
Face-capture with automatic blendshape generation
João Vitor Nogueira∗, Bruno Sumar†, Leonardo Carvalho‡,

Universidade Federal Fluminense
Instituto de Ciência e Tecnologia, Departamento de Ciência da Computação

Rio das Ostras, RJ
∗ jv nogueira@id.uff.br, † bsumar@id.uff.br, ‡ leonardooc@id.uff.br

Abstract—The goal of this paper is the development of a system
for the production of performance-driven facial animation that
automatically generates a blendshape model from input video
frames. This simplifies the production of this kind of model to
be used in animation projects. The proposed method is designed
to be used without the need for expensive hardware, such that
any computer with a webcam can run the system.

I. INTRODUCTION

A great challenge in the field of Computer Graphics is
the production of digital characters whose facial movements
accurately resemble reality, due to the face’s very fine details,
and the complexity to represent those.

An efficient technique to control digital faces is
Performance-Driven Facial Animation [1]. This method uses
face-capture information to calculate facial movements. It
can be done densely, through a video sequence, or sparsely,
through markers on a captured face, which are used to track
movements for the algorithm.

The capture process can be done through a few different
ways. One method uses a helmet with cameras worn by an
actor, which records their face. This model yields high-quality
results and can be done through multiple angles reducing facial
obstructions. This is highly used by large-scale productions,
given its need for dedicated hardware. However, such equip-
ment is not always readily available, hence simpler methods
are needed.

Another approach is to use stationary cameras. It makes
the process more accessible, but more computationally de-
manding, as it requires processing the face’s relative position.
It also has lower accuracy, given its susceptibility to facial
obstructions.

Blendshapes are a simple technique to deform meshes,
based on the combination of linear transformations applied
to each vertex. A model with high-quality blendshapes yields
some of the best results in facial animations, as it grants a great
degree of control over fine details. However, this method is
very labor intensive, as each transformation has to be defined
manually, usually by a 3D artist.

This article proposes a method that automatically generates
and fits a blendshape model to a person’s facial expression
given a video sequence. The model evolves on-the-fly, creating
new blendshapes automatically when necessary. It reduces
significantly the work required in the production of this kind
of model. It also uses video input from a stationary camera for
greater accessibility. The proposed method was made into an

open-source add-on for Blender, a free 3D modeling software,
to help those without access to state-of-the-art technology in
their animation endeavors.

II. RELATED WORK

There is a large number of works on face modeling and
capture using different approaches. It is beyond the scope
of this article to make an exhaustive list of those already
published. An overview of several methods developed in
this area can be found in [2]–[4]. For a blendshape-specific
approach, [5] goes over several methods.

In recent times, several works have been published with the
goal of obtaining real-time face capture without the use of
facial markers using RGB [6]–[9], and RGB-D cameras [10]–
[14] In this article, RGB cameras were used, as the project’s
goal is to be as accessible as possible.

There is also a vast number of works on performance-driven
facial animation, where a person’s face is tracked, then its
movements and expressions are transmitted to a virtual model.
Some of those use Three-dimensional capture data [15], [16]
and some others use standard video data [17]–[19]. There are
also variations depending on the type of model used, those
being principal component analysis [20], blendshapes [1],
[17], [18], [21], and a combination of both [16]. In this work,
the data was collected from real-time recordings and applied
to a blendshape model.

Furthermore, many commercial 3D modeling software have
facial animation systems, usually as third-party add-ons that
extend the base program’s functionality, such as Face Machine
Nodes [22] and Facial Animation Toolset [23], for Maya and
BonyFace [24] for 3dsMax. Blender is a free alternative to
those programs and the chosen platform for implementing and
testing the proposed method.

III. FACIAL ANIMATION WITH BLENDSHAPES

A blendshape facial model consists on a base model and
a set of n facial expressions, where each expression is
represented by a blendshape. The weighted combination of
these expressions results in the final model. Figure 1 is an
example of a blendshape facial model, where the upper left
expression is the basis (neutral), and the others correspond to
different expressions available for this model, which are slight
variations on said basis.



Figure 1. Facial model using blendshapes.

The blendshapes are combined through the following ex-
pression:

S = B0 +
n∑

i=1

αiBi,

where B0 corresponds to the base blendshape vertex group, Bi

to ith blendshape vertex group. αi is a weight factor to control
the influence of Bi on the final blendshape vertex group S.
The values of α can be defined manually or automatically
calculated to arrive at the desired expression.

Controlling said alpha values is a very time-consuming
task, hence performance-driven animation methods come into
play, capturing a subject’s face and automatically adjusting the
model’s blendshape weights to it. This can be done either in
real-time or with a pre-recorded video sequence.

Then, those weights go through the process of retargeting,
a transformation of expressions from the original model into
another model with a corresponding set of blendshapes. This
technique allows the facial fitting to occur using a mesh more
similar to the recorded face, thus improving the method’s
accuracy. Then the results are transmitted to the desired mesh,
which can differ greatly from the original face.

IV. METHOD

The method takes frames from a video sequence as input,
obtained either from a real-time camera or a pre-recorded
video. Then, it searches for a face in the frame and infers
its geometry. That data is used to create a model that fits the
face. Finally, the model can be retargeted to a final model.
Figure 2 shows the pipeline of the method.

Figure 2. Pipeline of the method.

The first step consists in identifying a face in the frame.
This can be done by using Computer Vision and Machine

Learning algorithms. In this work it was done with the library
MediaPipe [25], using the modules Face Mesh and Face
Geometry, that identifies and obtains the geometric data for a
face in a markerless video frame. The result is a set of points
called landmarks distributed on the face. These landmarks are
given a coordinate system relative to the frame, but using Face
Geometry module it is also possible to infer 3D coordinates in
the real world, given in centimeters, with the face centered at
the origin and facing the z-direction, such that, regardless of
the subject’s distance to the camera, the size of the captured
face remains constant. Figure 3 shows the landmark extraction
from two frames, and the corresponding 3d mesh obtained
from these landmarks.

Figure 3. Landmarks inferred in 2d and 3d mesh.

The landmarks are then used to fit a blendshape model,
where the weights αi can be obtained by solving the following
least squares problem: where Fi is the 3d position of i-th
landmark, Bji is the position of the i-th vertex in the j-th
blendshape, and αj is the weight related to this blendshape.
This minimization problem finds the weights that make the
blendshape model as close as possible to the given landmarks.

The blendshape mesh is created on-the-fly during the cap-
ture session. The user defines the base mesh, ideally using a
neutral expression. New blendshapes can be added manually
using the positions of the given landmarks. But it can also be
automatically created: if the minimization error is greater than
a predetermined threshold, then the current blendshape model
does not have enough shapes to reproduce accurately the
given expression, in this case, a new blendshape is produced.
Figure 4 shows an example of blendshape generation.

To isolate different parts of the face, it is possible to work
with vertex groups, such that when a blendshape needs to
be created, it is split for each of the groups. For example,
defining a group that affects only vertices around the left
eye and another group that affects vertices around the right
eye, allows the system to create blendshapes that register
the movements of each eye separately. Each blendshape j
is associated with one vertex group,and every vertex i has
a weight wji associated with this group, such that the position
of the corresponding vertex in the blendshape model is given



Figure 4. Automatically generated blendshapes. The top half showcases what
happens when the threshold is too high. The bottom half showcases that when
the tolerance is lowered and a new blendshape is created.

by

B0i +

n∑
j=1

αjwjiBji.

The minimization problem can be updated to use these vertex
weights. Figure 5 shows a set of user-defined vertex groups.

Figure 5. User-defined vertex groups that split the face into three separate
regions.

It is also possible to retarget those expressions to another
model; calculating an equivalent expression on the target mesh.
This is a necessary step, as the desired final model isn’t the
same used for the capture fitting. This task requires user input,
as models and their blendshape sets can vary greatly. Users
have to define blendshape equivalencies between models, by
selecting one blendshape from the source mesh and a set
of weighted blendshapes from the target-mesh, so that both
models have an analogous expression. This creates a set of
conversion weights α between blendshapes of both models.
The blendshape weights of the final model are computed as
follows:

Bti =

n∑
j=1

αijBsj

Where Bti is the ith target-mesh blendshape and Bsj is the
jth source-mesh blendshape, and αij is the conversion from
source blendshape j to target blendshape i.

V. RESULTS

Figure 6 shows a face-capture session with a blendshape
model that was automatically generated from the proposed
method. The method created a set of 12 blendshapes (not
shown in the figure).

Figure 6. Result of face-capture with an automatically generated blendshape
model.

Figure 7 shows the base mesh and four blendshapes that
were automatically generated. Figure 8 shows two frames of a
face-capture session using a retarget mesh. Figure 9 showcases
the retargeting process to a simple mesh.

Figure 7. Set of automatically generated blendshapes. The base mesh is on
the left.



Figure 8. Blendshape model with retarget mesh.

Figure 9. Retargeting to a simple model.

Figure 10 shows how fitting error changes along time. Every
time the error goes over the threshold, a new blendshape
is added to the model, cause a substantial error reduction
on the next frames. After some time, when there is enough
blendshapes, the error is always below the threshold.

0 100 200 300 400 500

0

5

10

15

20

25

30
error
threshold

Figure 10. Error evolution during capture.

Lastly, Figure 11, shows the distance between equivalent
vertices in the captured and blendshape meshes. The left
column shows neutral expressions, close to the base mesh,
while the right one shows extreme ones. The first row shows
the results given a tolerance of 2, the second with a tolerance
of 10, and the bottom one 50. It was empirically determined
that intermediate tolerance values yield the best results.

Figure 11. Blendshape ajustment error. Each vertex is painted in a colored
scale, where dark blue is an error of 0 cm and bright red of 1 cm or more.

VI. CONCLUSION

This work proposes a technique for the creation of
performance-driven facial animations with automatic gener-
ation of a blendshape model from marker-less input video
frames. The method uses Computer Vision methods to extract
landmark points on the face’s surface and fits them in a
blendshape model, which is incrementally improved whenever
an expression that can not be accurately represented is found.

Despite showing promising results the system still has some
limitations. As the number of blendshapes, increases some
errors compound and become more noticeable. Such errors
are pretty noticeable in the lip areas, that are almost always
gaping. Figure11 showcases this phenomenon, the row with
the smallest tolerance had worse results than the one with and
intermediate tolerance.

Another problem that stems from the number of blend-
shapes, is how cumbersome the manual adjustments required
for retargeting become, as each blendshape is ajusted manu-
ally.

Lastly, the method is computationally costly, it’s hard to
do it at a high frame rate. In our experiments, the system
performed at around 20 frames per second in an 8-core AMD
Ryzen 5 processor. Most of the processing time (around 98%)
is due to the frame processing and landmark extraction done
by Mediapipe. The proposed blendshape fitting method uses
only 2% of processing time.

For future works, we plan on including gaze tracking. The
user interface can be refined to streamline the usability. Finally,
the retargeting process needs and overhaul. Rather than having
to map blendshapes one by one, it would be better if it were
possible to match whole expressions with many blendshapes.



This could be done by solving a least squares problem for the
values of αij .

REFERENCES

[1] L. Williams, “Performance-driven facial animation,” in Proceedings of
the 17th Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’90. New York, NY, USA: Association
for Computing Machinery, 1990, p. 235–242. [Online]. Available:
https://doi.org/10.1145/97879.97906

[2] Z. Deng and J. Noh, Computer Facial Animation: A Survey.
London: Springer London, 2008, pp. 1–28. [Online]. Available:
https://doi.org/10.1007/978-1-84628-907-1 1

[3] V. Orvalho, P. Bastos, F. Parke, B. Oliveira, and X. Alvarez, “A Facial
Rigging Survey,” in Eurographics 2012 - State of the Art Reports, M.-P.
Cani and F. Ganovelli, Eds. The Eurographics Association, 2012.

[4] F. I. Parke and K. Waters, Computer Facial Animation. A K Peters,
2008.

[5] J. P. Lewis, K. Anjyo, T. Rhee, M. Zhang, F. Pighin, and Z. Deng,
“Practice and Theory of Blendshape Facial Models,” in Eurographics
2014 - State of the Art Reports, S. Lefebvre and M. Spagnuolo, Eds.
The Eurographics Association, 2014.

[6] C. Cao, Y. Weng, S. Lin, and K. Zhou, “3d shape regression for
real-time facial animation,” ACM Trans. Graph., vol. 32, no. 4, pp.
41:1–41:10, Jul. 2013. [Online]. Available: http://doi.acm.org/10.1145/
2461912.2462012

[7] C. Cao, D. Bradley, K. Zhou, and T. Beeler, “Real-time high-fidelity
facial performance capture,” ACM Trans. Graph., vol. 34, no. 4, pp.
46:1–46:9, Jul. 2015. [Online]. Available: http://doi.acm.org/10.1145/
2766943

[8] Y. Weng, C. Cao, Q. Hou, and K. Zhou, “Real-time facial animation on
mobile devices,” Graphical Models, vol. 76, no. 3, pp. 172 – 179, 2014,
computational Visual Media Conference 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1524070313000295

[9] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner,
“Demo of face2face: Real-time face capture and reenactment of
rgb videos,” in ACM SIGGRAPH 2016 Emerging Technologies, ser.
SIGGRAPH ’16. New York, NY, USA: ACM, 2016, pp. 5:1–5:2.
[Online]. Available: http://doi.acm.org/10.1145/2929464.2929475

[10] T. Weise, S. Bouaziz, H. Li, and M. Pauly, “Realtime performance-
based facial animation,” ACM Trans. Graph., vol. 30, no. 4, pp.
77:1–77:10, Jul. 2011. [Online]. Available: http://doi.acm.org/10.1145/
2010324.1964972

[11] Y.-L. Chen, H.-T. Wu, F. Shi, X. Tong, and J. Chai, “Accurate
and robust 3d facial capture using a single rgbd camera.” in ICCV.
IEEE Computer Society, 2013, pp. 3615–3622. [Online]. Available:
http://dblp.uni-trier.de/db/conf/iccv/iccv2013.html#ChenWSTC13

[12] H. Li, J. Yu, Y. Ye, and C. Bregler, “Realtime facial animation
with on-the-fly correctives,” ACM Trans. Graph., vol. 32, no. 4, pp.
42:1–42:10, Jul. 2013. [Online]. Available: http://doi.acm.org/10.1145/
2461912.2462019

[13] S. Bouaziz, Y. Wang, and M. Pauly, “Online modeling for realtime facial
animation,” ACM Trans. Graph., vol. 32, no. 4, pp. 40:1–40:10, Jul.
2013. [Online]. Available: http://doi.acm.org/10.1145/2461912.2461976

[14] P.-L. Hsieh, C. Ma, J. Yu, and H. Li, “Unconstrained realtime facial
performance capture.” in CVPR. IEEE Computer Society, 2015, pp.
1675–1683. [Online]. Available: http://dblp.uni-trier.de/db/conf/cvpr/
cvpr2015.html#HsiehMYL15

[15] B. Choe, H. Lee, and H. Ko, “Performance-driven muscle-based facial
animation,” Comput. Animat. Virtual Worlds, vol. 12, pp. 67–79, 2001.

[16] Z. Deng, P.-Y. Chiang, P. Fox, and U. Neumann, “Animating blendshape
faces by cross-mapping motion capture data,” in Proceedings of the
2006 Symposium on Interactive 3D Graphics and Games, ser. I3D ’06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
43–48. [Online]. Available: https://doi.org/10.1145/1111411.1111419

[17] F. Pighin, R. Szeliski, and D. Salesin, “Resynthesizing facial animation
through 3d model-based tracking,” in Proceedings of the Seventh IEEE
International Conference on Computer Vision, vol. 1, 1999, pp. 143–150
vol.1.

[18] B. Choe and H.-S. Ko, “Analysis and synthesis of facial expressions
with hand-generated muscle actuation basis,” in Proceedings Computer
Animation 2001. Fourteenth Conference on Computer Animation (Cat.
No.01TH8596), 2001, pp. 12–19.

[19] T. Rhee, Y. Hwang, J. D. Kim, and C. Kim, “Real-time facial
animation from live video tracking,” in Proceedings of the 2011
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
ser. SCA ’11. New York, NY, USA: Association for Computing
Machinery, 2011, p. 215–224. [Online]. Available: https://doi.org/10.
1145/2019406.2019435

[20] V. Blanz, C. Basso, T. Poggio, and T. Vetter, “Reanimating faces in
images and video,” Comput. Graph. Forum, vol. 22, pp. 641–650, 09
2003.

[21] E. Chuang, F. Deshpande, and C. Bregler, “Facial expression space
learning,” in 10th Pacific Conference on Computer Graphics and Ap-
plications, 2002. Proceedings., 2002, pp. 68–76.

[22] Anzovin. (2012) Face machine nodes. [Online]. Available: https:
//anzovin.squarespace.com/tfmn

[23] Animationsinstitut. (2012) Facial animation toolset. [Online]. Available:
https://animationsinstitut.de/en/research/tools/facial-animation-toolset

[24] Scriptattack. (2012) Bony face: Facial animation system for 3dsmax.
[Online]. Available: http://www.scriptattack.com/maxscripts/bonyface/
index eng.html

[25] Google. (2020) Mediapipe. [Online]. Available: https://mediapipe.dev


