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Abstract—Spatiotemporal crime analysis and prediction aim at
identifying criminal patterns in space and time. In previous work,
crime prediction has been performed by identifying hotspots
from data, which means areas of high criminal activity on the
streets. By focusing efforts on such sites, police patrolling is
expected to be more efficient, thus reducing criminal activity.
However, not many studies focus on investigating how police
patrolling affects crime, and whether it can be a predictor of
crime activity. In this paper we discuss the main challenges of this
problem, and describe some work in progress towards developing
a robust methodology to represent, visually analyze, and build
predictors for criminal activity, considering both criminal and
police patrolling spatiotemporal data. As a case study, we use
real datasets from the Military Police of the state of Alagoas,
Brazil (PM-AL).

I. INTRODUCTION

Crime analysis is a valuable resource employed by crime an-
alysts to acquire knowledge and support the decision-making
of public security agencies [1]. Specifically, spatiotemporal
crime analysis and prediction aim at identifying criminal pat-
terns in space and time. For instance, spatial crime prediction
may be performed through hotspot mapping, which is the
identification of the areas of high concentrations of crime [2].
This definition was later modified to include not only locations
with a high concentration of crimes but also sites where
crime is frequent but does not occur in high volume [3]. The
accurate identification of crime hotspots is an essential step
to efficiently planning police patrolling and assisting other
crime reduction actions [4]. Nevertheless, several associated
computational problems are still not well solved.

One of the major questions when tackling spatiotemporal
crime data is how to discretize and aggregate, in space and
time, crime occurrences. For instance, spatial discretization
approaches for crime analysis include census units [5], police
districts [6], regular grids [7] and corners of a city street
graph [3]. This choice restricts the methods that can be
employed to detect hotspots, and also their accuracy and con-
sequently the effectiveness of police patrol planning strategies.

Another relevant aspect is the (non-consensual) definition
of a crime hotspot, which may include sites with a high
concentration of crimes, or with regular frequency. More
generally, one may argue that a spatial unit is a hotspot if
criminal activity is predictable there, i.e. it is not random.

Depending on the definition, different techniques for hotspot
identification may be employed. Nevertheless, crime data is
generally locally scarce, unbalanced and inaccurate, making
it challenging to employ predictive modelling techniques and
develop visualization tools. By contrast, georeferenced police
patrolling data is generally prohibitive in size: the geolocation
of a patrol vehicle is generally tracked every few seconds the
whole day long, resulting in a massive amount of data.

Although several works suggest planning police patrolling
based on hotspots [8]–[10], there is a lack of investigation
on the correlations and effectiveness of such an approach.
In particular, it is not clear in which situations police pa-
trolling may effectively inhibit crime. This is a challenging
problem that involves examining not only huge volumes of
crime and georeferenced police patrolling data but also socio-
demographic aspects.

In this paper, we present an investigation and/or discussion
of the following research questions:

1) how to efficiently represent, in space and time, criminal
and police patrolling data?

2) what is the most appropriate spatial aggregation unit for
criminal hotspots representation?

3) which classes of models are appropriate to build crime
predictors, considering the characteristics of criminal
datasets?

4) under which circumstances does police patrolling inhibit
criminal occurrence?

5) is police patrolling data a predictor of criminal occur-
rence?

We propose answers to some of the aforementioned ques-
tions, discuss the main challenges of the problem, and describe
some work in progress towards developing a robust method-
ology to represent, visually analyze, and build predictors for
criminal activity, considering both criminal and police pa-
trolling spatiotemporal data. As a case study, we use a database
from the Military Police of the state of Alagoas, Brazil (PM-
AL), which is comprised of both pedestrian robbery and police
patrolling georeferenced data from a limited period.

In Section II, we formally describe the problem to be
addressed (Section II). Then, the dataset employed in this
work is described in Section III, and the proposed approach



is presented in Section IV. Finally, we discuss the major
challenges and difficulties to be tackled (Section V).

II. PROBLEM STATEMENT

In this paper, we investigate several problems that require
jointly analyzing a spatiotemporal crime dataset (C) and a
police patrolling dataset (P), over the same period.

We consider C to be very sparsely distributed both in
space and time since crime occurrences are expected to be
concentrated in a few locations of a city. Also, one may
not expect a large number of occurrences per location, even
in hotspots, thus making the training of predictive models
difficult. This dataset is also prone to spatiotemporal inaccu-
racies [11] because it is a compilation of reports of victims.

Formally, let C = {(c1, t1), (c2, t2), . . . , (cn, tn)}, where ci
is the geolocation (given in latitude/longitude pairs) and ti is
the time (including day, hour and minute) of the i-th crime
occurrence. Here, we consider C to be comprised of a specific
type of crime.

Differently, police patrolling datasets are expected to be
huge, since their data is automatically collected by sensors
placed in police vehicles. Other difficulties include missing
data from one or many cars during a specific period; and data
collected from idling cars. We define a police patrolling dataset
as P = {(p1, s1, t1, v1), (p2, s2, t2, v2), . . . , (pn, sn, tn, vn)},
where pi is the geolocation of vehicle vi at time ti, and si is
its speed at that moment.

We also consider exploiting external datasets T , which may
include, for instance, socioeconomic indicators, georeferenced
points of interest and climate data.

Given a set X of spatial aggregation units of a city, the first
relevant problem is to identify, using C, a subset H ⊂ X of
crime hotspots, which is expected to be much smaller than X .
Then, we restrict crime analysis to H.

The second problem is about training crime predictors
f̂(h, t), where h ∈ H is a hotspot and t is a time unit
representing a time window, e.g. a specific day or hour. Such
a predictor is expected to be trained using data from C, P and
T , and shall estimate if and/or how many crimes will occur in
h during t. As aforementioned, this is not straightforward due
to the characteristics of the data, and thus classical predictive
modelling approaches do not apply.

The third problem is aimed at developing methods and
visualization tools to comprehend the correlations between
crime and police patrolling data collected from the same
city and period. We consider that these correlations may be
spatially independent, in which case an analyst may investigate
whether police patrolling is effective to inhibit crime in
general (at least for the studied region); or spatially dependent.
The latter means that police patrolling could have distinct
impacts in different regions of a city, which may be valuable
information to assist police patrolling planning. Applications
of these correlation studies include finding answers to research
questions 4 and 5 (Section I).

It is also worth mentioning that, to make these problems
computationally tractable, efficient computational representa-

tions and algorithms must be developed. In Section IV we
propose compact representations for both crime and police
patrolling data that rely on a street corners-based spatial
discretization.

III. THE MILITARY POLICE OF THE STATE OF ALAGOAS
(PM-AL) DATASET

Two datasets were provided by the Military Police of the
State of Alagoas (PM-AL) for research purposes, through
a cooperation agreement between PM-AL and the Federal
University of Alagoas (UFAL): the Passerby Robbery Occur-
rences in Alagoas Dataset (PROD-AL) and the PM-AL Police
Patrolling Dataset (PMAL-PPD).

PROD-AL is a spatiotemporal crime dataset comprised of
passerby robbery occurrences in the state of Alagoas. It holds
8,572 occurrences from January to October 2021. Occurrences
locations are represented as latitude/longitude pairs, and their
times are provided as a day of the year and an hour of the
day (minutes are not available).

PMAL-PPD is comprised of roughly 50 million entries
per month, where each entry represents spatiotemporal data
of a specific police vehicle, i.e. its geographical position,
the collection day and time of day, and a vehicle id. The
geolocation of each car is collected through GPS; transmitted
through radio-frequency communication in real-time every few
seconds; and stored in a PM-AL database. We noted that, for
each car vehicle, geolocations are not uniformly collected over
time, but every 10 to 30 seconds. In this work, we consider
only data collected from January to October 2021 to match
the period of occurrences available in PROD-AL.

To facilitate the analysis in our studies, we also filter the
datasets in space to a rectangular area of approximately 40km2

in the city of Maceió, which includes 4,618 street corners, as
shown in Fig. 1. This resulted in a smaller crime dataset with
818 crime occurrences, but the police patrolling dataset is still
huge, with tens of millions of entries, which we better discuss
in the following section.

Fig. 1. Rectangular study case area in the city of Maceió, in red.



IV. PROPOSED APPROACH

To make these challenging problems tractable, we propose
an approach made up of computationally efficient data rep-
resentations, preprocessing algorithms and a hotspot identifi-
cation technique. These components were validated through
simple visualizations on the datasets described in Section III.

A. Spatial representation and preprocessing

As in [3], we adopt a spatial representation based on the city
street graph G = (V, E), where each node v ∈ V represents
a georeferenced city street corner and each edge e ∈ E
represents a street segment.

Initially, a city street graph is loaded from the Open-
StreetMap database. Then, two binary fixed-size time series
κv and ρv are initialized and filled with zeros, for each corner
v of the city. These time series represent, respectively, if crimes
occurred and if police patrolling vehicles passed nearby. Each
bin of the time series represents a time window of one hour
(due to the time resolution of PROD-AL). As a result, each
time series has a size of 7,296 for the studied period.

Spatiotemporal data from C are projected to their nearest
corner in V . Each crime occurrence (ci, ti) ∈ C is first
projected to its nearest edge en ∈ E using ci. Then, the
occurrence is projected to its nearest node vn of en. Finally,
the bin of the time series κvn that corresponds to time ti is set
to 1. Analogously, spatiotemporal data from P are projected
to a node vn, and the corresponding bins of the time series
ρvn are set to 1.

It is worth mentioning that this procedure improves the
accuracy of the spatial aggregation of the occurrences, in
comparison to a naive projection to the nearest node, which
may be far from the occurrence location (see Fig. 2). Also,
the size of the resulting time series is constant, i.e. it does not
depend on the size of C and P . For instance, considering the
dataset described in Section III, only 9,236 time series of size
7,296 are required, resulting in approximately 64 megabytes
of memory (if 1 byte per bin is used).

In this work, we adopt the CityHub Library [12] to load the
city street graph and to project georeferenced data to corners.
As a result, in our case study of 818 crime occurrences, 506
of 4,618 corners were associated with crimes.

Fig. 2. Corner projection algorithm: a point of interest p is first projected to
the nearest edge en (in pink), and then to the nearest extremity vn of en (in
pink). If a straightforward projection algorithm was used, point p would be
assigned to a corner in the wrong street (Rua Armando Faria Lobo).

B. Hotspot identification

In our preliminary case studies, we followed the hotspot
definition of Garcı́a-Zanabria et al. [3]: “micro” places where
crimes are relatively stable (or predictable), but not necessarily
occur with high intensity. To identify corners with a high
probability of crime occurrence, the stationary vector π of
a stochastic matrix P is computed, where Pij is an integer
representing the number of days that the corners vi and vj
faced crime events.

A simple thresholding method was applied to detect the
hotspots that covered more than a percentual T of the number
of occurrences. First, the corners are sorted in descending
order according to their probability given by π. Then, corners
with higher probability are iteratively inserted into the hotspot
set H, until H covers more than T% of the occurrences.

In our case study, we set T = 30%. As a result, out of
506 corners with occurrences, 179 corners were identified as
hotspots, as revealed in Fig. 3.

C. Visualization

We propose to investigate research questions 3, 4 and 5
by exploring the time series of crime occurrences and police
patrolling restricted to the identified hotspots, and here denoted
by κH and ρH. To this aim, straightforward visualizations
have been developed to validate the previous steps and to gain
insights.

For example, a scatter plot describing the average patrolling
time (in hours) and the number of crimes of each hotspot is
revealed in Fig. 4. There is no clear pattern indicating that
hotspots with a higher number of crimes are more patrolled.
This may indicate that the effectiveness of police patrolling
is spatially dependent. Also, this plot does not allow a visual
analysis of temporal patterns considering both crime occur-
rences and police patrolling nearby.

Alternatively, the time series may be concurrently visual-
ized for a specific hotspot, as demonstrated in Fig. 5. By
zooming into a time window around a crime occurrence, a
clear patrolling time pattern may be observed. However, this

Fig. 3. Scatter plot of the corners associated to crime occurrences: corners
to the right of the red dotted vertical are considered hotspots. Low opacity
settings were used to enhance the visualization of clusters of corners.
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Fig. 4. Scatter plot describing the average patrolling time vs. the number of
crimes: each hotspot is represented by a point.

visualization does not allow global analysis of the temporal
correlation between crime occurrences and police patrolling.

V. CHALLENGES AND FUTURE WORK

A. Hotspot identification improvements

Although crime tends to accumulate in micro places [13]
such as street corners, we noticed that, in some areas of
the city of Maceió, crime is scattered in many neighbouring
corners. Besides, crime series for single corners are extremely
sparse, with no more than 9 occurrences in a 10 months period
(see Figs. 3, 4 and 5). Thus, an adaptive spatial discretization
approach to represent hotspots could mitigate the sparseness
problem, while still appropriately representing areas where
crime occurs in a similar fashion.

Another relevant investigation is related to the detection of
hotspots with a high probability of crimes, but low intensity.
As revealed in Fig. 3, the approach of [3] essentially resulted
in corners with a high intensity of crimes. Our hypothesis
is that the sparseness of the κH time series resulted in very
few crimes occurring on the same day. Thus, we aim to
investigate more appropriate definitions for the transitions of
the stochastic matrix P . Alternatively, different definitions of
sites where crime is predictable could be researched.
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Fig. 5. Simultaneous visualization, for a specific hotspot, of the time series
of crime occurrences and police patrolling, including a zoom to finely analyze
a specific time window.

B. Crime prediction

Given the time series κH and ρH, we aim to develop
crime predictors f̂ , as described in Section II. However,
the sparseness of the crime time series makes it a difficult
task, where most predictive techniques may not be employed.
Variations of Poisson models may be appropriate alternatives
that are currently under investigation. Police patrolling data in
ρH may also be exploited to train better crime predictors and
is a manner to answer research questions 4 and 5.

C. Correlation analysis

The uncomplicated visualizations described in Section IV-C
are insufficient to solve visual analytics tasks related to re-
search questions 4 and 5. Appropriate correlation analysis
techniques and sophisticated visualization tools may be stud-
ied. In particular, they must consider the sparsity of the crime
time series, temporal information of both κ and ρ, and spatial
autocorrelation.
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