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Abstract—The study of epileptic seizure often involves animal
nodels to simulate the human behavior. Such models demand
nonitoring the evolution of the animal behavior continuously.
Jetecting seizure in this setup remains a challenge, because it
ypically requires trained personnel to annotate video sequences
ooking for the timestamps of seizure events. Deep Learning
nethods can help to solve this task in a more automatic and
fficient manner due to their capacity of retrieving patterns
rom data. In this work, we conducted a pilot study to detect
'pileptic seizure from the images of small rodents using Con-
rolutional Neural Networks (CNN) and the Continuous Wavelet
[ransform (CWT). We used the Social LEAP Estimates Animal
20ses (SLEAP) framework for animal recognition to extract
he morphological skeleton. Then, our CWT-CNN method used
nformation of the frequency, magnitude and temporal evolution
f head and thorax displacements to classify the animal behavior.
Che results showed a mean accuracy of 82.7% in the classification
f epileptic seizure events.

I. INTRODUCTION

Epilepsy is a neurological disease with one of the highest
ncidences in the world [1]. Thus, it is essential to study the
nechanisms behind the epilepsy genesis, the seizure genera-
ion, and the resistance against anti-epilepsy drugs. Animal
nodels are the baseline in these studies. The pilocarpine-
nduced model [2] is one of the most famous models because it
nanifests spontaneous and random seizures, which are typical
wman conditions that can be classified respecting the 5-stage
Racine scale [3]. In particular, the Racine stage 5 is char-
wcterized by a generalized tonic clonic seizure that presents a
‘orelimb clonus, dorsal extension and rearing followed by loss
»f motor control and falling [4].

However, the randomness of the seizure events in the
silocarpine model difficult the prediction of its occurrence.
[he animals must be continuously monitored through video
-ecordings, which requires trained personnel to manually an-
10tate the occurrence of seizure events.

In such context, Deep Learning methods are helpful due to
heir high performance in pattern recognition tasks [5]. Since
he pilocarpine model manifests abrupt motion in the thoracic
-egion during seizures, the Deep Learning approach can be
1sed to address the seizure detection problem.

In this pilot study, we used a Convolutional Neural Network
'CNN) in combination with the Continuous Wavelet Transform
CWT) to automatically analyze the video recordings of rats
vith chronic epilepsy induced by pilocarpine. Our method-
>logy involves methods for automatic animal recognition,
Josture tracking, extraction of motion signals, training and

testing the CNN to classify animal behavior in Pilocarpine-
induced rodents regarding epileptic seizures.

II. MATERIALS AND METHODS
A. Data set

The videos were recorded with resolution of 1280 x 720
pixels in the .avi extension. Five Wistar rats were video-
monitored during eight months. The videos were captured with
an RGB Camera Infra 1010 D Multi HD VHD. A total of 201
hours were recorded.

The scenes show five boxes containing the species, as de-
picted in Fig. 1. In order to analyze the individuals, we marked
five regions of interest (ROI) that matched the boundaries of
each box. The ROIs are separated and treated as independent
videos.

Figure 1. Location of the five ROIs.

B. SLEAP — Estimation of the animal posture

The description of the animal posture can be related to
several behaviors [6], [7]. Such description can be achieved
with an Animal Posture Estimative (APE), in which the animal
motion is tracked using specific points on the body that can be
related with behavior information [8], [9]. Therefore, precise
posture tracking is essential to build accurate models of the
animal behavior.

One of the most advanced APE methods based on Deep
Learning is the Convolutional Neural Network (CNN) [10]
[11]. In this method, the keypoints are predicted using a
statistical model that, once trained, it can infer keypoints on
new datasets.

We used the Social LEAP Estimates Animal Poses
(SLEAP), which is an open-source framework for posture

* Corresponding author e-mail: carlosribeiro.aca@gmail.com



classification [11]. The SLEAP framework allows posture
estimation of multiple targets, even in the presence of complex
social interactions. SLEAP is a pre-trained neural network and
very user-friendly.

The first step was to manually label local keypoints on the
animals. Since we used low-resolution images, we defined just
two keypoints, the head and the thorax (see Fig. 2).

Figure 2. Local keypoints on two different animal postures.

Secondly, we set UNet as the CNN model in SLEAP (Fig.
3). This is a encoder-decoder network, originally created for
image segmentation, that can achieve great precision in small
datasets [12]. The UNet network can be trained in a Google
Collaboratory environment, since SLEAP allows exporting the
training parameters containing the network weights.
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Figure 3. UNet code-encoder architeture example.

C. The CWT-CNN method

The Continuous Wavelet Transform (CWT) is a signal
analysis technique that transforms a temporal signal into a
scalogram 4. The scalogram is an image containing both
the temporal and frequency information of the signal. As an
image, the CWT can be analyzed using a CNN to extract
patterns from it.

However, instead of analyzing posture by means of p(t) =
(X(t),Y ()T, the 2D position of keypoints over time, we
used

Cdp(t)  (dX(1) v\ (vx(®)
vt = 4 _( a0 dt ) _<vi(t)>’ W

the velocity components of motion for each frame. Our
analysis is based on a key observation: Epileptic seizure
implies abrupt changes of position, thus, the velocity can better
highlight such changes.

i

Figure 4. Scalogram outputed by CWT method from temporal signals.

Then, we applied a mexican and a morlet wavelet kernel
[13], generating N image matrices of 60 x 240 size. The
first dimension is attributed to the wavelet scale. A small size
was chosen to better visualize the low frequency components.
The second dimension refers to the temporal duration of the
video sequence. We used 40 seconds with a total of 6 frames
per sequence. In order to keep the computational cost low,
we downsampled the second dimension in a factor of 2. The
resulting signal is a structure of N channels of 60 x 120 size.

The last layer of the CNN was designed to classify patterns
in 6 possible animal behavior:

1) Class 1 — Epileptic seizure
2) Class 2 — Water ingestion
3) Class 3 — Food ingestion
4) Class 4 — Exploration

5) Class 5 — Grooming

6) Class 6 — No motion

The CNN architecture was composed of 3 convolutional lay-
ers using the Rectified Linear Unit (ReLU) [14] as activation
function with a Batch Normalization on each convolutional
layer. Data is vectorized to generate a 1D-vector. Then, 3
processing layers are applied, 2 with the ReLU and 1 with
SoftMax activation functions.
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Figure 5. The CWT-CNN architecture.

The CWT-CNN (Fig. 5) was trained using the Categorical
Cross Entropy as loss function and the Adaptive Moment
Estimation as as the optimizer to control the update of the
network weights during the learning process.



III. RESULTS
A. SLEAP

We used active training in the APE model, that is, we
prior informed to the neural network the real head and thorax
positions. Firstly, 292 frames were used to learn the tracking
of keypoints in the animal’s body Another 163 new frames
were used as the testing set. The training was repeated six
times, varying the frames exposed to the neural network. At
the end 2203 frames were utilized.

The results of the keypoint detection process are shown in
Fig. 6. In order to assess the APE capability of detecting the
head and thorax correctly, we exposed the network with 200
new frames and applied a simple metric:
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where Newors is the number of incorrect keypoint detections
(false positives and false negatives).

Correct detections = (1 — 2)
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Figure 6. Total number of correct detections per frame.

As an error metric, we also computed the Euclidean distance
between the actual location of the keypoints and the predicted
one (Fig. 7). The actual position was previously marked to
create a source of comparison.
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Figure 7. Difference between real local points and predicted ones.

At a maximum frame exposure (frame 2203), we obtained
an keypoint tracking error of 4.3 £ 3.5 for the thorax and
19.7 &+ 24.9 for the head. The error distribution, however,
shows that 75% of the errors are within 7 pixels of distance

at maximum as shown in (Fig.8). Since the images we used
are of low-resolution and, given that the SLEAP framework
can reach a 3-pixel-distance error in high resolution images,
we concluded that the model demonstrated satisfactory results
given the study limitations.
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Figure 8. Error margin from the best estimative model.

B. CWI-CNN

A new data set consisting of 232 frames was considered
in order to evaluate the performance of our model. The data
set included the following behaviors (manually classified): 52
epileptic seizure; 30 water ingestion; 28 food ingestion; 42
exploration; 33 grooming; 47 no motion.

A Savitzky-Golay filter [15] from the SciPy library [16] was
applied to each frame in order to extract the 4 motion signals:
The X and Y velocities of the thorax and the head. With these
information, we designed 4 different weighted combinations
and used them as input signals to the CWT. The signals are
summarized in Table I. The H subscript refers to the head
keypoints and the 7" subscript refers to the thorax keypoints.

Table 1
THE FOUR MOTION SIGNALS AND THEIR COMBINATIONS.

Combil Combi2 Combi3 Combi4
dXr dXp dXr dXr
dt dt dt dt
dYr dYr dYr dYp
dt dt dt dt
dX g dXr dYp dXp dYy dXr dYrp
dt dt dt dt dt dt dt
dYy dYy dYy ( 1dXp ) 2 N (dYT ) 2
dt dX gy dX g 4 dt dt
dYH Cn/H
dt dt

Since the dorsal extension is a key factor in determining
epileptic seizure, the thorax and head velocities in the Y -axis
were the most informative signals utilized in the combinations.
However, we preserved the entire information to provide
further the model with further detail as a robustness heuristic
that may increase the chance of correctly classifying seizure
events.

We applied k-fold cross validation during training. The data
set was divided into £ = 5 folds of same size. Training was



conducted separately on each fold using k£ — 1 of k folds each
time. The last fold was used for testing.

We may also consider the randomness associated with the
training of neural networks. On each run, the training process
initializes with different network weights and, despite using
the same data set, different results can be achieved. Due to this,
we run the experiment for 10 iterations on the same data set
and we took the average of the results. We used the accuracy
as performance parameter, i.e., the rate of correct predictions
against actual behavior for each class (Table II).

Table II
ACCURACY LEVEL PER FOLD OF EACH COMBINATION.

Fold Combil (%) Combi2 (%) Combi3 (%) Combi4 (%)
1 59.2 58.1 57.7 65.8
2 74.9 73.6 68.3 80.0
3 87.2 83.9 81.1 88.3
4 81.5 86.1 76.8 924
5 86.3 85.5 76.3 87.2
Mean 71.8 774 72.0 82.7

IV. DISCUSSION

We designed a posture model in order to detect epileptic
seizures in small rodents. We tracked the position of four
keypoints on the animal body, the X and Y positions from
the thorax and the head. Our model was capable of fully
tracking the thorax keypoints and partially tracking the head
keypoints (=~ 84.5%) in all the 292 frames. The detection
errors resulted in 4.3 4= 3.5 of pixel distance for the thorax
keypoints and 6.2+ 10.2 for the head keypoints. These results
show a promising room for improvement, considering that our
images were captured with low resolution and the SLEAP
framework may improve its tracking performance as the image
resolution increases.

Regarding our method for the classification of seizure
events, we designed a model based on a combination of spe-
cific motion signals and used them as inputs to convolutional
neural network to classift 5 different types of animal behaviou.
To test the model, we used a data set with 52 epileptic seizure
events. The best models were Combination 1 and Combination
4, which achieved a total mean accuracy of 77.8% and 82.7%,
respectively.

V. CONCLUSIONS

Although we used a small data set, our CWT-CNN method
was proven successful in classifying epileptic seizure in animal
behavior. Potential strategies for improvement in future include
collecting a larger data set to increase the model accuracy.

A detailed analysis reveals some issues regarding the indi-
vidual performance of each signal combination. For instance,
Combination 1 detected all the epileptic seizures without
false positives. Combination 4 also detected all the epileptic
seizures, but with the presence of false positives. Despite this,
both combinations can be accepted because they fully detected
seizure events without yielding any false negative. Therefore,
we assure that the model did not bias our quantitative study

and, any false positive produced can later be treated by human
analysis.

In order to achieve a fully automatic model, further improve-
ments need to be investigated. In particular, using a larger data
set to provide robustness against image noise and different
scene configurations.
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