
Data Modelless Microservices to increase
Multi-Tenancy in BaaS and SaaS Providers with

Application to a Covid-19 Data-Lake
Júlio G. S. F. da Costa

Grad. Prog. in Elec. and Comp. Eng.
Univ. Fed. do Rio Grande do Norte

Natal, Brazil
juliogustavocosta@gmail.com

Francinaldo A. Pereira
Grad. Prog. in Elec. and Comp. Eng.

Univ. Fed. do Rio Grande do Norte
Natal, Brazil

falmeida@dca.ufrn.br

Davi H. dos Santos
Grad. Prog. in Elec. and Comp. Eng.

Univ. Fed. do Rio Grande do Norte
Natal, Brazil

davihenriqueds@gmail.com

Samuel X. de Souza
Grad. Prog. in Elec. and Comp. Eng.

Univ. Fed do Rio Grande do Norte
Natal, Brazil

samuel@dca.ufrn.br

Luiz M. G. Gonçalves
Grad. Prog. in Elec. and Comp. Eng.

Univ. Fed. do Rio Grande do Norte
Natal, Brazil

lmarcos@dca.ufrn.br

Abstract—This work is the result of the joint efforts of profes-
sionals encouraged to build a solution to predict the contagion
and death curves of the Covid-19 pandemic, through the use of
data-oriented solutions. This strategy is fundamentally dependent
on collection. Regarding this particular aspect, the difficulty is
manifested due to the fact that such data exist scattered in
different repositories, in different formats, commonly available
through files, in addition to being frequently updated. However,
in this context, small data scientist teams with few resources
suffer in this scenario forced to personally concern themselves
with these difficulties. Here, we present a platform that helps
these professionals to hide the complexities of having to deal with
these issues themselves. This is done by creating and helping to
manage, in an automated way, repositories for your users for
simplified data consumption and distribution.

Index Terms—MDE, Covid-19, Pandemic, Data Repository,
Multi-tenant Service, Model Interpretation

I. INTRODUCTION

During the Covid-19 pandemic scenario, engineers and
scientists endeavored to collaborate with society in order to
unite efforts to tackle the causes and consequences of the
pandemic. One of the main strategies employed was the use
of Artificial Intelligence (AI) to give those involved some
degree of predictability regarding the behavior of the curves
of contagions and deaths. In this context, we became involved
in offering a solution based on the use of data-driven models
capable of predicting the behavior of both curves. In the effort
to build an epidemiological forecasting service for Covid-19
based on Machine Learning (ML), the workflow was divided
into tasks carried out by different researchers, with different
skills. We structured our process as normally done in the
literature [2], [3], despite the fact that there is still no consen-
sus on which is the best flow in terms of defining its stages

This work is sponsored by CAPES under grant 88887.506889/2020-00.

and the roles of professionals involved. More specifically, the
steps defined were data acquisition, model construction, model
training, and testing, model evaluation, and deployment. In this
work, we deal with issues related to Data Acquisition.

The most common approaches among professionals in-
volved in this process, related specifically to the Covid-19
pandemic context, especially in the case of small teams,
normally resulted in the creation of local repositories. These
repositories, as a rule, consist of files of different formats
stored in directories of local file systems. These approaches
imply at least two difficulties: inefficient searching for content
between files and sharing. On the other hand, regarding data
and their metadata, two important aspects are the dynamic-
ity [1] (the data and its metadata change frequently) and the
spread of these in the most diverse repositories, which implies
difficulties with availability and accessibility, in addition to
their assembly in consistent datasets [2].

To face these challenges, we focused on building a service
platform for the purpose of data persistence into local repos-
itories (database oriented) capable of completely abstracting
the need for its users (data scientists occupied with training
and testing models) to deal with the creation and management
of data repositories and its schemas and even less with the
related infrastructure aspects.

Furthermore, we chose the “as a Service” delivery model
for this platform. This choice is a consequence of the need
to offer a good level of accessibility and availability. Yet,
it serves a diversity of users (data scientists, in particular)
with different interests and applications such as exploration,
analysis, or prediction, for example. In this sense, each of
these users will be able to use the platform at any time, so
that they are able to easily create and maintain their own data
schema, store data related to these schemas, and easily make



them available for consumption.

II. BACKGROUND

As mentioned, the choice of the “as a Service” (aaS)
distribution model means that the software services provided
by them are performed through computing clouds. This model
can be directly associated with the engineering issues involved
in building the Backend as a Service (BaaS) [4] delivery
solutions, or the Software as a Service (SaaS) [5]. Such models
offer the possibility for companies and their professionals to
not need to have their own infrastructure and/or develop all
the necessary software components for any of their software
applications.

The main challenge for aaS platforms is to make them multi-
tenant, that is, ideally, the resources of such platforms should
be used in a shared way into a single-instance. However,
providers of this type of platform need to take into account that
there will always be unforeseen demands by these platforms
that must also be met [6]. This means that if the demands of
users are prioritized, resources are lost. On the other hand,
coverage is lost for user applications. This important tradeoff
implies the construction of aaS type platforms.

As users of this platform, data scientists externalize different
demands as forecasting, exploration, and analysis, among
others, necessary to carry out the general scope of this
project, which is the construction of an efficient forecast of
the contagion curves and deaths of the Covid-19 pandemic,
through the use of data-driven methods. Each of these demands
is performed as different uses, or applications, for the data
persistence service of this platform. Furthermore, each of
these uses, or applications, potentially may have to deal with
different data schemas and data sets. In this sense, we consider
each of these possible applications carried out on top of this
platform as a tenant.

In the next, we will present more specifically the challenges
related to the construction of an aaS platform and we will
present the most used technologies for this purpose, as well
as how they are used to overcome such challenges.

A. Problem Statement

As already mentioned, the biggest challenge is related to
reconciling the demands of aaS type software services plat-
forms for sharing and standardizing the use of resources, with
the need of their users in circumstances of demands for cus-
tomization of the use of the same resources. As the platform in
question in this work is directly related to persistence services,
therefore, responsible for storing and managing data, it must
be concerned with the issues that directly imply them, which
is the creation and management of data and data schemas. In
this sense, the platform offers a mechanism that authorizes
different data and data schemas, created and maintained by
their respective users, to co-exist without conflicting, despite
sharing the same software and hardware resources [11], [12].

Customizations aaS services are a central part of the concern
for software engineers and architects, whether in the context
of aaS for software services. This is because customizations

are inversely proportional to the costs of carrying them out
and, from the perspective of the software life cycle, they occur
precisely in the phase in which software expenditures are most
concentrated, the maintenance phase and evolution.

III. RELATED WORK

Several technologies in the field of Software Engineering
have been developed and used in order to enable the con-
struction of software according to the Multi-Tenant paradigm.
Next, we highlight a brief discussion about the technologies
commonly used to provide solutions such as SaaS and BaaS
platforms.

The use of Extensible Programming and/or Adaptive Lan-
guages [9], implies a strategy to solve the customization
problems in order to make the software components more
adaptable to changes in the software business domain (re-
gard to data definitions or processes), with the advantage of
these being carried out at runtime. It’s an interesting strategy
for allowing changes without having to change the coding.
However, for engineers and architects to take advantage of
this potential, they need to accept that, if not all, of the
microservices or components that perform SaaS, there must be
a dependency relationship with those programming languages
that implement the resource — this resource. is known as
Meta Object Protocol (MOP) [13]. Examples of languages that
enable this feature are Ruby and Lua. Furthermore, another
technology that plays a relevant role in this context is Aspects
Oriented Programming (AOP), in this sense see [16].

Microservices and Components, on the other hand, can
be seen as a strategy to decompose large systems, more
specifically in our case, large data classes hierarchies, into
a coordinated set of small systems [10] or classes hierarchies.
Commonly, this decomposition derives two subsets. The first
core subset is not designed for customizations, whose updates
occur only when changes are demanded, due to fault correc-
tion, or due to changes in the definitions of concepts and
business processes. The second subset is designed with the
customization needs of customers in mind, users of providers’
services — in this subset updates can also take place due to the
demands of a client’s specific domain processes and concepts,
in addition to this, generally, they imply the emergence of
new instances of dedicated to the use of a specific client.
Notably, to fulfill these commitments, intrusive and non-
intrusive microservices are strategic categories that can be
evaluated for use for customization purposes [12] e [11].

There is also the possibility of using the Model Driven
Engineering (MDE) [8] mechanism as a strategy to facilitate
the process of software modifications. Here, the paradigm of
the software development and evolution process is entirely
guided by modeling processes and business models of the
application domain. Changes of any kind must occur in the
models and these guide all subsequent phases, all of which are
automated for automatic code generation. Ideally, all service
instances resulting therefrom are obtained from mechanisms
that automate the generation of code through the specifications
put in the models – they instruct aspects that go from the



architecture of the system to the deployment of components
or microservices, going through the process business concepts
and SaaS concepts, both for what is customizable and for what
is not. Such models generally derive from the use of languages
such as the Unified Modeling Language, through the use of
its most varied diagrams [14] e [15].

IV. DATA MODELLESS MICROSERVICES TO INCREASE
MULTI TENANCY

In this work, we use a software development approach [19]
from the field of MDE, which guides the development of
our persistence service so that it does not require any pre-
determined data schema. This is important since data schemas
cannot be predicted a priori. That is, only at runtime, and only
during the duration of the request to the persistence service,
will this service know which data schema should be used to
guide the persistence task demanded by any of its tenants,
for a set of any data. Given the end of the task, and since
new data persistence requests are not required to use the same
schema, the current schema can be dispensed with. In this way,
we achieved the construction of a multi-tenant, single-instance
persistence services platform.

As shown in Fig. 1, the service platform basically consists
of a modeling service for defining data schemas, and another
for the activity of persisting data related to such schemas
(two microservices). This is necessary due to the approach
described at the beginning of this section and used as a guide
for the development and operation of this platform.

Fig. 1. Synthetic representation of the service platform architecture built from
the requirements.

The schema modeling service is anchored in a modeling
language and models generated from that language. Such a
language can be similar to the Unified Modeling Language
(UML), derived from it, or even a DSL built specifically to
meet the specifics of this platform. The use of this tool results
in the creation and management of the schema in terms of

database deployment, and in the description of the data so
that it can be persisted in these same databases.

On the other hand, it is the responsibility of the persistence
service to recognize which data schema should be used at the
time of the persistence request of any set of data, so that those
are used in order to guide the requested operation on these and
the completion of the request if perform successfully.

A. Implementation: Data Schema Modeling Service

As already highlighted, due to the software development
approach used in this platform, a tool to assist in the modeling
of data schemas for its users is mandatory. In general, however,
this demand, within the scope of this platform, does not imply
a significantly different use compared to current tools already
known, in industry or in academia. Furthermore, the models
generated by such tools, as long as they are exported in the
XML Metadata Interchange (XMI) format [18] — something
common among these tools —- can be consumed to fulfill
the three purposes of using models for this service, namely:
specification of data schemas, creation and maintenance of
databases of these schemas. In the same way, it is common
that the modeling tools already known are able to fulfill the
same purpose.

Having highlighted these observations, we will refrain from
delving into the issue related to the modeling activity of
user data schemas. Furthermore, as the metamodels that de-
fine data schemas for the most varied databases (relational,
non-relational, column-oriented, document-oriented, etc.) are
widely known, we will only focus on leaving here the meta-
model that determines for our platform the possibilities of
modeling data schemas and, also, an example of a data schema
model — these are really useful, in the sense that they can be
used by any user of this modeling service to create a particular
repository of data (database).

As shown in Fig. 2, at least three distinct data types can
be modeled in a specific data schema and recognized by
our services platform: the Dataset type, the type Class and
a file of type Text. Here, the distinction of types occurs in
order to deliver three possibilities that imply different ways
of using data. Dataset is an appropriate data type for the data
context in non-relational databases, more specifically in our
case, a column-oriented database. Class, in turn, better serves
data models with relational or non-relational characteristics
oriented to documents, finally, Text file in case it is necessary
to store and manipulate files of this format.

In the case of Fig. 3, it derives from the use of the
metamodel presented in Fig. 2 in order to model, for any
user of the platform, a data schema called Natalnet. This
schema contains a data type Dataset, called Covid19Infos. This
Dataset, in turn, is defined as a set of Features listed in the
figure, in the symbol body of the Dataset.

Once the Dataset Covid19Infos modeling is completed,
under the schema Natalnet, your user will be able to deploy
this specification on the platform, whose unseen consequence
is the creation of a repository capable of storing the data
relating to this schema, which is carried out in a database.



Fig. 2. Our platform metamodel for modeling and persistence services.

Fig. 3. An example of specifying a Dataset type, according to the metamodel
shown in Fig. 2.

B. Implementation: Data Persistence Service

Like the modeling service, the persistence services are
accessible through a single interface (in Fig. 4, the Service
Interface element). The mechanism that realizes this interface
is the Object Persistence microservice. Such a microservice
must recognize which persistence action is being requested by
the user, which type of object in the context of the model in
which it is defined (in YCL) and then invoke the appropriate
transform operation to build the persistence command, now,
in the format of the underlying database’s data manipulation
language.

Fig. 4. Representation of the persistence and authorization service architec-
ture.

The transformation operations necessary for the mapping
referred to in the previous paragraph are the responsibility of
other microservices. In this case, there are, in this architecture,
to perform this type of activity, one for each database target
of transformation. For example, for relational databases, the
microservice is described by the name Object Transformer
(ATL) for Relational DB, in the case of columnar non-
relational databases we call it Object Transformer (ATL) for
Relational DB . As much as the transformation microservices
of the modeling service, here the transformation microservices
need to know the transformation rules and, therefore, the
metamodels of the languages involved in the transformations.

The verification of authorizations related to the operations
of creating, reading, updating, or removing objects from the
underlying database is done concurrently with the transforma-
tion process.

V. EXPERIMENTS AND RESULTS

Fig. 5 reveals instances of microservices related to mod-
eling (MODELER) and persistence services — our platform
uses the framework JEE/Spring Cloud, which has the service
Eureka that, together with others, implements the framework’s
microservices orchestration. The INTERPRETER-P instance
is equivalent to the specified Object Persistence component in
Fig. 4 and the SQL-POOLCONN and NOSQL-POOLCONN



instances, respectively, to Object Transform for Relational DB
and a Object Transform for Non Relational DB.

Fig. 5. List of active microservices reported by the Eureka/Spring Cloud
service.

Regarding the process of using the platform, the first in-
teraction involves user registration — used as a key to help
address the schemas and achieve logical em data isolations.
Fig. 6 would be the next step, the deployment of the data
schema model — performed by importing the XMI with the
specification. The immediate result of this deployment is in
Fig. 7: the database — data repository for the user.

Fig. 6. Data schema import and deployment screen.

Once deployed, the platform user will populate the repos-
itory (database) as described in Fig. 8. The user will be
able to select files in CSV format, for example, and de-
scribe some rules for this operation. As an example, for the
file gov ms brazil covid19, the platform must take all the
columns from the CSV and the name of its columns must
match the names of the columns in the table. In the case
of the second file, with exclude mode flagged, the platform
must use only the columns from this file that are placed under
the features node, renaming the CSV columns to match the
columns in the table.

Moreover, the user can specify automatic updates for entire
tables, or even just one or some of its features, see Fig. 9.
This capability is relevant given the dynamic nature of the
data consumed by this project: Time Series.

Fig. 7. Convid19Infos schema database console prompt.

Fig. 8. Covid19Info repository population operation configuration screen.

Fig. 9. Covid19Info repository auto-update configuration screen.



Fig. 10, informs how those who know the endpoint
/api/persistence-s can retrieve/consult the data persisted in the
repositories created by this platform.

Finally, the usage experiments involving 3 data scientists
confirmed the alignment between the platform’s functionalities
and the interest related to the form of use desired by such
professionals. All the complexity of creating and managing
data repositories performed by the database was hidden. The
platform allows its users and tenants to build, deploy, and
operate different data and data schemas, which are best suited
to the uses they intend in the context of this project. And
the accessibility and availability to consume data from the
repository are increased due to the realization of the ”as a
service” distribution model. On the other hand, any of the
operations on the data schemas or their data were performed
without the platform having its code changed (nor need to
establish a relationship of dependence on specific languages,
such as adaptive languages), or instances of new microservices
added, concerning or not the specifics of the users, confirming
the accomplishment of the best service offering format for
such platform types, multi-tenant single-instance.

Fig. 10. Command for accessing data from repositories held by the platform.

VI. CONCLUSION

The platform as it was built gave us the opportunity to ex-
periment with a software development approach that, although
very close to MDE and Adaptive Languages approaches,
presents itself as an alternative as, from a dispensation of code
generators, on the other, the dependence on specific technolo-
gies. Such an approach authorizes the construction of ”as a
service” platforms, like ours, according to the most desired
software service delivery format, multi-tenant single-instance.
Its application resulted in a data management service and data
schemas for the context of Covid19 pandemic applications,
capable of facilitating, better organizing the aggregation and
distribution of data — a relevant task for data scientists in the
ML process.

Our effort from now on is to evolve the platform, adding
new services that follow the same development approach
adopted in this work. However, we must do this, from now
on, in a perspective that allows us to investigate the efficiency
of this solution, compared to solutions that are applied to the

same context. Such comparisons must be guided by metrics
that, for example, reveal how much more or less memory and
processing that platform consumes from the host where it is
deployed — given that it needs to load, outside the code, the
schemas of Dice.

REFERENCES

[1] Mohammadi, Mehdi, and Ala Al-Fuqaha. ”Enabling cognitive smart
cities using big data and machine learning: Approaches and challenges.”
IEEE Communications Magazine 56.2 (2018): 94-101.

[2] Roh, Yuji, Geon Heo, and Steven Euijong Whang. ”A survey on data
collection for machine learning: a big data-ai integration perspective.”
IEEE Transactions on Knowledge and Data Engineering 33.4 (2019):
1328-1347.

[3] Miao, Hui, et al. ”Modelhub: Deep learning lifecycle management.”
2017 IEEE 33rd International Conference on Data Engineering (ICDE).
IEEE, 2017.

[4] Dudjak, Mario, and Goran Martinović. ”An API-first methodology
for designing a microservice-based Backend as a Service platform.”
Information Technology and Control 49.2 (2020): 206-223.

[5] Neto, Josino Rodrigues, et al. ”Software as a Service: Desenvol-
vendo Aplicações Multi-tenancy com Alto Grau de Reuso.” Sociedade
Brasileira de Computação (2012).

[6] Kalra, Sumit and Prabhakar, T. V. ”Towards Dynamic Tenant Man-
agement for Microservice based Multi-Tenant SaaS Applications”. In
Proceedings of the 11th Innovations in Software Engineering Conference
(ISEC ’18). Association for Computing Machinery, New York, NY,
USA, 2018, Article 12, 1–5. https://doi.org/10.1145/3172871.3172882.

[7] Bezemer, C., and Andy Zaidman. ”Challenges of reengineering into
multi-tenant SaaS applications.” Technical Report Series TUD-SERG-
2010-012 (2010).

[8] Bucchiarone, Antonio, et al. ”Grand challenges in model-driven engi-
neering: an analysis of the state of the research.” Software and Systems
Modeling 19.1 (2020): 5-13.

[9] Kiczales, Gregor, et al. ”Metaobject protocols: Why we want them
and what else they can do.” Object-Oriented Programming: The CLOS
Perspective (1993): 101-118.

[10] Thönes, Johannes. ”Microservices.” IEEE Software 32.1 (2015): 116-
116.

[11] Nguyen, Phu H., et al. ”Using microservices for non-intrusive customiza-
tion of multi-tenant SaaS.” Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 2019.

[12] Song, Hui, Phu H. Nguyen, and Franck Chauvel. ”Using microservices
to customize multi-tenant saas: From intrusive to non-intrusive.” Joint
Post-proceedings of the First and Second International Conference on
Microservices (Microservices 2017/2019). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2020.

[13] Kiczales, Gregor, Jim des Rivieres, and Daniel G. Bobrow. ”A Review
of The Art of the Metaobject Protocol.” (2010).

[14] Mane, Babacar, et al. ”A Domain Specific Language to Provide Mid-
dleware for Interoperability among SaaS and DaaS/DBaaS through a
Metamodel Approach.” ICEIS (1). 2021.

[15] Moradi, Hossein, Bahman Zamani, and Kamran Zamanifar. ”Caasset:
A framework for model-driven development of context as a service.”
Future Generation Computer Systems 105 (2020): 61-95.

[16] Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive
software: Landscape and research challenges. ACM Trans.
Auton. Adapt. Syst. 4, 2, Article 14 (May 2009), 42 pages.
https://doi.org/10.1145/1516533.1516538

[17] Dı́az, Oscar & Iturrioz, Jon & Piattini, Mario. (1998). Promoting
business policies in object-oriented methods. Journal of Systems and
Software. 41. 105-115. 10.1016/S0164-1212(97)10011-5.

[18] Skogan, David. ”UML as a schema language for XML based data
interchange.” Proceedings of the 2nd International Conference on The
Unified Modeling Language (UML’99). 1999.

[19] da Costa, Júlio G. S. F., Reinaldo A. Petta & Samuel Xavier de Souza
(2021), Metadata Interpretation Driven Development.


