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Abstract—Due to the global pandemic disclaimer caused by
the SARS-COV-2 virus propagation, also called COVID-19, gov-
ernments, institutions, and researchers have mobilized intending
to try to mitigate the effects caused by the virus on society. Some
approaches were proposed and applied to try to make predictions
of the behavior of possible pandemics indicators. Among those
methodologies, some models are data orientated, also known as
data-driven, which had considerable prominence over the others.
Artificial Neural Networks are a widely used model among data-
driven models. In this work, we propose a novel Auto-Encoder
RNA architecture. This architecture aims to forecast time series
related to the COVID-19 pandemic, particularly the number of
deaths. The model uses as inputs possible associated time series
with the desired forecasting. In the experiments, we used the
representation in time series from the number of COVID-19
cases, deaths, temperature, humidity, and the Air Quality Index
(AQI) of São Paulo city in Brazil. The results show that the model
has a prominent forecasting accuracy for the COVID-19 deaths
time series.

Index Terms—machine learning, artificial neural network,
auto-encoder, pandemic, COVID-19.

I. INTRODUCTION

In early December 2019, an outbreak of unknown pneumo-
nia turned into an epidemic that caused considerable damage,
threatening to reach pandemic status [1], [2]. The agent
responsible for this outbreak is a novel beta-coronavirus re-
lated to Middle East Respiratory Syndrome and Severe Acute
Respiratory Syndrome virus (MERS-CoV and SARS-CoV).
This new disease, the SARS-CoV-2 coronavirus, was named
“COVID-19” by the World Health Organization (WHO). On
January 30, 2020, the COVID-19 outbreak was declared a
Public Health Emergency of International Concern by the
Director-General of the WHO. Some places have implemented
lockdown and suspension of all public transport, flights, and
trains after January 23, 2020. Despite this, the authorities
recorded approximately 40,000 confirmed cases at that time.
Therefore, the National Health Commission reported more
than 6 thousand cases of the disease with severe symptoms
and about 900 deaths until February 10, 2020. After a short
time, more the 20 different countries reported another 319
cases and one death [1], [3].

Nowadays, the data-sets recorded more than 570 million
confirmed cases worldwide and more than 6.3 million deaths,
showing a mortality rate of more than 1%. Attempting to
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predict these values or even to model how the spread of viruses
can occur, researchers used several modeling techniques. Some
of those techniques are the models SIR, SEIR, and SEIRS,
among others [4]–[6]. These models are known as traditional
or epidemiological models. In general, they use population
information divided into subgroups, estimating the speed and
probability of individuals in a population moving from one
subgroup to another. These subgroups vary from model to
model, generally observing the number of infected and re-
covered, among other indicators. At first, these models are
valuable and are applied directly, in addition to being relatively
easy to understand in theory. However, the global pandemic
problem may have several aggravating factors not recognized
intuitively, such as climatic conditions and social and political
factors. Therefore, these methodologies may not be enough to
understand the COVID-19 pandemic through and through.

As a real-world problem, several factors can affect the
behavior of the pandemic, directly and indirectly. There are
current studies that try to find elements that can influence
the spread of the virus. Aspects such as air quality, social
distancing, and use of specific equipment can influence. It is
not yet sure which of these factors impact to a greater degree,
despite there is already good guidance on which ones can
stimulate the spread of the virus [7]–[10].

To understand the consequences and behavior of the
COVID-19 pandemic, some studies used forecast methods
known as data-driven. These methods try to predict the number
of infected cases, deaths, and also the virus spread rate. Data-
driven approaches can use artificial intelligence techniques to
operate on data and better understand it. These techniques can
provide possible to generate functional tools for a given action.
It is also the goal of these methodologies to make future esti-
mates from data from a time series. Finally, data-driven models
are capable of assimilating complex information, which can
aid in possible human decision-making. Among the most
common techniques used in data-driven models are artificial
neural networks. These networks prove to be strong allies in
the use of data as sources of information. Due to the ability of
these networks to approximate complex functions, which are
model problems considered to be real-world [11].

In this context, this work proposes a new data-driven model
to promote time series predictions related to the COVID-19
pandemic. More specifically, the proposed model is an auto-
regressive artificial neural network of the auto-encoder type,



with punctual modifications in its functioning. The model
presented here must be able to predict the number of deaths
for a given data-set. As a case study, the model test receives
data with values from the state of São Paulo - Brazil.

II. THEORY

This section will address the theoretical knowledge neces-
sary to understand our work. We start with a short definition
of time series, the most common mathematical methods used
in the endemics forecast, and end with the mathematical
concepts about auto-encoders, used in this work for time series
prediction.

A. Time-series

We can describe time series as a sequence of values ordered
chronologically and observed over time. Although time is a
continuous (or analog) measurement, a time series usually
have it is values sampled at constant intervals of time (sam-
pling frequency) [12]. The authors usually divide a time series
into three components. The trend, the seasonality, and residuals
(or noise) [12], [13]. The trend is the general direction or
movement of the signal (series) along the observed time or
long-term variation. It does not take into account seasonality
or residual components. Some types of orientation are more
common in time series as linear, exponential, and parabolic.
Seasonality is the component that represents variations occur-
ring in a given regular time interval. In real signs, this effect
is present in situations such as weather changes, economic
cycles, seasons, or even festivities. Residuals are the leftover
signals with the removal of trend and seasonality components.
These values can turn out large enough to mask the real
orientation and seasonality of the series. There are several
forms of origins for this type of behavior, which can make
it difficult to predict the desired signal.

B. Auto-encoders

An auto-encoder is an artificial neural network trained to
be able to copy its input into its output [14], [15]. The auto-
encoder structure is divided into two parts, the encoder and
the decoder. These, in turn, can be seen as two functions Z =
h(X) and X̂ = g(Z). The first one is responsible for mapping
the input data x to the latent space (feature/latent space). While
the second produces the data reconstruction, mapping Z from
the latent space back to the input data space x [15], [16].
Figure 1 shows a high-level representation of an auto-encoder.

Auto-encoders have generalized the idea of a encoder and
a decoder in addition to the deterministic functions shown
above, for mapping into stochastic functions pencoder(Z | X)
and pdecoder(X̂ | Z). Where X̂ is the reconstruction of the
input signal X . Given real applications, it is not entirely of
interest that the auto-encoder only learns how to copy the input
X . Then restrictions are made so that auto-encoders learn to
copy the inputs roughly [16]. Furthermore, researchers widely
used these structures for input dimensionality reduction and
extraction/learning of features [15].

INPUT OUTPUT

X X̂LATENT
SPACE

h(X)
ENCODER

g(Z)
DECODER

Fig. 1. High-level representation of an auto-encoder.

In the application of a auto-encoder on a given training set
S = {xi|xi ∈ Rd}, where 1 < i < n, this can be modeled as:

EA =

{
Z = h(we, be;X)

X̂ = g(wd, bd;Z)
(1)

Having the equation (1), h(·) is the encoder and g(·) is
the decoder, which are usually artificial neural networks. we

and be are encoder parameters and wd and bd are decoder
parameters. In the case of neural networks, these parameters
are the sets of weights and biases of the networks encoder and
decoder, respectively.

Training an auto-encoder is optimizing, in this case mini-
mizing, the error of the following loss function (loss function).
So:

J(θ) =
1

N

n∑
i=1

∥Xi − X̂i∥22 (2)

Where θ = (we, be;wd, bd). For the optimization solution
present in the equation (2), the Gradient Descending or
Stochastic Descending algorithm is normally used.

Other examples of auto-encoders types found in the litera-
ture are SparseAE, DenoisingAE, ConvolutionalAE, Contrac-
tiveAE, and VariationalAE, among others.

III. RELATED WORKS

In the literature, it is possible to find a range of auto-
encoders used in different areas and study cases. For time
series prediction, we found a deep learning framework that
used Wavelet Transforms (WT) combined with Stacked auto-
encoders (SAE) and LSTM layers [17]. The framework is
applied to predict the stock price. Initially, the methodology
uses WT to decompose the time series and eliminate noise,
followed by the SAE layers application to generate high-level
features. Finally, the framework presents the auto-encoders
feature extraction from the LSTM layers for prediction. The
authors consider the auto-encoders the central part of the
study, as it is at this stage that the financial characteristics
are acquired. They evaluated the methodology based on the
quality of prediction and profitability [17].

We also found a proposed Deep LSTM-based Stacked Auto-
encoder (LSTM-SAE) for multi-variable time series prediction



[18]. According to the authors, the difference in this pro-
posal is how they initialize the network weights. They use
a methodology that divides the training into two phases. The
first is an unsupervised pre-training, called Greedy Layer-wise
Pre-training Phase, for acquiring a set of initial weights for
the next phase. The second phase is called the Fine-tuning
Phase. The pre-training phase is composed of three LSTM-
AE blocks. So, the framework trains the first network block
to reconstruct the original signal. Then, the central layer of
the first block receives the inputs and returns the latent space
of signal features. Thus, having the first block encoded values,
the next block of the LSTM-AE is trained to get close to the
original input. The last step is repeated for the third block
or the remaining blocks that may exist. When the pre-training
phase ends, the second phase begins, where the authors applied
a DLSTM [19] previously proposed by themselves. They train
the network to predict a single sample of the desired time
series [18].

In direct application to COVID-19, a proposed mixing of
Variational Auto-Encoder (VAE) with LSTM networks try
to solve the COVID-19 spread prediction problem [20]. The
authors divided the proposed model into two branches. The
first is a self-attention auto-encoder LSTM, fed by virus prop-
agation data by day and country. Along with that, government
policies by day and by each country, and urban characteristics
by day and country. They split this first branch into self-
attention LSTM sequence encoder and LSTM sequence de-
coder. According to the authors’ references, the self-attention
mechanism makes the LSTM capable of understanding the
representation of its inputs relating to the positioning of each
sequence. The VAE is the second branch of the model and
works in parallel with the self-attention LSTM mechanism.
The VAE is fed by a spatial matrix of dimensions and repeated
throughout the training duration, with timestamps referring
to the date and time. The two model outputs branches are
concatenated in the feature dimension and sent to the LSTM
sequence decoder, which returns the prediction values. This
study attempts to predict the spread (accumulated number of
cases) of COVID-19 worldwide and in each country separately
[20].

As more close work, our study group proposed a Long-
short Term Memory model to forecast the number of COVID-
19 deaths in the São Paulo city in brazil [21]. The authors
used a Montecarlo test, training 50 trails from their model and
acquiring a statistic distribution concerning the model Root
Mean Square Error (RMSE) from the entire and test data-set
prediction. In the study, the authors used five input features.
They used the number of cases, the number of deaths, the
temperature, humidity, and air quality index AQI from March
27, 2020, to June 03, 2021.

The model presented has the differential of predicting
directly the time series related to the number of deaths of
COVID-19, as in the last cited work, and is also integrated into
a simple architecture of multilayer-perceptrons. This simplicity
can reduce the computational cost in training concerning
complex ANN as LSTM or Convolutional. In addition, we

made specific modifications to the model architecture that can
be changed and later improved, adding flexibility to the model
for receiving new features.

IV. MULTI-VARIABLE AUTO-ENCODER

To solve the problem of time series predictions related to the
COVID-19 pandemic, we propose a multivariate input data-
driven model capable of predicting an amount h of samples for
COVID-19 deaths. The model is an expansion of an early auto-
encoder model proposed [22], where we present a multivariate
version of the original model.

The proposed model is a conventional auto-encoder, but
with some modifications in 1) how the model observes the
inputs, 2) how the model work with the latent space, and
3) how the train steps update the network weights. The first
proposed change is to add a new auto-encoder for each input
feature. Figure 2 shows the first proposed modification, which
takes place in how the model behaves concerning a series of
inputs.
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Fig. 2. Representation of how the proposed auto-encoder creates a new auto-
encoder network for each input series.

From Figure 2, it is possible to observe how the model
deals with three series as inputs. A new auto-encoder network
is created for each series (or feature), thus having the same
number of encoded series. The architecture of each of these
auto-encoders can vary. Although, it must always be a layer
of greater or equal size between the input and the last layer
of the encoder. An attempt to increase the field of possible
nuances from the inputs without changing the input layer
length, which can contribute to better feature extraction from
the encoder. This layer has the larger number of neurons in
Figure 2. The symbol ⇒ represents a linear transformation
occurring in the transition between layers. From this point, it
is possible to understand the second proposed modification. All
these encoded values are unified (concatenated) into a single
1-D series, thus forming a single latent space. Figure 3 shows
the second proposed modification.

Figure 3 shows that the latent space has a reduced represen-
tation of each input series. This final latent space undergoes
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Fig. 3. Representation of how the proposed model reorganizes the latent space
and makes the prediction.

one more linear transformation to return the predicted series.
The model tries to minimize the error between the predicted
and expected value. For the proposed model, this occurs in
two situations. The first is when each auto-encoder tries to
recreate the input of its respective series. The errors of all
auto-encoders are summed, resulting in a single error called
aeerror. e1, e2, . . . , en being the reconstruction errors of each
auto-encoder in a model. The second is the prediction error,
which we called pderror. The set of equations (3) shows how
aeerror and pderror are calculated.

aeerror =

n∑
i=1

ei

pderror = Loss(expected | predicted)
(3)

We need a loss function to calculate the errors. In this case,
we named it Loss, so we have the prediction pderror and the
individual auto-encoder errors as the output of this function.
With the results obtained in the equations (3), we have the
total model error.

terror = aeerror + pderror (4)

Finally, the equation (4) shows the accumulated total error
obtained on the model.

Figures 2 and 3 shows the addition of “window size” and
“pred size” items. They represent the window size for inputs
and the number of samples for the model prediction. Once
the inputs are in the expected format, it is enough to define
the network sizes, the loss function, and a weight calculation
optimization algorithm. With all this defined, it is possible
to train the model. Figure 4 shows a flowchart that also
exemplifies the training step.

Figure 4 shows a representative flow of information fol-
lowed in the training. The networks receive the inputs, where
the encoder creates the vector with the encoded series. Then,
those series flow through two different paths. One goes to
the decoder, and another is to be concatenated and passed
through the predictor. Then, the loss function calculates the
errors, sums them, and fits the weights.

To implement this model and carry out the experiments,
we use the Pytorch library [23] in the python programming
language.
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Fig. 4. High-level flowchart of the training step for the proposed model.

V. EXPERIMENTS

To evaluate the ability of the proposed model to assimilate
a multivariate data-set, we train eight models with different
combinations of input series. Thus, it is possible to assess in
isolation whether or not a given series has a positive impact
on the final result of the prediction.

A. Data-set

For the experiments, we used data from São Paulo - Brazil.
The COVID-19-related series was the number of cases and
deaths from the World Health Organization [24]. We also
used temperature, humidity, and the AQI [25] from the locale
as possible side-related information concerning COVID-19
spread. We normalized the data with the “MinMax Scale”
normalization, where for a data-set X = {X1, X2, . . . , Xi}
follows the following formulas.

Xstd =
X −Xmin

Xmax −Xmin

Xi = Xstd ∗ (Xi−max −Xi−min) +Xi−min

(5)

In the equation (5) we have Xstd as the standard deviation
of the total data-set. Then, normalization is applied to each
series i contained in the data-set X . This operation results in
a new normalized data-set, where the values range from 0 to
the maximum of 1.

The data-set used in the experiments corresponds to all five
input series starting on April 1, 2020 and ending on September
1, 2021, totaling 522 days (samples). Figure 5 shows the data
collected and used in the tests. It is important to note that the
data used in the tests follow the seven-day moving average
format.

B. Models and Training Methodology

Initially, the normalization is applied, and then the models
are trained. We trained a new model for each feature combina-
tion, in which the randomly generated initial weights are the
same for all eight models. This approach reduces the variance
that the initialization of the weights can cause in the model
convergence. This seed weights fix makes the comparison
fairer and more reliable since all models start with the same
weights. Thus, the only thing that differentiates them is the
series as input. Table I shows the series combinations used in
the tests.
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Fig. 5. Plot of a seven-day moving average for all variables used in the
experiments. For better data visualization of the other series, we divided by
10 the values of the “Case” time-series.

TABLE I
SERIES COMBINATIONS

Combination Series (features) Prediction
1 deaths deaths
2 deaths, cases deaths
3 deaths, cases, humidity deaths
4 deaths, cases, temperature deaths
5 deaths, cases, AQI deaths
6 deaths, cases, humidity, temperature deaths
7 deaths, cases, humidity, AQI deaths
8 deaths, cases, humidity, temperature , AQI deaths

Regarding the values used in the auto-encoders architecture,
we used 7 samples for the input window size and to amount of
desired predicted values. As shown, there is an increase in the
number of neurons in the layer following the input layer. We
assigned 35 neurons to this layer. To the latent space layer, we
delegated 7 neurons. These three layers are the encoder from a
single input series. Thus, the decoder of each of the networks
has the same encoder architecture but in reverse. Although,
in this case, they become identical in the number of neurons
[7, 35, 7].

Another important hyperparameter used for training the
model was 32 for the batch size of network parameters
adjustment. Besides that, all activation functions used were
the Rectifier Linear Unit (ReLU), and the learning rate was
1 × 10−4. Finally, each model in the combinations presented
in Table I was trained for 250 epochs. Therefore, all training
data pass through to the network for each epoch.

We formulated the data-set for each input window have an
overlap of 6 samples. So, only the sample corresponding to
the current time instant is distinct from the past input. We used
85% inputs for training and 15% to model validation during
training. The evaluation metric used to quantify the models
during the train was the Root Mean Squared Error (RMSE). It
is important to remark that the model never had an adjustment
in its parameters over the inputs of the validation set. These
validation inputs can always be considered new to the model.
For the final evaluation of each combination, we formulate a
new data-set with no overlap in its entries. This time, the entire
data-set passes through the network. Although, the network
never adjusted its parameters for the samples referring to the

validation set. Thus, the model evaluation happens in two
moments, for inputs samples we used for training and those
in the validation set (never adjusted weights for those). In this
final evaluation, in addition to the RMSE, we also measured
the Mean Absolute Error (MAE) and the Median Absolute
Error (MDAE).

VI. RESULTS

The experiments described in the section V aim to test the
proposed architecture and evaluate in a simple way which
series may influence model response. To quantify each combi-
nation, Table II presents the evaluation metrics collected only
for the test (or validation) data. As a remark, the model never
adjusted its parameters for those validation samples.

TABLE II
EVALUATION METRICS OBTAINED FOR NORMALIZATION “MinMax Scale”

IN TEST SAMPLES.

Combination RMSE MAE MDAE (Mean)
1 0.040 0.027 0.019 0.029
2 0.042 0.030 0.023 0.032
3 0.052 0.038 0.028 0.039
4 0.049 0.036 0.026 0.037
5 0.052 0.038 0.030 0.040
6 0.048 0.035 0.027 0.037
7 0.046 0.034 0.026 0.035
8 0.044 0.032 0.024 0.033

From Table II, it is possible to observe the highlighted the
lowest values of each metric.

Figures 6 and 7 visually show the model prediction for
combination 1 with the lowest metrics values and to the
combination 8 with the higher number of input features.
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Fig. 6. Plot comparing the real data and the data predicted by the model with
only the time series referring to the deaths as input. Highlighted (green) is
the validation region, where the model never adjusted the weights for these
samples.

Given the Figures 6 and 7, it is possible to observe the
produced model approximation that the model is close to
the desired data values. This approximation becomes fairer
at validation, highlighted in (green) the figures, in which such
metric values we expressed in II. It is also possible to notice
that for samples referring to the portion that participated in the
model train, the model does not perform so closely to the death
values compared to the validation. This behavior may occur
due to a smaller number of validation samples and the high
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Fig. 7. Plot comparison of the real data and the data predicted by the model
with the time series referring to the deaths, cases, humidity, temperature, and
AQI as input. Highlighted (green) is the validation region, where the model
never adjusted the weights for these samples.

variation in the series values to predict in the training samples.
The combination of 1 outperforms the others, with the lowest
value of all metrics and metrics mean. That is the simplest
regression case, so the training algorithm and optimization
function tend to adjust the weights more influenced by the
values they want to approximate. In other words, the algorithm
can reach the output easily, using just one of the inputs,
because this input takes the information the model desire. The
other input series can add information and help to generalize,
but they add noise to the output.

VII. CONCLUSION

In this work, we proposed a novel data-driven model for
predicting time series related to the COVID-19 pandemic.
From the experiment performed, we observed that the model
showed optimistic proficiency in predicting a single time series
linked to COVID-19 from one, two, three, four, or five series as
inputs. In addition, it was also possible to observe an increase
in the evaluation metrics values and noise as the number of
features increased. This behavior can be related to the inherent
neural network feature of adjusting the weights to find a small
way to convergence. In future works, we will try to change
the train loop and split the model weights adjustment into
two phases, where the auto-encoders and the predictors are
adjusted apart.
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