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Abstract—With many applications regarding semantic seg-
mentation arising, along with the advent of the Deep Semantic
Segmentation Networks, the need for large labeled datasets has
also largely increased. But labeling thousands of images can be
very expensive and time-consuming. Approaches such as weak
and semi supervision try do deal with this problem, but the
first cannot deal with large datasets and the latter is hard to
deal with semantic segmentation. Therefore, in this work we
propose a combination of both to create a novel pipeline of weak
supervision, with focus in satellite imagery, capable of dealing
with large datasets. We propose a pipeline to automatically
generate scribbles in images, requiring that the user only label
10% of the images in a given dataset, while a classifier deal
with the remaining images. Along with that, we also propose
a simple semantic segmentation pipeline, that uses only images
with scribbles to train a network. Results show that performance
is lower, but similar to a fully supervised pipeline.

I. INTRODUCTION

Semantic segmentation, i.e., automatic pixel-wise classifi-
cation of images, has been gaining much attention with the
advent of self-driving cars and the increasing usage of satellite
images for studies related to land cover on Earth’s surface. In
both cases, the ability to describe the contents of images is of
great interest since most applications will require some degree
of semantic explainability of what can be seen.

The most accurate and popular way of performing semantic
segmentation is using Deep Semantic Segmentation Networks
(DSSNs) [1]. Nevertheless, the performance of DSSNs in
semantic segmentation tasks is highly dependent on the avail-
ability of a fully annotated dataset with segmented masks in
which every pixel in the image has its own label. Making
these masks can be both very tedious and time-consuming,
sometimes even requiring the help of experts to provide the
correct annotations, therefore also becoming expensive.

Due to the problems above, many researchers have tried
to find ways of generating these ground truth masks more
efficiently. In a field called weakly-supervised learning [2],
[3], the main idea is to obtain a more straightforward and
cheaper way to annotate datasets through weak labels. In the
remote sensing literature, such labels may include scribbles
[4], [5], binary labels indicating the presence of elements in
images [6], bounding boxes [5] and even single pixels [5], [6].

Although the annotation via weak supervision is less time-
consuming, in most cases, the interference of an expert is
still necessary. This is often a problem for large datasets

containing several thousand images. Some studies of semi-
supervised image classification have dealt with this problem,
including labeling a smaller set of the data, training a model
with fewer images, and then classifying the remaining data
[3], [7]. However, when using weak labels, this can not be
replicated because the labels are pixel level.

To address this problem, automatic weak label generation
has been used in the context of image colorization, where au-
tomatic scribbles would be generated and manually classified
to colorize images [8]. But the labels would still have to be
manually allocated, not solving the large dataset problem. In
similar works, drawing regions for scribbles are proposed [9],
but the problem of manual labeling still remains.

This article presents a solution to generate semantic segmen-
tation masks using only a small set of a large-scale dataset,
with focus in satellite imagery. By combining concepts of
weak and semi-supervised learning, we propose a pipeline to
automatically generate scribbles in images based on regions
with similar content. Then, the expert must annotate only a
small set of the scribbles, i.e., selecting the scribble label,
which we also provide a tool to perform. A classifier will
automatically classify (label) the remaining scribbles. We then
propose a DSSN architecture and pipeline that, unlike others
in the literature, is simple and can be trained using only
scribbles, achieving similar results to a network trained with
fully supervision. Finally, our main contributions are:

• An automatic scribble generator;
• A semi-supervised labeling pipeline that requires only a

small set of images to be labeled;
• A graphical user interface to visualize, draw, edit, remove

and annotate scribbles manually;
• A simple weakly-supervised DSSN training pipeline.

II. METHODOLOGY

A. Automatic Scribble Generation
For this work, a pipeline for automatic scribble generation

is proposed. This idea is based both on works that focus on
searching for similar regions in datasets [9], [10] and that
generates automatic scribbles [8]. In remote sensing images,
there are usually well-defined crops and terrains, especially in
rural areas. Given that, it should be possible to group them,
based on the similarity of region features (descriptors), in the
same way that perhaps a human would unintentionally draw
scribbles, given the clarity of the region.



The complete pipeline can be seen in Figure 1. Similar
pipelines have been proposed before for grayscale images [8],
but every similar step is performed differently in our pipeline.

Starting with an input image in step 1.1, a bilateral filter is
applied in step 1.2 to homogenize its contents while preserving
edges, further obtaining the variance of the pixels, ImV ar.
The filtered image is only used in this step. In step 1.3 the
images are segmented in 1000 ∗ ImV ar superpixels. Accord-
ingly, images with higher variance (having more artifacts) will
have more superpixels than images with homogeneous content.

Next, in step 1.4 we extract color (fc) and texture (ft)
features from the superpixels, as described in [11]. A graph
is mounted in step 1.5 with adjacent superpixels, with the
weights, ϕij , adapted from [4], but using different features,
and calculating their similarities using the features themselves.

Assuming that similar superpixels will have a closer dis-
tance in the feature space, we set adjacent superpixels to the
same region if their edge weight is higher than 0.9. Groups of
superpixels are mounted, and only those with more than 5%
of the total are used, avoiding noisy small groups.

To draw the scribbles in step 1.6.1, the shortest path among
the superpixels centers is found through a generic solver for
the traveling salesman problem, without needing to return to
the initial point. Finally, in optional step 1.6.2, after a bicubic
interpolation to increase the number of points, a gaussian filter
is applied to smooth the scribble, achieving the final result.
Approximating the shape of human generated scribbles can be
beneficial in cases with curved superpixels, although is most
cases only the visual is improved. The process to obtaining
the scribbles classes will be described in Section III-A.

One problem observed with this methodology was the diffi-
culty of segmenting small objects in more than one superpixel,
such as the “building” class from the chosen dataset, causing
them not to reach the minimum amount to originate a scribble.
Therefore, we coupled a building detector [12] to the pipeline
to improve their representativity, forcing superpixels with
buildings to become scribbles, sometimes also adding roads.

B. Scribble-Driven Training

With the scribble set, it is possible to feed the semantic
segmentation pipeline designed for this work, as seen in step
3 of Figure 1. Given images with scribbles in step 3.1, each
image is segmented in superpixels in step 3.2, using the same
pipeline of step 1.2, as described in Section II-A. Then, in
step 3.3, the algorithm verifies which superpixels are crossed
by each scribble, and assigns the scribble label to their pixels,
increasing the number of labeled pixels in the dataset but
also adding a small noise. Superpixels not crossed by any
annotation lines are assigned to an “undetermined” class.

Step 3.4 consists of calculating and assigning weights for
each class present in the dataset to overcome their imbalance
during training, along with setting the weight of the “undeter-
mined” class to 0 In order to increase diversity in the training
set, in step 3.5 we applied random rotations, flips, brightness
changes, zooms, and translations to the images.

The DSSN architecture chosen to perform the semantic
segmentation in step 3.6 was DeepLabV3+ [13], which has
presented good results for the same dataset [14]. As backbone,
ResNet-50 pre-trained on ImageNet was selected for simplic-
ity. Model evaluation is performed with four metrics: pixel
accuracy, intersection over union (IoU), mean intersection over
union (mIoU), and weighted mean intersection over union
(wmIoU). The wmIoU metric, defined as the mean of the
IoU weighted by the pixel proportion of each class, was
implemented to also consider the class imbalance.

III. RESULTS

A subset of 780 images with a size of 512× 512 pixels of
the LandCover.ai dataset [14] was used for all experiments,
which comprehends areas of different characteristics from
Poland. There are five classes: building, woodland, water, road,
and background. Those images were selected based on their
similarity of saturation, brightness, and resolution since these
conditions better represent samples captured in a single flight.
Similarly, 276 images were selected to compose the test set.
The pixel proportion in which the classes appear in the training
set is 0.56% for buildings, 61.17% for woodland, 5.07% for
water, 1.89% for roads, and 31.31% for background.

A. Scribble Classifier

When automatically generating the scribbles, they are all
assigned a generic class. In step 2 of the pipeline in Figure 1,
we propose to annotate the scribbles of a small set of images
and classify the remaining ones. With our provided graphical
tool, it is possible to draw, edit, remove and change the class of
already drawn scribbles. This way, the user can auto-generate,
label and fix the worst ones. The graphical user interface is
represented in step 2.1 of the pipeline and can be found in
https://github.com/jpklock2/Scribble-Editing-Tool.

We explored two levels of human intervention. The first
when all scribbles are drawn by an expert, and the second
when the scribbles are generated automatically. In both cases,
an SVM classifier is trained using the mean features (step 1.4)
of every superpixel crossed by a scribble. The scribbles of 10%
of the dataset images are used, and the remaining is classified,
as illustrated in pipelines’ steps 2.2 and 2.3. We then set four
experiments to evaluate the process of scribble classification.

• Experiment 1 - 10% of the images with human-made
scribbles and 90% classified by SVM.

• Experiment 2 - same as 1 with building detection module.
• Experiment 3 - 10% of the images with automatic gen-

erated scribbles and 90% classified by SVM.
• Experiment 4 - same as 3 with building detection module.
Table I shows precision (”Prec.”) and recall (”Rec.”)

achieved by the SVM classifier for each class, with the ground
truth provided by an expert. ”Back” stands for Background,
”Build.” for Building, and ”Wood.” for Woodland.

Generally speaking, the results of experiments 3 and 4
were close to experiments 1 and 2, showing that the proposed
method for automatic generation and classification of scribbles
can mimic human-made scribbles well.

https://github.com/jpklock2/Scribble-Editing-Tool
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Fig. 1. Complete Pipeline for this work.

TABLE I
SCRIBBLE CLASSIFIER RESULTS.

Exp. Metric Back. Build. Wood. Water Road Mean

1 Prec. 85.52 85.45 93.83 50.00 87.34 80.43
Rec. 78.61 90.82 87.49 97.50 66.35 84.15

2 Prec. 87.30 73.29 90.88 50.64 81.01 76.62
Rec. 73.29 90.48 87.69 96.60 59.92 81.60

3 Prec. 69.89 100.00* 96.62 68.18 65.79 80.10
Rec. 92.14 100.00* 77.95 85.71 32.05 77.57

4 Prec. 81.26 73.89 92.25 66.90 64.63 75.79
Rec. 83.94 92.02 88.73 86.61 38.41 77.94

* There were only 3 examples in this class

Analyzing individually by class, the performance was sim-
ilar for the Background and Woodland; Building and Road
performances, in turn, were better for human-made than for
automatic-generated scribbles, except for experiment 3, which
only had 3 examples and thus is not reliable. This occurred be-
cause these classes involve small and narrow objects, making
it more challenging to generate their corresponding scribbles
automatically. Despite this, we believe this problem could be
solved by manually fixing these scribbles, either by removing
the bad ones and redrawing or just drawing additional ones.

At last, the building detection module seems to hinder the
performance of the scribbles classifier, as can be seen when
comparing experiments 1 and 2 or 3 and 4. Some examples of
scribbles generated by our methodology can be seen in Figure
2, along with the respective ground truth labels.

B. Semantic Segmentation

This experiment shows the effect of using automatic-
generated scribbles in DSSNs training. The resulting training
sets of Experiments 1 to 4, presented in Section III-A, were
evaluated. As baselines, DSSNs were trained with the ground-
truth semantic masks, and semantic masks built from a set of
100% human-annotated scribbles. Segmentation results can be
seen in Figure 3, and the test set metrics for Accuracy (”Acc.”),
IoU, mIoU, and wmIoU are shown in Table II; ”HAS” stands
for Human Annotated Scribbles and ”GT” for Ground Truth.

From the IoU values, it is clear that classifying buildings
and roads is the hardest task for this dataset, since there are
far fewer scribbles (and pixels) of these classes, and as these

a) Semantic Mask b) Automatic Scribbles
c) Automatic Scribbles
+ Building Detection d) Human Scribbles

Fig. 2. Different types of scribbles comparison.

TABLE II
SEMANTIC SEGMENTATION METRICS.

Exp. IoU mIoU wmIoU Acc.Back. Build. Wood. Water Road
1 0.668 0.146 0.825 0.303 0.098 0.408 0.747 0.832
2 0.657 0.079 0.826 0.291 0.089 0.388 0.743 0.826
3 0.679 0.053 0.827 0.598 0.046 0.441 0.760 0.857
4 0.641 0.092 0.836 0.406 0.073 0.410 0.750 0.841

HAS 0.635 0.033 0.887 0.792 0.146 0.499 0.792 0.847
GT 0.822 0.256 0.924 0.752 0.423 0.635 0.878 0.929

elements are smaller and narrower, the label propagation step
is noisier. Overall, woodland and background were better clas-
sified, with consistent IoU values over the four experiments.
The results show that the model trained from the scribbles
generated by experiment 3 performed best, with its accuracy
even surpassing the training with hand-made scribbles.

In experiments 1 and 2, the results got worse with building
detection, because when the classifier had an increased number



of automatically generated building scribbles, it probably
introduced more error to the dataset, causing the segmenta-
tion to decrease performance. As for experiments 3 and 4,
the performance for the building and road classes improved
substantially, but are still worse than human scribbles.

Some segmentation results can be seen in Figure 3, where
the amount of buildings detected increased in the models with
building detection, even though the overall results got worse.

b) Ground Truth

a) Images

c) Training with 
Ground Truth

d) Training
with only
Human

Annotated
Scribbles

e) Experiment 1

f) Experiment 2

g) Experiment 3

h) Experiment 4

Fig. 3. Network predictions for different conditions. Experiments explanation
can be found in Section III-A.

IV. CONCLUSION

In this work, we present a methodology for automatic
scribble generation, a tool to edit and create scribbles, along
with a simplified approach for a DSSN supervised by these
annotation lines. We show that only 10% of the images with
well-distributed classes are enough to label an entire dataset.
In addition, those scribbles are used for DSSN training,
presenting results promisingly close to those obtained with
full supervision. The biggest challenges were the generation
and labeling of smaller and more subjective classes, such as

buildings and roads scribbles. Some solutions include improv-
ing the scribbles using the provided editing tool, performing a
study of the method’s behaviour when applied in urban area,
or analyzing the impact of the superpixel size in these classes.

The presented method was tested using only satellite im-
ages. For future works, further tests exploring scene segmen-
tation or autonomous vehicle applications can be performed.
Finally, ablation studies can be carried to evaluate the impact
of each step of the pipeline in the final results, pointing out
where adjustments would be more significant.
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