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Abstract—This work presents a real time user friendly 
system to aid specialized professionals to analyze bone 
scans exams. In order to achieve this, some original ideas 
are applied. The first one is related to the use of each pixel 
of an exam as object of interest for classification. Another 
original idea is the use of operations that are normally 
applied in pre-processing as features for machine learning. 
With both, even using small dataset was possible to obtain 
enough amounts of entries to be used for training and 
testing. Initially, the feature vectors are composed by 64 
features and one target attribute representing the 
classification result. The used bone scans set was composed 
of 42 images from 21 patients. At the end of the learning 
tasks a dataset of 2,512,386 records is computed. In order to 
reduce the cardinality of the vector of features, the Principal 
Component Analysis was employed leading to a new feature 
set with 25 components per object to be classified as with or 
without metastasis, the area under the Receiver Operator 
Characteristic curve achieved with this final set of features 
was 98%.  

Keywords—Medical image processing, Bone scintigraphy, e 

metastasis.  

1. INTRODUCTION

Nowadays, healthcare industry is one of the most active 
and important industrial sector. After the last years’ 
reorganization due to the COVID-19 pandemic, it yearns like 
never before for digital solutions, artificial intelligence tools 
and innovation [1]. The global health care continues to rise 
up to the new challenges to produce and procure the required 
tools for treatments and diagnosis. At the same time, they 
continue to address the heightened importance of fast outline 
of the actions to help build improved health care outcomes 
for all types of diseases. Considering such produce and 
procure cancer continues to be a very serious cause of dead, 
especially after the primary treatment. This is mainly due to 
cancer spread by the body lymphatic system to other 
locations. Metastases are the activities associated with the 
occurrence of new secondary cancers at a distance from a 
primary site [2]. 

Bone is a frequent site of metastases and usually indicates 
a short-term prognosis for patients. Once the cancer has 
spread to the bones, it can rarely be cured, however, it can 
often still be treated with the aim of slowing their growth and 
help improve quality of life. Identifying metastatic bones 
requires a systematic inspection of scintigraphy exams by 
trained and experienced specialists. However, in the majority 
of the occasions, this process is performed only through 
a pure visual analysis, making impossible carry out a
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quantitative assessment of the issue extension and then an 
individualized treatment. The report of an examination made 
on visual bases makes impractical to compare the 
progression of the patient with the time, because evaluations 
based on apparent evaluation may not be faithfully 
reproducible at a future examination done by same person 
and even less coincident with the evaluation of another 
professional. The inability to quantify the findings imposed 
by purely visual analysis directly impacts the routine of 
specialists, promoting greater difficulty in monitoring the 
evolution of the disease and consequently, in conducting a 
proper treatments. To have a way to better detect and 
quantify bone metastases can significantly improve the 
treatments, which can be decisive in fighting against cancer 
spread and vital for maintenance of patients life in most 
cases.  

The bone scan or scintigraphy is a very low-contrast type 
of imaging. Despite the high expertise a nuclear medicine 

professional must have, there are limits to the human eye 
when faced with these gamma radiation images to perform a 
quantitative count of the findings in an exam. However, 
computer vision and machine learning tasks can help on 
correctly classify areas of metastases and measure them. 
Once the presence of secondary tumors in bone regions can 
be quantified, it is possible to efficiently measure the 
advance rate of the affected area, enabling better monitoring 
the treatment and even modify it. Consequently, providing 
this computational aid can be a way to bring great benefits 
to the medical community and patients suffering the effects 
of this serious condition. Details of a solution usable on 
desktop or mobile devices are here presented. 

2. BONE SCAN EXAM

In some cancers, where bone metastasis is common, tests 
might be done for early detection. Some of the tests to allow 
this diagnosis are: X-ray; computerized tomography (CT); 
magnetic resonance (MR); positron emission tomography 
(PET) and bone scan. Among such exams bone scan or bone 
scintigraphy is one of the most common [3]. It is usable for 
all gender and becomes the most suitable medium for a 
definitive decision [4]. A bone scan is a nuclear medicine 
exam in which a radioactive fluid that is attracted to cancer 
affected cells is injected into the patient’s vein, after a 
specific scanner takes images of the patient’s body and areas 
of cancer in the bone appear as highlighted areas [5]. This 
exam is the method of imaging with the highest sensitivity 
(95%) regarding bone metastases [6]. Figure 1 shows a 
screen of our implementation where is possible to see on the 
left image how is the output of this process. Unlike other 



exams such as CT and MRI in it only one image from each 
direction (front or back) is formed, presenting low 
resolution and very poor contrast [7]. Commonly a full body 
dorsal or ventral image has 256×1024 pixels. The areas 
where the radionuclides are concentrated are called 
”hotspots” and may indicate the presence of conditions such 
as arthritis, malignant (cancerous) bone tumors, metastatic 
bone cancer, bone infections, bone trauma (invisible on 
ordinary X-rays) and other bone issues [8]. Bone scan 
images are usually presented with foreground in lighter 
grays and background in black, however these shades can be 
inverted to allow better visibility. 

Fig. 1. Screen of the implemented application for metastic identification, 
with an original image, the border of the hotspots and both overlapped. 

3. PREVIOUS WORKS

Analyzing the works carried out on counting of bone 
metastases, it is important to mention the introduction of 
Bone Scan Index (BSI) [9]. BSI is a quantitative assessment 
of bone scan that represents the weight of total tumor as a 
fraction of the patient's skeletal weight. It has shown clinical 
utility as a prognostic biomarker to associate therapy and 
bone density. Despite demonstrating clinical utility, the 
application and dissemination of the BSI in clinical practice 
have been limited because of its laborious calculations [10]. 

The EXINI Diagnostic system used Image Processing 
(IP) and Artificial Neural Network (ANN) for automating 
BSI computation [7]. It used a total of 200 patients (100 were 
used for training and 100 for validation) and a dataset with 
400 images [7]. EXINI was further improved using a dataset 
with 810 patients [8]. In both versions, four IP operations are 
used: skeleton segmentation, hotspot detection, feature 
extraction and classification. For segment the skeleton, in 
first version, simple threshold was use, while the later 
version this is based on active-shape models (ASM) [8]. In 
order to detect potential hotspots, the work did simple 
statistic evaluation of the mean and standard deviation of 
pixels in a region; when above a threshold, the area is 
considered hotspot. The area must be equal or greater than 6 
pixels in EXINI v1 and it must be bigger than 13 pixels in 
EXINI v2 to be labeled as potential hotspots [7, 8]. Fourteen 
features were used in v1, while 45 features are computed in 
later version. A sensitivity of 90% is achieved for both 

versions but the specificity improves from of 74% in v1 to 
89% using v2. 

BONENAVI software also used ANN and was presented 
in 2 versions. Its first version was trained using 904 patients 
from a single Japanese institution and after with 1,532 
patients from nine institutions [9, 11]. They presents the area 
under the ROC curve (AUC) that was 0.912 for the first 
version and 0.934 for the last release [11]. The sensitivity 
and specificity based on the last version of BONENAVI was 
92% [11].  

CADBOSS used 130 images from 60 patients, 100 with 
metastases. Ten folds cross validation was used during the 
training and test phases [12]. CADBOSS used hotspot 
segmentation, feature extraction, feature selection and 
classification. The method used for segmentation was the 
Level Set Active Contour (LSAC). After segmentation, 
feature extraction was carried out. The best features was 
selected using the Principal Component Analysis (PCA). The 
hotspots are classified by the ANN as presenting or did not 
presenting metastases. Body images were reduced to 
200×700 pixels and a set of sub images were created by 
dividing each image into 25 equal pieces. Thus, 625 sub 
images were obtained with 8×28 pixels. Only the ten (10) 
most important features selected for the PCA were inserted 
in the ANN. The values of accuracy, sensitivity, and 
specificity of the software were 92.30%, 94%, and 86.67% 
respectively [12].  

TABLE I. REPORTED ELEMENTS ON COMPARING RESULTS FROM 

VARIOUS WORKS 

Date Work Patients Techniques Achievements 

2006
EXINI 
 v1 [7] 

200 
threshold+ 
14 features 

+ ANN 

Sensitivity=0.9 
specificity=0.74 

2009
EXINI 
 v2 [8] 

810 
ASM + 45 
features + 

ANN 

Sensitivity=0.9 
specificity=0.89 

2012
BONENAVI 

 v1 [9] 
904 

ANN 
AUC=0.91 

2013
BONENAVI 

 v2 [11] 
1532 

ANN AUC=0.94 
Sensitivity=0.92 
specificity=0.84 

2016
CADBOSS 

[12] 
60 

LSAC+ 
|PCA (10 

features) + 
ANN 

Accuracy =0.92 
Sensitivity=0.94, 
specificity=0.87 

2016
LU thesis 1 

[13] 
2164 

CNN Sensitivity=0.98 
specificity=0.65 

2017
LU thesis 2 

[14] 
2164 

CNN 
AUC=0.94 

2020 
D.A.E.

Larisa [15] 
817 

CNN Accuracy =0.97 
Recall=0.87 

Precision=0.95 

Two M.Sc. theses from Lund University used 
convolutional neural networks (CNNs) for hotspot 
classification collected from EXINI patients. In the first one, 
due to execution time restrictions, only the hotspots found in 
the spine were used to train the CNN. Thus, the used dataset 
consisted of 10,428 examples where 3,170 of the them 
belonged to the “high risk” class, while the remaining 7,258 
examples were from “low risk”. The dataset was separated 
into training, validation and test set having 4,171; 3,128 and 
3,129 hotspot respectively [13]. The CNN used the Keras 
tool and under sampling. The second used to find optimal 
hyper-parameters 20% of the data for the test set to calculate 



the final performance, and the remaining divided into equally 
sized ‘folds’ for K-fold cross-validation with the number of 
folds 3, i.e. K = 3) [14]. For all results obtained the AUC was 
used as a performance index. The final test set performance 
was calculated by taking the optimum hyper-parameters 
obtained after a random hyper-parameter search task and 
retraining a network using the training and validation data 
combined, thereby extending the number of training 
examples. Table 1 presents the score of both [14]. 

Recently, a study investigates the application of CNN to 
build a computerized solution that automatically identifies 
whether a patient has bone metastasis or not. In such work, 
970 exams of whole body scintigraphy images from 817 
different male patients who visited Nuclear Medicine 
Department of Diagnostic Medical Center (Larisa, Greece) in 
order to have diagnostic were used [15]. They proposed a 
CNN model after comparison of a diverse well know models 
like ResNet50, VGG16. GoogleNET, Xception and 
MobileNet [15]. The method includes four steps: data 
preprocessing, feature computations, training phase and 
validation. The data split saves 15% of the total dataset for 
testing. The remaining 85% of the dataset is then split into an 
80/20 ratio, where the small portion is used as validation set 
[15]. The proposed model has a deep-layer with 3 
convolutional pooling layers, 1 dense layer followed by a 
dropout layer, as well as a final output layer with one node. 
The final output was recall 98%, accuracy 97% and precision 
95% [15].  

By these works, summarized in Table 1, it is possible to 
state that the developed of bone scan aiding tools has had a 
advances in the last years, but there are still opportunities for 
new approaches and specially to promote better interaction 
between the computer and medical user. 

4.  IMPLEMENTED SYSTEM 

The source code of this project is open source, free and 
accessible at the following online repositories: 
github.com/josemorista/bm-server (Back-end) and 
github.com/josemorista/bm-web (Front-end). The 
implemented web application is also available online for 
public access at bm-diag.org. In order to achieve bone 
metastasis classification and to compute the number pixels 
labeled as with metastasis, the system performs in the back-
end image analysis (IA) and machine learning (ML) 
operations that will be described in details in next sub 
sections of this work. 

A. Used Technologies 

The application’s interface uses the World Wide Web 
(WWW) and was implemented using ReactJs, Hyper Text 
Markup Language (HTML), Cascading Style Sheets (CSS), 
Syntactically Awesome Style Sheets (SASS) and TypeScript 
(TS). Available languages for descriptions and 
communication between the machine and the user in the 
system interface are English and Portuguese. This front-end 
application communicates through requests under the Secure 
Hypertext Transfer Protocol (HTTPS) with an application 
programming interface (API). The body of the requests is 
written in JavaScript Object Notation (JSON) and the 
methods available for communication follow the 
Representational State Transfer (REST) architecture. The 
API, mostly implemented with NodeJs, TS, ExpressJs and 
Python is responsible for handling and processing the various 

requests entering from the web interface, regarding 
authentication, management and processing of exams and 
patients. To perform operations related to IA and ML, the 
API executes sub processes (or child processes) written in 
Python language with help of the popular tools: Pydicom; 
Skimage; Opencv; Scipy; Sklearn and Pandas. Pydicom was 
used for reading and processing files in DICOM format. The 
Skimage, Opencv and Scipy are employed to execute the set 
of operations related to the IA and image processing (IP). 
Sklearn and Pandas are used for the tasks of classification 
and learning. The application’s back-end also communicates 
with a PostgreSQL database cluster in order to provide 
persistence of information related to users, patients and 
exams.  

B. System security 

Security and access control are managed through a 
Bearer Token and JSON Web Token (JWT) strategy. The 
user’s JWT is created and signed by the API at the time of 
the user authentication. This token has a limited lifetime of 
30 minutes, being extensible through security routes. This 
JWT contains the professional’s unique identifier in the 
system and must be attached to the HTTP “Authorization” 
header in all private route requests. Through this security 
mechanism, it is possible to guarantee that each professional 
will be able to view and manipulate data referring only to 
their profile and patients. These include: upload DICOM 
files, create, edit and view patient information; create, edit 
and process exams. Once authorized, the user (physician) 
can use functionalities to create, edit, list, remove patients 
and process their exams for automated detection and 
diagnosis of metastasis. In order to add a patient into the 
system, one has to include: Patient’s full name; date of birth; 
gender and complementary observations about the patient. 
Once a patient was added (or selected), the user is redirect to 
the screen related to the exams of that patient. As presented 
in Fig 2 already processed exams are assigning with a green 
dot and exams do not yet processed with a yellow one. 

 

Fig. 2. System screen related to exams visualization and management. 

C. Used dataset description  

The used set of bone scan exams was acquired in the 
UFF University Hospital (UH). The acquisition was done 
according to the Brazilian Society of Nuclear Medicine 
protocol for this exam. The exams must be in DICOM 
format. The scanner used to perform the exam was a GE 
Millennium® MPR Gamma Camera. There are 42 available 
exams, they are 21 on ventral and 21 on dorsal positions. 
From these, 8 patients have diagnoses of bone metastasis 
while the remainder 13 patients have healthy radio tracer 
distributions. 



In order to effectively train the classifiers and evaluate 
the output, a ground truth (GT) of the exams was obtained 
through medical consensus of the experts from our UH. 
These experts were responsible for the task of manually 
identify pixels as belonging to a metastatic area of the 
images. Used GT were composed of 42 annotated images 
from the 42 available bone scan exams. The results of this 
annotations were digital images with metastatic regions 
segmented and labeled as foreground pixels. To do this 
operation, the physicians used the web application APEER. 
Available at https://www.apeer.com/annotate. This online 
tool provides an easy interface for accurate annotation [16].  

D. Approach assumptions 

The objective of this work is producing an application for 
classification of each pixel of the exam as metastatic or non-
metastatic without user interaction. In other words, the idea 
is the design of an application with adequate default options. 
For it each foreground pixel in the bone scan DICOM file 
pixel data will be considered a record of the learning 
database and will have its own feature vector. Each pixel in 
this exam can range from 0 to 4,000. The pixel is considered 
foreground when its intensity in the original image is not 
equal to zero. This means that all pixel with null intensity 
values in the original image will not be part of the learning 
dataset, even if by applying some IA filters this positions 
receive values different of zero. It is worth note that this 
strategy presents at least two advantages: it provides a larger 
dataset to be trained by the classifiers, and suits for the goal 
of provide metastasis classification at a minimum level (that 
would be extremely difficult for the human eye), that is 
examining at pixel level.  

The implemented strategy to collect the features will be 
compose the vectors with elements coming from the original 
intensities, positional attributes and other several features 
obtained by the application of techniques from IP. Note that 
these IP techniques are commonly used for image 
enhancement, edge detection, restoration and others. In the 
here used strategy, the results produced by these techniques 
will be used as features and do not have their results 
visualized or used by next IP steps as usually done in non-
autonomous IA and Pattern Recognition (PR) applications 
[17]. 

E. Feature vector composition 

Initially, for each pixel of the patient body of an exam 65 
elements are included in the feature vector. They are formed 
by integer or Boolean elements. For each exam, the 
operations of reading and converting the DICOM file in 
such metadata were executed. After the normalization 
feature vectors are ready for identification. That is each 
originally non-null pixel (belonging to the foreground) 
presents in the exam has its feature vector computed. The 
data set is transformed to an array formed by 2,512,386 lines 
(its pixels) and 65 columns corresponding to (its features). 
These columns are composed by: 1 integer for the intensity 
of absorption; 2 integers for vertical and horizontal pixel 
position in the image; 1 binary corresponding to be or not in 
the pelvic region; 3 integers from Gaussian filters with σ= 3, 
5 and 7; 2 integers from Median filters of a 3x3 and 5x5 
neighborhood; 1 integer from global histogram equalization; 
1 integer from CLAHE operation; 1 binary from Otsu 
threshold; 1 integer from Roberts filter; 1 integer from Sobel 

filter; 1 integer from Entropy computation; 1 integer from 
variance; 48 integers from Gabor filters [17]; 1 binary 
attribute representing metastasis (1) or do not (0) in the 
ground truth. This last position of the feature vector is a tag. 
It is included in order to simplify the notation on the 
learning phase. After when new exam are used for 
identification 64 elements of the feature vector of each pixel 
are computed initially and final one is the definition of being 
of not a metastatic pixel. That is, the diagnosis with 1 for a 
metastasis diagnosis and 0 for non-metastatic. Regarding the 
class distribution of the dataset used for ML 2,457,703 
entries belong to the healthy bone class and 54,683 belong 
to the metastasis class. This unbalanced class distribution is 
expected since there are very few cases where the affected 
area in the bone scintigraphy is greater than the normal bone 
pixels count.  

Three of these features need some additional words. For 
position 4, that is the flag about pelvic region, a template 
match approach with an average appearance of this region in 
BS is used for identification of this region in an 
examination. Figure 3 shows the template R used in a search 
image I in order to detect the best matching. The template R 
is positioned from left-to-right and top-to-bottom across I. 
At each (x, y), a correlation is calculated to represent the 
degree of match [18].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Template matching operation on processed images 

 
Position 15 of the feature vectors, is the Entropy feature 

based on the function entropy available in the Python library 
Skimage. In IP entropy is defined by: 

 
where P(V) is the degree of randomness of a given set of 
pixels. A local entropy is related to the definition of a 
certain neighborhood (a rectangular or a circular region), V 
can be considered the gray level of each pixel in the 
position, (x, y), and the probability P(V) is the number of 
occurrence of this gray level in the neighborhood divided by 
the number of pixels of the region [19]. The configurable 
parameters of this function correspond to the choice of the 
shape and size of the region where the entropy will be 
calculated. The image characteristics used by the application 
of this function on a circular region of radius 3 around the 



pixel. A sample of this filter in a BS is presented at Figure 4. 
As this filter considerably reduces the scale of the intensities 
range, due to the log characteristics, in order to visualize the 
image result, in this work, the result of the floating points 
values were rescaled to the 0-255 range by applying a linear 
transformation, using the maximum value computed. 
 

 
Fig. 4.  Original BS image, it after Entropy and Gabor filtering 

 
 

For computation of the 48 features related to the Gabor 
filtering, the implementation uses this filter as available at 
the OpenCv Python library. However, firstly a study was 
made for determining the adequate range for Gabor 
parameters to highlight possible hotspot regions. The 
gamma parameter, referring to the aspect ratio of the 
Gaussian kernel to be used receives values of 0.01 (almost 
rectilinear) and 1 (circular or σx = σy). The study decided on 
use of 3 angles settled to the θ parameter: 0, π/4 and π/2. 
The main standard deviation parameter, σ, were also varied 
to be equal to 1 or 5. The kernel size used was tested by 
using values of 3 and 7 and the phase offset parameter ψ 
with values 0 and 1. As for the λ parameter, the tests 
indicated that lower values than π/4 in the Gabor executions 
end up overlooking small features at the image. Thus, this 
parameter was fixed in this value for all filter executions. 
The left image of Fig. 4 shows results of Gabor filtering 
with kernels 7×7 and parameters: θ = 0°, λ = π/4, σ = 1, γ = 
0.01, ψ = 1 .  

 
Before using these data for training or testing, a 

normalization of the data is carried out, so that they are 
transformed to values among 0 and 1, in order to put all of 
them in a common scale, and do not introduce bias due to 
possible great differences in their values. To normalize the 
first feature, that is the intensity of absorption, the minimum 
and maximum values were considered to be 0 and 4,000 
respectively. To normalize the pixel position features, image 
resolution is considered the maximum (1023 to height and 
255 to width) and the minimum value used was 0. For other 
features the limits were collected directly from the list of 
computed values on each one. 

F. Feature Reduction and Training:  

The PCA technique was used to reduce the number of 
features. The PCA applied was the one available in the 
Python library Sklearn. The most important 25 components 
of the feature vector are those that remain. In order to decide 
about these the results in terms of Explained variance were 
observed. It is noted that after 25 features, no gained by 
including additional features is achieved; resulting 25 
features and 1 target attribute (i.e. dataset composed of 
2,512,386 records).  

Next step consists in training and evaluating classifiers. 
In order to verify the performance of the learning 
techniques, the train-test split strategy used was K-Fold 
Cross Validation with a parameter of K = 5. Thus, 5 sets of 
size 502,477 were generated, each one alternating between 
training and testing roles. The Gaussian Naive Bayes 
(GNB), Support Vector Machine (SVM) and Multilayer 
Perceptron (MLP) with 2 levels were used for performance 
verification and possible use in the final version.  

The implementation used for the Gaussian Naive Bayes 
(GNB) classifier was the one provided by the function 
GaussianNB of Sklearn Python library. There were no 
parameters to be adjusted in this function.  

For SVM training, the implementation provided by the 
Sklearn Python library was applied. No iteration limits were 
used in the executions in order to enable a longer learning 
period and without premature interruptions. The Kernel trick 
function used was RBF, defined by the equation: 

RBF(V) = e 
(−γp(||V –V`||)2 )

 

where V and V` are entries from a subset of the training data 
and γp is a positive value defined using:  

γp = 1/(25 × σ
2
 ) 

where square sigma (σ²) represents the variance of a random 
subset of the input set and 25 is the number of attributes 
(used after PCA selection).  

To evaluate the capacities of the Multi Layer Perceptron 
(MLP) technique in this problem, it was tested with 10 and 
100 hidden layers. The implementation provided by the 
Sklearn Python library and the selected activation function 
ReLU was used.  

The achieved results are presented in Table II. The MLP 
10 is defined for the final version of a fully automatic 
system because this presents the best values for all 
evaluators computed.  

 
TABLE II.  CROSS VALIDATION RESULTS 

Technique Recall % Precision % AUC 

Gaussian Naive Bayes 90.45 61.22 0.97 

SVM 75.03  83.48 0.97 

MLP 10 78.85  84.07  0.98 

MLP 100 76.45  83.26  0.98 

G. Implementation output:  

At the end of the processing the metastatic areas 
detected by the application can be presented to the user in 
various ways. The application can produce a report 



containing the quantitative evaluations of the findings. The 
user can also alternate (using the radio button on the right of 
the screen) between white foreground and black background 
or a black foreground and white background.  

5. CONCLUSIONS AND FINAL REMARKS 

Comparing last column of Table I (discussed in section 
3) with Table II, the AUCs of this implementation present 
better results while for Recall and Precision the results are 
not so good then those of related works. However, the 
number of patients used in this 16 years on various works 
can allow us to state that the ideas presented in this 
application to deal with a very reduced GT (that is the 
considerably lower number of patients and samples used) 
enable to achieve an efficient tool for real time uses. 
Presented ideas contributed to build a solid application 
increasing the number of samples available for training and 
testing the hotspots and, reducing their size to a minimum. 

Nowadays, a number of works can be found applying 
artificial neural networks (ANN) and convolutional neural 
networks (CNN) to help in BS diagnosis [7 - 15]. Although, 
especially in this imaging such a number is not so huge as in 
the other medical aspects, where it is almost impossible to 
find recent works (in height impact journal or quality 
conferences) that do not use one of these techniques of 
Artificial Intelligence (AI) and Machine Learning (ML) [20, 
21]. However, in Computer Science as other areas of 
research, diversity is fundamental for good science making. 
In this direction, the here presented and developed solution 
allows AI/ML tasks to depend only of simpler image 
processing and decision techniques to detect and measure 
such bone metastasis. Moreover, all the presented 
developments, even being traditional techniques have here a 
new programming approach. The main aspect of this is the 
way the features are computed from the images and used in 
the decision process.  

There are 2 original ideas in the work here presented. The 
first focus in the way normally enhancement or the also 
named preprocess step is considered in Digital Signal and 
Image Processing. The second is related to the image area 
from where the feature are extracted in the analysis.  

In the related implementation most of the used features 
are normally employed only for image preprocessing. This is 
the case of the techniques of Histogram Equalization, 
Contrast Limited Adaptive Histogram Equalization 
(CLAHE), Otsu thresholding, Median, Gaussian and Entropy 
filtering, Roberts and Sobel edge detection, Variance 
computation and Gabor filter banks. Traditionally, all of 
them are used to transform an image (or a part of an image) 
in a enhance one related to some concepts [17]. However, 
they are here converted in an numeric element of the feature 
vector commented in sub section E. The knowledge of their 
numbers after normalization in each pixel related to the 
patient body are proposed to be features for the ML 
techniques.  

 The second original aspect of this work is related to the 
area used for computation of the feature vectors to be used to 
detect anomalies and final decision about each one is (due 
the amount of gamma ray emission) with or without 
metastasis. This can be seen as related to region of interest 
(ROI) or segmented areas in traditional pattern recognition 
implementations [17]. As mentioned in subsection E, we 

presented the idea of use all non background pixels in the 
image on analysis as ROI candidates to be analyzed. For 
each one, all features are computed and the feature vector 
analyzed. This allows having as many cases as possible to 
learn even in a very small set. As far as we know such 
consideration of minimum possible area from analysis or 
maximum possible set of feature vectors in a study was never 
presented and reported before. Of course, the incipient 
number of patients that are available to us for this 
development has directed to this use. However, it is 
important to say that the existence of so few cases to use can 
be the case present in many other circumstances and also 
represents important peculiarities that must be consider in 
other cases and applications. Maybe, it is paramount to 
realize that there will be always new issues to study and 
possible aspect that present few samples for learning 
solutions. In these cases a possible solution for the problem 
is better than no solution at all. New diseases could appear 
and spread quicker than the capacity of the medical 
community to organize annotated datasets to be used in ML 
supervised approaches or to allow CNN and ANN uses. The 
knowledge of all possible techniques is important not only 
for historical and academic point of view but mainly to allow 
the development of new solutions in any circumstance. This 
and their uses are very important for real cases in 
unpredictable future and environments. 

 Successful development of new and real applications 
involves proper uses of both traditional and artificial 
intelligence concepts. Complete knowledge of their basic 
characteristics is needed to decide when each one is more 
relevant to a specific aspect of a problem on focus. 
Considering this, there is an obvious hope to be able to 
overcome, in a near future, the challenge of having more data 
for this application. Then with more annotated dataset and 
with techniques such as data augmentation and transfer 
learning, the techniques of ML and data mining can be used 
with more efficiency in this so important aspect of nuclear 
medicine [2 - 15]. So as future works in this specific subject, 
it will be possible to address the steps of training with new 
learning algorithms. Also, some improvements can be made 
regarding the experimentation of modern classifiers such as 
XGBoost and the use of an auto-learning strategy, in order to 
delegate the task of selecting the ML algorithm that best fits 
to an automated solution. Regarding the pre-processing 
stages of training, strategies such as data augmentation and 
under sampling of the true negatives class can also contribute 
to the improvement of the results in next works. Train-test 
split strategies other than K-Fold cross validation can also be 
tested as future work, as an example; one common approach 
in medical ML problems is the use of a technique called 
leave one patient out. This strategy works analogously to 
cross-validation, however, the selected test set at a time 
corresponds to a subset of data belonging to a single person. 
This technique helps to isolate from the training set 
information with a very close level of similarity (same 
patient), which in some cases can bias the obtained results.  

 The concrete goal or at least one of the more important 
aims of this study is to help medical doctors to analyze the 
disease evolution by scintigraphy exams and judge if the 
bone metastasis is growing or stable. However, for the here 



presented work, only direct measurements was discussed. So, 
a way to automatically evaluate such modifications could be 
compare the area of pixels associate with the metastasis body 
points after Register exams of same patient in two dates [22]. 
(In image analysis, Register is a technique that, basically, 
takes two images and transforms one image into the other, 
allowing match objects common in both, so that similar 
points in world space are also similar in image coordinate 
space.) After this match patient evolution can be fairly 
compared using same techniques. The disease progress 
evaluation then can be properly made by subtract the images. 
This is a simple and direct improvement for future works.  

 The usability of the system was evaluated in the research 
that originated this work [23]. The Bone Scan Index (BSI) 
can also be added in the application as another quantitative 
measure [2]. In order to achieve such measure, the already 
available functionality of calculating the ratio of metastasis 
over foreground pixels must be extended in order to be 
calculated only considering pixels that belong to the patient 
skeleton. Segmentation of the skeleton in a bone scan image 
is a task that requires a set of well-defined IA and IP 
operations and ground truth images in order to evaluate the 
accuracy of the segmentation.  

 Another important incoming aspect for the application 
improvement is the support for processing bone scan from 
small regions and not only whole-body exams. With this, 
physicians will be able to use all the already available 
functionalities (to whole-body) also to process localized and 
small regions scintigraphy exams such as scans containing 
only cranium, vertebral column and others. In order to do 
this small regions bone scans classification, some tests must 
be made, including training new classifiers with some 
adjusted features. Although the majority of the implemented 
features applied at full body scans can be easily used in small 
regions, some features like pixel position and pixel on pelvic 
region needs to be adapted.  
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