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Abstract—Problems of texture classification are consistently
challenging once the patterns of different instances can be very
similar. In the context of medical imaging, this group of methods
can aid in diagnosing patients as part of the concept of Computer-
Aided Diagnosis (CAD). In this paper, we propose a method
for texture classification in the context of classifying Interstitial
Pulmonary Diseases (IPDs) on high-resolution Computed Tomo-
graphies (CTs) using concepts of complex networks and statistical
metrics. Our approach is based on mapping the input image into
multiscale graphs and extracting the closeness centrality metric.
We combine the feature vector resulting from the closeness
analysis with Haralick and Local Binary Pattern descriptors. We
analyze the proposed approach’s performance by comparing it
with other methods and discussing its metrics for each class (IPD
pattern) of the dataset. Based on the results, we can highlight
our technique as an aid on the problem of diagnosing patients
with COVID-19.

I. INTRODUCTION

Interstitial Pulmonary Diseases (IPDs), also called Diffuse
Parenchymal Diseases, form a group with more than 150
different pathologies that affect the interstitial region, includ-
ing walls of the air sacs of the lungs and areas around
blood vessels and lower airways [1]. The patient’s complete
history (symptoms, family history, disease record), physical
examination, laboratory tests, pulmonary function tests, and
visual findings on chest radiographs are essential in diagnosing
IPDs. Computer-Aided Diagnosis (CAD) has become one of
the major research subjects in medical imaging and diagnos-
tic radiology [2]. One way to diagnose IPDs is the visual
analysis of tomography (CT) images (see Figure 1). Textures
present in digital images are complex visual patterns with
particular characteristics and weight can see them as powerful
discriminators for images. The texture classification process
consists of an essential step in Medical Image Analysis tasks
and their applications, including content-based medical image
retrieved, classification and segmentation. According to [1],
the IPD’s are diseases that have a consistently difficult process
of classification. In other words, it is not trivial, because the
characteristics of some texture patterns can be difficult to
differentiate and easily lead to incorrect results.

One of the main challenges in texture classification is
developing an efficient descriptor invariant to rotations, scale,
and lighting variations. We can perform an accurate texture
classification using a large number of approaches like the sta-
tistical ones (e.g., gray level co-occurrence matrix (GLCM)),
Local Binary Patterns (LBP), graph-based approaches with
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Fig. 1. ROIs presenting texture patterns of IPDs in high-resolution CT images:
(a) Healthy Lung (b) Pulmonary Consolidation (c) Emphysematous Area (d)
Septal Thickening (e) Honeycomb (f) Ground-glass Opacity.

touristic walkers [3] and shortest path in graphs [4], learning-
based approaches [5], etc.

Complex Networks (CNs) are irregular and comprehensive
structures inspired by empirical analysis of real networks that
allow us to understand various real systems [6]. We call
these systems ”complex systems” because it is not possible to
predict their collective behavior from their single components.
But understanding the topological description of these systems
makes us capable of predicting them and possibly control
them. CNs are described by several metrics, which represent
their topological properties.

Here, we present a method, based on Statistical descriptors
and graphs-based ones (CNs), for classifying CT images that
show IPDs texture patterns.

II. RELATED WORKS

Texture descriptors extract attributes from images and repre-
sent them efficiently, providing more outstanding classification
performance, regardless of the classifier used [7]. In general,
Graph-based methods methodology maps the image in a
network and use topological aspects of it to characterize and
classify textures [8], [9].

According [8], an image is mapped to a regular directed
network in which each pixel becomes a vertex that are
connected if they are within a neighborhood determined by a
radius value r. A thresholding operation is applied to transform
the regular network into a scaled one. A set of edges are
removed in this process, depending on this threshold value.



Several threshold values were used, obtaining multiple scaled
networks from a single image. For each network, random
walks were applied to estimate the activity in a given network.
An activity values histogram was generated by the association
of the in-degree values of the vertices with the number of steps
of the walker in these same vertices. The histogram values are
concatenated by varying the threshold, thus generating a vector
of attributes for a given image. Another work that addresses
the characterization of textures with graphs is [9]. This work
presents the texture descriptor that uses deterministic walks
and vertex in-degree values to generate a feature vector.

Global methods for texture classification describe the image
as a whole to generalize a given object. Neuroscience re-
searchers said that the human brain combines Local and Global
information to recognize objects. The works of [8] and [9] are
promising. Still, they present the problem of extracting texture
features through only local aspects since the analysis considers
only in-degree values from the network. This centrality metric
represents the number of incoming edges onto a vertex. Then,
it can describe only the relationship between a pixel and its
neighborhood in a given radius.

III. PROPOSED APPROACH

This work proposes a method for IPDs classification using
local and global approaches for texture description. To achieve
this, we combine statistical and a new graph-based descriptors
Our proposal can be divided into three steps: The image to
graph mapping process, the Feature extraction process, and
finally, the classification process.

A. Mapping Images into Networks

Our first step is to model a grayscale image I into a network
G = (V,E) based on [8] and [9], where V is the set of all
the vertices and E is the set of all edges. Each pixel pi =
(xpi

, ypi
) (where x and y represent its spatial position) has a

intensity value associated I(pi) ∈ [0, 255]. We map each pi
into a vertex (or node) vpi ∈ V .

We connect two vertices vi and vj if the Euclidean distance
d(pi, pj) =

√
(xpj − xpi)

2 − (ypj − ypi)
2 is equal or less

than a given radius r. For each graph edge e ∈ E, a weight
evi,vj , defined by the value of the pixels intensity difference,
is assigned, according Equation 1. Initially, this mapping is
a regular weighted graph presenting connected vertices in a
neighborhood defined by the radius r.

evi,vj =

{
I(pi)− I(pj), if d(pi, pj) ≤ r

NaN (Not a Number), otherwise
(1)

In Equation 1, the non-existence of an edge is given by
the Not a Number (NaN ) symbol. Thus, to transform the
obtained network into a complex network G, we applied a
transformation ϕ(l, G), ϕ : G → G on the edges of the network
to reveal the properties of the original image texture. It consists
of selecting an edge according to the value of its weight evi,vj .
Edges with weight less than a threshold l, are selected.

To obtain a directed graph, we discard links with negative
weights. In Equation 2 we can see that edges with negative
weights are excluded from the set of edges E. Therefore, the
direction of an edge e ∈ E in directed graph G is given by the
pixel with larger intensity values to pixels with lower intensity
values.

evj,vi =

{
evi,vj , if 0 < evi,vj ≤ l
NaN, otherwise (2)

We can see the transformation ϕ(l, G) as multiscale graph
analysis, where G is a multiscale graph set. For each value
of l, the original graph is transformed into a l-scaled graph
Gl ∈ G. In this way, small values of l, provides detailed
local information about image textures, while larger values
of l presents better global information, such as image edges.
We called l scaled threshold.

B. Features Extraction
As a global texture descriptor, we propose a new graph-

based texture classification method using the Closeness Cen-
trality metric. For a connected graph, we can see the Closeness
of a vertex vi a the inverse of the sums of the minimum path
distances from vi to all other vertices of the network. However,
this definition is unsuitable when the network is disjointed, as
some vertices are not reachable. Thus, a more common way to
calculate the Closeness is from the sum of the inverses of the
shortest path distances CC(vi) =

1
N−1

∑
j ̸=i

1
dvi,vj

, where, N
is the number of vertices in the Graph; dvi,vj is the length of
the shortest path between two vertices vi e vj ; and 1

dvi,vj
= 0

if there are no path between vi and vj .
Thus, the larger the value of Closeness, the more central the

vertex. In general, the vertex with the highest value of Close-
ness has the best view of the information flow. Unlike [8],
which uses input degree values of the network vertices, the
Closeness can be seen as a global texture descriptor, since
its value for each vertex is calculated considering all other
vertices of the network.

Let Dl be the matrix of closeness values of the vertices
vi ∈ V for a given threshold l. Every vi has a corresponding
Dli ∈ Dl, where Dli = CC(vi). We define the average degree
matrix D as the average of Dl for all li ∈ {l0, l1, ...ln}.

In this way, we propose the creation of a feature vector
consisting of the relation between the intensity values of the
image I and the values of the matrix D obtained by applying
the centrality closeness measure over the graphs Gl ∈ G. The
value di ∈ D is finally the average of all closeness values for
all l−scaled graphs, for the vertex vi ∈ V , and consequently,
for the pixel pi ∈ I . Figure 2 illustrates an example of the
matrix D obtained from a set G for l = 10, 50, 150.

If we take m intervals equally spaced in the intensity image
range [0, 255], we can call [wk, zk] the k-th interval into the
range. Then, the relation between the intensity values of the
image I and the values of the matrix D can be expressed by
Swk,zk =

∑
di∈M di, where M = {di ∈ D|wk ≤ I(pi) <

zk}. Then, for a single image, we finally obtain the feature
vector HG = {Sw1,z1 , Sw2,z2 , . . . , Swm,zm}.



Fig. 2. From top to bottom: scaled graphs Gl ∈ G for l = 10, 50, 150,
respectively; Dl obtained from the scaled graphs; and the final matrix D with
the average of all closeness values for all l − scaled graphs.

As local texture descriptors, we applied two classical meth-
ods: Haralick [10] and LBP [11]. Haralick is a classical statis-
tical method to represent image texture. In this paper, we used
all 14 haralick descriptors proposed in [10]. LBP is a common
and helpful method to describe texture. The LBP operator
is its monotonic grayscale transformation invariance and its
computational simplicity. We call theses features obtained by
haralick and LBP descriptors He, and they were extracted from
grayscale images.

The combined Feature vector is defined as H = [HG,He].
This is a graph-based and statistical representation of one
image for the classification process.

C. Classification

To perform classification we chose the K-Nearest Neigh-
bors (KNN) algorithm with Minkowski distance. We used
this model because it is simple and, therefore, does not
significantly influence the results. Consequently, using KNN
gives more power to the feature vector obtained through the
proposed method, since a more robust classification algorithm
could affect the results.

IV. EXPERIMENTS AND RESULTS

We used a database containing 247 high-resolution Com-
puted Tomography (CT) images presenting IPDs patterns to
conduct this study. The images were selected by a group
of radiologists, from 108 different exams performed at the
Hospital das Clı́nicas, Faculty of Medicine of Ribeirão Preto,
University of São Paulo (HCFMRP - USP) [12]. Accord-
ing to a radiology report, the images were grouped into
six categories: honeycomb, ground glass, septal thickening,
pulmonary consolidation, emphysematous areas, and healthy,
with approximately 35 images per class. Examples of these
ROIS can be see in Figure 1.

On Figure 3 we can see the algorithms performance as we
increment l0 and r. The values of l0 = 15 and l0 = 35 stand
out once they present better accuracy, recall and precision
when compared to other values. Given these metrics, we
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Fig. 3. (a) Initial threshold l0 hyperparameter analysis. (b) Radius r
hyperparameter analysis.

TABLE I
DIFFERENT METHODS’ METRICS.

Method Features Acc. Rec. Prec.

GLCM 6 55.85% 56.09% 56.63%
LBP 10 51.01% 51.48% 51.56%
Haralick 14 79.28% 79.58% 79.61%
PCANet [5] 2048 81.35% 80.96% 82.33%
Proposed Approach 99 85.45% 85.62% 85.63%

Acc=Accuracy; Rec=Recall; Prec=Precision.

decided to run the experiments with l0 = 15, once l0 = 35
presents a peak along its neighborhood and can bring more
uncertainty to the algorithm. We also used radius r = 2 to run
the experiments once it presents the best metrics We believe
that the smaller the radius, the better is for the method to detect
variations in the images textures and, therefore, favoring the
classification.

The threshold increment was defined as li = 40 and m =
5; For the vector S, we use 75 equally partitioned intervals
that was normalized from [0, 255] to [0, 1]. To generate the
Statistical features we used the all 14 Haralick descriptors.
For the Local Binary Pattern we set the radius as rLBP = 3
and the number of points that define the circle around the pixel
npoints = 8 ∗ rLBP = 8 ∗ 3 = 24. In this way, we have a final
vector HE of length = 99 capable of characterize the input
image.

To perform classification, we executed the KNN algorithm
100 times with 5 neighbors and Minkowski distance. The
experiments were executed in a notebook with Intel Core i5,
8GB memory RAM and operating system Linux Mint 20.1
Ulyssa.

A. Evaluation of the Proposed Approach

To analyse our method, we decided to extract 3 metrics
from the evaluation step: accuracy, precision and recall. For the
experiments, we used the Stratified K-Fold Validation method
with a 10-fold split. Therefore, all the metrics were validated
and presented on the tables using a mean of the algorhitm’s
classification capability on each fold.

On Table I we can verify the performance of our approach
when compared with different methods for texture classi-
fication problems, including the Machine Learning method
proposed called PCANet [5]. We shows the performance
metrics values and the number of extracted features of each



TABLE II
METRICS OF PROPOSED APPROACH BY PATTERN CLASS.

Class Recall Precision F1-Score Support

Healthy 88.60% 86.57% 87.57% 590
PC 87.10% 85.16% 86.12% 451
EA 90.11% 90.02% 90.06% 502
ST 73.69% 78.17% 75.86% 590
HC 85.25% 84.21% 84.73% 530
GGO 89.14% 88.76% 88.95% 595

Weighted AVG 85.48% 85.40% 85.42% 3258
Macro AVG 85.65% 85.48% 85.55% 3258

PC=Pulmonary Consolidation; EA=Emphysematous Area; ST=Septal
Thickening; HC=Honeycomb; GGO= Ground-glass Opacity.

analysed method. Our proposed method surpassed the results
of more classical methods from literature like GLCM, Local
Binary Pattern (LBP) and Haralick. Our feature vector was
capable of reaching better accuracy, recall and precision while
increasing the number of features to 99.

Another way to analyse our proposed approach is to extract
metrics for each IDP class. It is possible to be more precise
about the algorithm’s performance when dealing with these
specific classes. For each class, we extracted recall, precision
and f1-score. These metric values can be seen on Table II.

Emphysematous Area, Ground-glass opacity and Healthy
are the classes with highest f1-score being 90.06%, 88.95%
and 87.57%, respectively. The Pulmonary Consolidation class
comes with, also, a higher than average f1-score of 86.12%.
This means that, compared to the other classes, these four
were better recognized by the algorithm. It is also important
to notice the support for each class. Pulmonary Consolidation
has only 451 cases on the dataset, which can affect the
method’s capacity of recognizing this specific class. Also,
Emphysematous Area has the second lowest amount on the
dataset with 502 occurrences, but was capable of having the
highest precision, recall and f1-score out of all the classes. On
the other hand, Septal Thickening got the most presence on
the dataset with 590 occurencies but got the lowest f1-score
of 75.86%, followed by Honeycomb with 84.73%.

On the bottom of Table II we displayed the same metrics
for the proposed approach considering the weighted and macro
average of all the classes. Our method got 85.55% and 85.42%
of accuracy for macro and weighted average, respectively.

We can highlight the behaviour of the proposed method
on the context of three classes: Healthy, Ground-glass Opac-
ity and Pulmonary Consolidation. These metrics represent a
relevance of the method on the problem of diagnosing cases
of COVID-19 once Ground-glass Opacity and Pulmonary
Consolidation are abnormalities present on computed tomog-
raphy of patients that contracted the disease [13]. Therefore,
it is suggested that the proposed approach can be of great
importance on the aid of diagnosing patients suspected to have
been infected with COVID-19.

V. CONCLUSION

This work presented an approach that extracts texture
characteristics from High resolution tomography images with
IPDs. The proposed method combines graph-based and sta-
tistical texture descriptors (Haralick and LBP) to classify
the images into five different types of Interstitial Pulmonary
Diseases (IPDs). We map the original into directed complex
networks. Each pixel was considered as a vertex of the network
connecting vertices within a given radius. We extract the
centrality measure closeness from multiple scaled networks,
and a vector of texture features is formed from the sum of
the closeness values within a specific interval. We compared
our proposal with traditional methods of texture classification.
The increase in performance of our method overcomes the
traditional approaches. Thus, it is stated that the proposed
method has great representation in the extraction of texture
features from images with IPDs, which are diseases that
have a consistently bad rating. It is essential to observe that
our proposed method presents better performance results for
IPDs patterns of Pulmonary Consolidation and Ground-glass
Opacity, typically found in COVID-19 patients.
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