension is attributed to the wavelet scale. A small size 106

was chosen to better visualize the low frequency components. 107

The second dimension refers to the temporal duration of the 108

video sequence. We used 40 seconds with a total of 6 frames 109

per sequence. In order to keep the computational cost low, 110

we downsampled the second dimension in a factor of 2. The 111

resulting signal is a structure of N channels of 60× 120 size. 112

The last layer of the CNN was designed to classify patterns 113

in 6 possible animal behavior: 114

1) Class 1 – Epileptic seizure 115

2) Class 2 – Water ingestion 116

3) Class 3 – Food ingestion 117

4) Class 4 – Exploration 118

5) Class 5 – Grooming 119

6) Class 6 – No motion 120

The CNN architecture was composed of 3 convolutional lay- 121

ers using the Rectified Linear Unit (ReLU) [14] as activation 122

function with a Batch Normalization on each convolutional 123

layer. Data is vectorized to generate a 1D-vector. Then, 3 124

processing layers are applied, 2 with the ReLU and 1 with 125

SoftMax activation functions. 126

Figure 5. The CWT–CNN architecture.

The CWT–CNN (Fig. 5) was trained using the Categorical 127

Cross Entropy as loss function and the Adaptive Moment 128

Estimation as as the optimizer to control the update of the 129

network weights during the learning process. 130



III. RESULTS131

A. SLEAP132

We used active training in the APE model, that is, we133

prior informed to the neural network the real head and thorax134

positions. Firstly, 292 frames were used to learn the tracking135

of keypoints in the animal’s body Another 163 new frames136

were used as the testing set. The training was repeated six137

times, varying the frames exposed to the neural network. At138

the end 2203 frames were utilized.139

The results of the keypoint detection process are shown in140

Fig. 6. In order to assess the APE capability of detecting the141

head and thorax correctly, we exposed the network with 200142

new frames and applied a simple metric:143

Correct detections =
(
1− Nerrors

200

)
∗ 100 , (2)

where Nerrors is the number of incorrect keypoint detections144

(false positives and false negatives).145

Figure 6. Total number of correct detections per frame.

As an error metric, we also computed the Euclidean distance146

between the actual location of the keypoints and the predicted147

one (Fig. 7). The actual position was previously marked to148

create a source of comparison.149

Figure 7. Difference between real local points and predicted ones.

At a maximum frame exposure (frame 2203), we obtained150

an keypoint tracking error of 4.3 ± 3.5 for the thorax and151

19.7 ± 24.9 for the head. The error distribution, however,152

shows that 75% of the errors are within 7 pixels of distance153

at maximum as shown in (Fig.8). Since the images we used 154

are of low-resolution and, given that the SLEAP framework 155

can reach a 3-pixel-distance error in high resolution images, 156

we concluded that the model demonstrated satisfactory results 157

given the study limitations. 158

Figure 8. Error margin from the best estimative model.

B. CWT–CNN 159

A new data set consisting of 232 frames was considered 160

in order to evaluate the performance of our model. The data 161

set included the following behaviors (manually classified): 52 162

epileptic seizure; 30 water ingestion; 28 food ingestion; 42 163

exploration; 33 grooming; 47 no motion. 164

A Savitzky-Golay filter [15] from the SciPy library [16] was 165

applied to each frame in order to extract the 4 motion signals: 166

The X and Y velocities of the thorax and the head. With these 167

information, we designed 4 different weighted combinations 168

and used them as input signals to the CWT. The signals are 169

summarized in Table I. The H subscript refers to the head 170

keypoints and the T subscript refers to the thorax keypoints. 171

Table I
THE FOUR MOTION SIGNALS AND THEIR COMBINATIONS.

Combi1 Combi2 Combi3 Combi4

dXT

dt

dXT

dt

dXT

dt

dXT

dt

dYT

dt

dYT
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dYT
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dYT
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dt
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·
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·
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dt
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(
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4

dXT
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dYT
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. . . . . .
dYH

dt
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Since the dorsal extension is a key factor in determining 172

epileptic seizure, the thorax and head velocities in the Y -axis 173

were the most informative signals utilized in the combinations. 174

However, we preserved the entire information to provide 175

further the model with further detail as a robustness heuristic 176

that may increase the chance of correctly classifying seizure 177

events. 178

We applied k-fold cross validation during training. The data 179

set was divided into k = 5 folds of same size. Training was 180



conducted separately on each fold using k−1 of k folds each181

time. The last fold was used for testing.182

We may also consider the randomness associated with the183

training of neural networks. On each run, the training process184

initializes with different network weights and, despite using185

the same data set, different results can be achieved. Due to this,186

we run the experiment for 10 iterations on the same data set187

and we took the average of the results. We used the accuracy188

as performance parameter, i.e., the rate of correct predictions189

against actual behavior for each class (Table II).190

Table II
ACCURACY LEVEL PER FOLD OF EACH COMBINATION.

Fold Combi1 (%) Combi2 (%) Combi3 (%) Combi4 (%)

1 59.2 58.1 57.7 65.8
2 74.9 73.6 68.3 80.0
3 87.2 83.9 81.1 88.3
4 81.5 86.1 76.8 92.4
5 86.3 85.5 76.3 87.2

Mean 77.8 77.4 72.0 82.7

IV. DISCUSSION191

We designed a posture model in order to detect epileptic192

seizures in small rodents. We tracked the position of four193

keypoints on the animal body, the X and Y positions from194

the thorax and the head. Our model was capable of fully195

tracking the thorax keypoints and partially tracking the head196

keypoints (≈ 84.5%) in all the 292 frames. The detection197

errors resulted in 4.3 ± 3.5 of pixel distance for the thorax198

keypoints and 6.2±10.2 for the head keypoints. These results199

show a promising room for improvement, considering that our200

images were captured with low resolution and the SLEAP201

framework may improve its tracking performance as the image202

resolution increases.203

Regarding our method for the classification of seizure204

events, we designed a model based on a combination of spe-205

cific motion signals and used them as inputs to convolutional206

neural network to classift 5 different types of animal behaviou.207

To test the model, we used a data set with 52 epileptic seizure208

events. The best models were Combination 1 and Combination209

4, which achieved a total mean accuracy of 77.8% and 82.7%,210

respectively.211

V. CONCLUSIONS212

Although we used a small data set, our CWT–CNN method213

was proven successful in classifying epileptic seizure in animal214

behavior. Potential strategies for improvement in future include215

collecting a larger data set to increase the model accuracy.216

A detailed analysis reveals some issues regarding the indi-217

vidual performance of each signal combination. For instance,218

Combination 1 detected all the epileptic seizures without219

false positives. Combination 4 also detected all the epileptic220

seizures, but with the presence of false positives. Despite this,221

both combinations can be accepted because they fully detected222

seizure events without yielding any false negative. Therefore,223

we assure that the model did not bias our quantitative study224

and, any false positive produced can later be treated by human 225

analysis. 226

In order to achieve a fully automatic model, further improve- 227

ments need to be investigated. In particular, using a larger data 228

set to provide robustness against image noise and different 229

scene configurations. 230
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