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Abstract—Precisely forecasting oil field performance is essen-
tial in oil reservoir planning and management. Nevertheless,
forecasting oil production is a complex nonlinear problem due
to all geophysical and petrophysical properties that may result
in different effects with a bit of change. All decisions to be made
during an exploitation project needs to be made considering
different efficient algorithms to simulate data, providing robust
scenarios to lead to the best deductions. To reduce the uncertainty
in the simulation process, researchers have efficiently introduced
machine learning algorithms for solving reservoir engineering
problems because they can extract the maximum information
from the dataset. Accordingly, this paper proposes using a
Random Forest model to predict the daily oil production of an
offshore reservoir. In this study, the oil rate production is consid-
ered a time series and was pre-processed and restructured to fit
a supervised learning problem. We use the Random Forest model
to forecast a one-time step, which is an extension of decision tree
learning, widely used in regression and classification problems
for supervised machine learning. For testing the robustness of
the proposed model, we use the Volve oil field dataset as a case
study to conduct the experiments. The results indicate that the
Random Forest model could adequately estimate the one-time
step of the oil field production.

I. INTRODUCTION

Predicting oil field performance plays a vital position in
reservoir engineering. The decisions to develop and manage
the reservoir depend on this information to generate good
oil production results. The risks involved are considerably
high, demanding proper uncertainty administration during an
exploitation project. Likewise, reservoir characterization is
essential when forecasting an oil deposit’s performance and
administering uncertainty. As a result, constructing a robust
reservoir model is, therefore, an important task. The process of
characterizing the reservoir may be executed by incorporating
observed dynamic data from a real field in a model, which is
a popular technique called history matching.

The primary tool for history matching algorithms is reser-
voir simulation, which demands the creation of a theoretical
reservoir model in which the user inputs the static properties
and the simulation process computes the dynamical data as
output. Reservoir simulation processes are crucial for reservoir
management, which enables the testing of mixed production
plans for forecasting. At the end of the simulation and charac-
terization process, the model is expected to compute output
dynamical data similar to the observed data. Nevertheless,
reservoir characterization using history matching procedures
requires many reservoir simulations, simplified by changing

the reservoir model properties until the output data match the
observed one. This procedure may take too long and need
advanced computational knowledge. Moreover, the algorithms
often used in history matching demand complex mathematical
or statistical background. As a result, machine learning and
artificial neural networks have been the focus of research
worldwide to provide proxy models to replace the necessity of
flow simulators in some steps of the history matching problems
[5].

History matching algorithms [12] are widely known to be
efficient in predicting reservoir dynamical properties and oil
field production. Moreover, many studies prove that using
optimization algorithms may obtain good results. We can
mention the nonlinear least square methods, e.g., the Gauss-
Newton and Levenberg-Marquardt algorithms [11], and the
ensemble-based methods, e.g., the ensemble Kalman filter [12]
and the ensemble smoother with multiple data assimilation
[19]. The study of Emerick and Shirangi [17] compares the
results obtained by applying the Levenberg-Marquardt (LM)
and the Gauss-Newton (GN) method. Their results suggest that
the LM approach could bring better results when predicting
reservoir properties due to the more negligible influence of
minimal singular values in the computation of the update
vector compared to the GN application. Considering ensemble-
based methods, the study of Silva et al. [18] offers a good
characterization of the damage zone in a multilayered reservoir
using the ensemble smoother with multiple data assimilation.

A powerful oil production forecasting tool involves using
machine learning algorithms. This technique has become very
popular in the last few years due to the easy manipulation
and understanding of the mathematical formulation of such
algorithms. Moreover, the statistical background of machine
learning enables the algorithm to extract the maximum avail-
able information from the dataset, which may be unfeasible
when not using any data-driven procedures. These algorithms
are split into two ample categories: supervised and unsuper-
vised machine learning. We can also mention the algorithms
based on reinforcement learning, which recently gained much
attention.

The use of machine learning techniques applied in reservoir
engineering problems is not entirely new, having a good num-
ber of studies published since the beginning of 1990. We can
mention the study of Zhou et al. (1993) [25], which presents a
field example for recognizing lithology from well logs using a



fuzzy neural network approach. The authors decided to use this
strategy due to the uncertainty, fuzziness, and incompleteness
of reservoir engineering problems. The study of Mohaghegh
et al. (1994) [10] presents an application of artificial neural
networks for predicting reservoir heterogeneities such as per-
meability, porosity, and liquid saturation. This study may be
one of the first to introduce neural networks in forecasting
reservoir dynamical properties. Another interesting study that
uses machine learning procedures applied to reservoir engi-
neering problems is the one presented by Ahmadi et all. [1].
The main objective is to predict the thermodynamics properties
of the reservoir fluids. More precisely, they offer an approach
to monitoring dew point pressure in retrograde gas condensate
reservoirs. To test the method’s robustness, they compare the
results obtained with the proposed artificial neural network
with the classical fuzzy system.

This study presents a data-driven solution for oil production
forecasting using a popular machine learning algorithm called
Random Forest. The application is included in the supervised
machine learning category. The methodology is analogous to
the one presented in time-series forecasting studies, where
we create a subset X containing vectors Xi, i ∈ N, of
size N > 0, corresponding to the past N steps of the time
series. For the target set Y , we create subsets Yi, i ∈ N, of
length one, corresponding to the immediate forward step of
the time series related to the vector Xi. In this study, the
length of each vector in the variables set X is denoted by look
back. More precisely, we use supervised machine learning,
inputting the target and the variables in the training dataset
for prediction. In this study, we evaluate the sensitivity of the
Random Forest algorithm, how its formulation deals with large
and small training datasets, and the efficiency of predicting
a large number of days ahead. We use a real field case to
test the proposed technique, containing the production data of
the offshore Volve field located in the Norwegian North Sea,
available by Equinor.

This study is separated into four sections. In section II,
we present the algorithm Random Forest and how it can
improve the results of forecasting oil field production. Section
III presents some previous works that efficiently used similar
techniques as the one proposed by this study. In section IV, the
Volve dataset is explained in detail. Finally, section V presents
the results of the proposed method.

II. RANDOM FOREST ALGORITHMS

CART stands for Classification and Regression Trees. This
machine learning algorithm generates binary trees, i.e., a
popular data structure in computer science in which each
node has exactly two children. These two edges (children) are
defined as the left and right children. The splitting decision
is made by using an appropriate impurity criterion. The most
popular ones are defined as Gini or entropy. For regression,
CART introduced variance reduction using least squares LS
(Equation (1)) and Mean Absolute Error MAE (Equation (2)).
In Equations (1) and (2) yi, refers to the prediction for an

instance, N is the number of instances and µ is the mean
given by 1

N

∑N
i=1 yi.

LS =
1

N

N∑
i=1

(yi − µ)2 (1)

MAE =
1

N

N∑
i=1

|yi − µ| (2)

Random Forest [4] is a supervised learning algorithm with an
ensemble of size N decision trees built and trained with the
input training dataset. One can apply this model for diverse
classification and regression problems. The main concern with
using decision trees to solve real-case problems is the lowly
variance problem widely described in the machine learning
literature. It means that if the input data have a slight change
compared to the one used as training, one may not compute
exactly the change in the output, which can be substantial.
Moreover, it is reasonable to expect the model to present a
common issue in machine learning applications called over-
fitting. This point indicates that the model learned too much
from the training data but could not generalize the result for
other datasets. A traditional procedure that alleviates the low-
variance problem of decision trees is called bagging, which
builds a forest of decision trees and trains each one with
the input training dataset. However, instead of training all
trees with the whole dataset, it draws a sample of the entire
dataset and determines this small sample as the tree’s input.
This procedure is executed for each tree in the forest. More
precisely, given N cases in the training dataset, it samples,
with replacement, k < N subsets among all possible cases.
In addition, another crucial technique is implemented in each
tree of the forest to reduce the problems of low variance
and increase the model’s generalization capability, which is
called randomized subspace. The randomized subspace is also
applied to the bagging strategy for each tree in the forest.
A random sample of the input features and training data is
employed in each tree. It is straightforward to expect that
each tree in the forest captures slightly different information
from the whole dataset, constructing a forest that could provide
more variability and robustness to the model. For classification
problems, the result of a random forest would be the class with
the most appearance in the forest. For regression, the result
would be the mean of the outcome of each forest. Figure 1
shows a simple diagram explaining how the random forest
algorithm works.

III. PREVIOUS WORKS

Random Forest has become a popular machine learning
ensemble algorithm in recent years. The diverse applications
with good performance in several problems in the industry, in-
cluding the oil field, may explain this fast popularity increase.
Among many applications, we can mention the study of Zhang
et al. (2019) [24], which developed a hybrid scoring system
process by combining conventional screening guidelines and



Fig. 1. Simple diagram of how the Random Forest algorithm works..

the random forest algorithm for enhanced oil recovery pro-
cesses. Wang et al. (2021) [22] implemented the random forest
algorithm to predict the time-lapse oil saturation profiles at
well locations. They used a specific strategy of giving the
field-wide production and injection data as the only input
parameters. Moreover, they could improve the algorithm using
the feature importance module and the Pearson correlation
coefficient to optimize the feature selection. Feng et al. (2021)
[7] applied the random forest algorithm to predict missing
well log data. Moreover, they analyze the uncertainty of the
proposed method by using prediction intervals through the
quantile regression tree. Marins et al. (2021) [9] used the
random forest algorithm to classify faulty events during the
practical operation of oil and gas wells. In their study, the
proposed methodology could detect the faults at the beginning
of the transient stage. Rahimi and Riahi (2022) [15] operated
the random forest algorithm for reservoir facies classification.
They concluded that using a decision tree helped to select
facies classification for efficient computation. Moreover, they
combined geostatistic knowledge with a random forest algo-
rithm for the first time.

The random forest algorithm is also widely used for time
series forecasting in different fields of science. Among all
available studies, we can mention the study of Qiu and Zhang
[14], which predicted electricity load demand from the Aus-
tralian Energy Market Operator. Wu et al. [23] implemented
the random forest algorithm to forecast the weekly upper
respiratory infection rate using clinical data from the Shenzhen
Health Information Center. Papacharalampous and Tyralis [13]
used past streamflow observations and precipitation informa-
tion to forecast daily streamflow up to seven days ahead with
the random forest algorithm. Altinçop and Oktay [2] stated
that the random forest algorithm produces accurate results and
performs better than artificial neural networks in forecasting
time series analysis of air pollution indicators.

IV. DATASET DESCRIPTION

The offshore Volve reservoir [6], located in Norwegian
North Sea, was discovered in 1993. The field is in the sand-

stone of Middle Jurassic age at the depth around 2900m. The
plan for development was approved in 2005 and productions
started in 2008, achieving a peak oil rate of 56,000 bbl/day.
The field was decommissioned in 2016 with a cumulative oil
production of 63 million barrels.

Equinor and the Volve license partners, ExxonMobil and
Bayerngas, have disclosed all seismic records and oil produc-
tion data from this reservoir in an open repository [6]. Since
real data are often prohibitive or challenging to be obtained,
the multi-terabyte Volve dataset, containing lots of information
on a complete lifetime of a reservoir exploitation project, has
been widely used by data scientists and reservoir engineers
in their work involving the oil and gas industry. Moreover,
academic researchers could test the different complex models
they develop in a real field case using the Volve dataset. It
has been a substance for research in drilling data, geometric
modeling, scientific visualization, and Petroleum reservoir
modeling. Tunkiel et al. [21] explored the dataset, described
common obstacles found in the Volve dataset, and presented
approaches for overcoming all the issues. Gupta et al. [8]
developed a complex workflow to identify the formation type
around the bit from surface drilling data. Sun et al. [20] build
a 3D mechanical earth model of the Volve field. Ravasi et al.
[16] created a real target-oriented seismic images for Volve
reservoirs.

This study uses only the oil production data from well 15/9-
F-1 C, contained in the Volve Field. Due to the high number
of errors and inaccuracies in the data, it was necessary to
pre-process the whole data, guaranteeing that there were no
missing values or non-numerical ones. The final data was
an uninterrupted 746 days sequence of the oil production
information, shown in Figure 2.

V. RESULTS

The 746 daily oil production information from Volve well
5/9-F-1 C was used as input. In all following results, we use
the first 500 days as a training set and the remaining 246 days
as a test set. In particular, the original data set is restructured
into a sliding window dataset, where t time steps are used to
predict time step t + 1. We refer to t as look-back since it
is the number of previous time steps to make one-time step
prediction ahead.

The Random Forest Regression in the Scikit-Learn package
includes some default parameters. If not specified, the number
of trees in the forest, usually known as n estimators, is 100.
The function to measure the quality of a split is the Squared
error shown in equation 3, where N is the number of samples
being tested, yi is the model prediction, and ŷ is the actual
value.

1

N

N∑
i=1

(yi − ŷ)2 (3)

By default, the minimum number of samples required to
split an internal node is two, and all the nodes are expanded
until all leaves are pure or until all leaves contain less than



Fig. 2. Well ”15/9-F-1 C” daily oil production data contained in the Volve dataset.

two samples. The minimum number of samples required at a
leaf node is 1. The minimum weighted fraction of the total
sum of weights (of all the input samples) required at a leaf
node is 0. look-back is the number of time steps to consider
when looking for the best split. If not specified, there is no
limit for the number of leaf nodes. A node will be split if this
split induces a decrease of the impurity greater than ni that is
calculated as shown in equation 4, where nij is the importance
of node j, Wj is weighted number of samples reaching node j,
Cj is the impurity value of node j, Wleft(j) (resp. Wright(j))
is the weighted number of samples reaching child node from
left (resp. right split) on node j and Cleft(j) (resp. Cright(j))
is is the impurity value of child node from left (resp. right
split) on node j. By default, bootstrap samples are used when
building trees, and the number of samples in a subset, usually
called max samples, is equal to the number of samples in the
original dataset.

nij = WjCj −Wleft(j)Cleft(j) −Wright(j)Cright(j) (4)

Scikit-learn package also includes GridSearch, a tuning
technique that finds optimum parameters. It is an exhaustive
search performed with specific sets of parameter values. Grid-
Search builds a model for every combination of parameters
specified in the collection and evaluates each model, returning
the best one. To measure the accuracy of the random forest
algorithm, we use root mean square error (RMSE), which
is a classical way to evaluate the error of a forecasting
model. It represented the square root of the mean of the
differences between predicted values and observed values, as
shown equation 5. where N is the number of time steps in the
tested set, mtrue,k is the observed value in time step k and
mj,k is the predicted value for time step k.

RMSE =

(
1

Nm

Nm∑
k=1

(mtrue,k −mj,k)
2

)1/2

, (5)

In this study, we settle n estimators as 10, 25, or 50 and
max samples as 50%, 80%, or 100% of the original dataset.
All other parameters are used as default. Besides, we structure
the dataset with three different look-back values: 10, 25, and
50. Hence, for each look-back, we use GridSearch to find the
best n estimators and max samples. Thus, for each look-back
value, GridSearch builds nine different models and returns the
best one, according to RMSE metrics. Note that when look-
back is settled as t, it is necessary t time steps to make a
one-time step ahead prediction, so different values for look-
back generate different amounts of predictions even if the test
set always has the same size.

When look-back is 10, GridSearch returns n estimators as
100 and max samples as 50%. The final prediction and the
target values are shown in Figure 3. RMSE in this test is
0.07. When look-back is 25, GridSearch returns n estimators
as 1000 and max samples as 50%. The final prediction and
the target values are shown in Figure 4. RMSE in this test is
0.06. When look-back is 50, GridSearch returns n estimators
as 500 and max samples as 50%. The final prediction and the
target values are shown in Figure 5. RMSE in this test is 0.06.

VI. CONCLUSION

This study proposes applying the random forest algorithm
for oil production forecasting. The strategy used was similar
to the one presented in the time series forecasting, where the
whole dataset is considered time-dependent, and the training
dataset is split into small pieces of the entire data. The
size of these series pieces is referred to as look-back. The
target data is the oil production related to that series piece at
the immediate forward time step. We use the Volve dataset



Fig. 3. Oil production forecast in test set with look-back =10, n estimators=100 and max samples as 50%

Fig. 4. Oil production forecast in test set with look-back =25, n estimators=1000 and max samples as 50%

provided by Equinor to evaluate the robustness and the ef-
ficiency of the method in predicting high nonlinear physical
dynamic data. Moreover, we test the method’s performance
by applying different values for the look-back parameter. We
also experiment with some hyperparameters of the theoretical
background of the random forest algorithms, such as the
forest’s number of trees and the bootstrap sampling ratio, to
proceed with the bagging technique. We use the root mean
squared error (RMSE), a classical error measuring practice, to
assess the results. The results obtained by this study suggest
that the random forest algorithm could get accurate results
when predicting oil field performance with a small value
assigned for the RMSE. Moreover, the look-back value of 25
was enough to yield good results. The bootstrap sampling
ratio of 50% showed to be enough to acquire good final
results. Considering the number of trees in the forest, we tested

100, 500, and 1000. However, the result was inconclusive
because some experiments found the best fit for using 100
trees and others using 1000 trees. Therefore, we leave this
hyperparameter open for further research.

For future works, we plan to continue this work by im-
plementing the random forest algorithm to forecast more
than a one-time step ahead. Also, we plan to implement
other machine learning techniques to make more accurate
predictions considering additional information from a reservoir
as inputs.
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