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Abstract—In contrast to the rapid progress of superpixel seg-
mentation, their methods are often compared only with classical
approaches. Also, the previous superpixel methods categoriza-
tions are insufficient to cover the recent literature. In addition,
although the inner color similarity usually underlies superpixel
methods, both color homogeneity measures have important
drawbacks. In this work, we fill these gaps by providing a new
taxonomy for superpixel segmentation, a new color homogeneity
measure, and an extensive comparison among 20 superpixel
methods. Experiments show that the proposed measure, named
Similarity between Image and Reconstruction from Superpixels
(SIRS), is more robust to slight color variations than Explained
Variation. Using SIRS and the commonly used superpixel metrics,
we evaluated 20 superpixel segmentation methods and provided
insights into the different approaches based on the clustering
categories in our taxonomy.

I. INTRODUCTION

Superpixel segmentation consists of partitioning images into

several disjoint groups of connected pixels, named superpixels,

according to a predetermined criterion (e.g., color similarity).

Such a procedure reduces workload, provides high-level se-

mantic information, and enables accurate object delineation.

Consequently, superpixel segmentation methods have been

used in several applications [1]–[7]. In superpixel literature,

regardless of the absence of consensus on the desired super-

pixels’ properties, most authors agree that superpixels must

be connected, adhere to the objects’ borders, have a compact

and regular shape, be computationally efficient, and produce

a controllable number of superpixels [8], [9]. Nevertheless,

since improving one property may lead to another’s worsening,

many superpixel methods fail to meet all of these criteria and

try to manage this trade-off [10], [11].

Since superpixel methods can attend to different proper-

ties, the evaluation measures may vary depending on the

optimized property. For instance, some measures only con-

sider the objects’ borders in the ground truth and ignore

internal partitioning. However, this may not be sufficient

since an image can consider different objects for different

tasks. Other measures overcome ground-truth dependency by
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Fig. 1. Difference between color homogeneity measures in a grid segmenta-
tion with 1000 superpixels. Whiter values indicate higher scores.

assessing color homogeneity [12], [13]. However, Intra-cluster

Variation (ICV) [12] cannot be compared between images

since it does not produce normalized values. In contrast, the

Explained Variation (EV) [13] produces normalized values

but may not accurately describe perceptually homogeneous

regions in certain situations. Our proposed measure, the Sim-

ilarity between Image and Reconstruction from Superpixels

(SIRS), represents superpixels by their most frequent colors

and measures color homogeneity as the image reconstruction

error, accurately capturing color homogeneity, as shown in

Figure 1. Superpixel papers usually compare their proposals

to classical approaches with few comparisons with newer

methods, hampering the determination of the true impact of

their contributions. Furthermore, recent approaches have not

been included in previous benchmarks [8], [9], [14]–[16]. This

work fills this gap by evaluating 20 superpixel segmentation

methods among the most recently proposed and commonly

used ones. Our assessment covers compactness, delineation,

color homogeneity, visual quality, and stability (omitted in

this paper). The results provide valuable insights into the

pros and cons of the methods, supporting the choice of the

most suitable one for a given application. In summary, the

contributions of this work are: (i) a comprehensive overview

of the recent superpixel approaches; (ii) a taxonomy for

superpixel methods with a less restrictive representation; (iii)

a new color homogeneity measure for quantitative superpixel

evaluation; (iv) an extensive assessment on various datasets.

This paper is organized as follows. Section II presents the

mathematical image modeling used in this work. Subsequently,

Section III presents the evaluation measure SIRS, and Sec-

tion IV describes the superpixels taxonomy. In Section V we



compare SIRS with the commonly used color homogeneity

measure for superpixels and Section VI present an extensive

evaluation with 20 superpixel methods. Finally, Section VII

presents the conclusions and future works.

II. BACKGROUND

Let an image I be defined as a pair (I, I) in which I ⊂ Z
2 is

the set of pixels’ coordinates whose colors is a vector mapped

by I(p) ∈ R
m, given m ∈ N

∗. Note that, when m = 1, I is

grayscale and it is colored otherwise. We may compute the

ℓ-norm of I(p) = ⟨I1(p), . . . , Im(p)⟩ of the colors of the pixel

p by ∥I(p)∥ℓ =
(∑m

j=1 |Ij(p)|
ℓ
)1/ℓ

, given ℓ ∈ N
∗. By setting

ℓ = 1 and ℓ = 2, the ℓ-norm is equivalent to the Manhattan

and Euclidean distances, respectively.

If a set X ⊆ I of pixels is provided, one may calculate its

mean color µ(X) ∈ R
m by µ(X) =

∑
x∈X I(x)

|X| , where |X|
denotes its size. Furthermore, we may segment X into k ∈ N

∗

subsets by a function S(X, k) ∈ P \ ∅, being P the power set,

resulting in a partition (or grouping) {X1, . . . , XK} such that⋃k
i=1Xi = X ,

⋂k
i=1Xi = ∅, and k ≤ |X|. We may extend

such concepts for describing the segmentation S ∈ S(I, k) of

an image I, in which every Si is a region or superpixel.

III. A COLOR HOMOGENEITY MEASURE FOR SUPERPIXELS

Since the average color used in the ICV and EV is insuffi-

cient to describe the colors of a superpixel, a new descriptor is

necessary. Supposing that a small set of colors can represent

a visually homogeneous superpixel, we can assume that a

heterogeneous superpixel cannot be well represented in the

same way. Therefore, the heterogeneity of a superpixel may be

related to the quality of its description from a few colors. Thus,

this descriptor’s error in recovering the superpixel content from

the original image may be related to its color homogeneity.

Based on this idea, in this work, we assess the quality of the

superpixel segmentation by its ability to reconstruct the orig-

inal image. More formally, let R = (I, R) be a reconstructed

image of I in which every pixel p ∈ I has its reconstructed

(or predicted) color R(p) ∈ R
m. Such reconstruction is ideal

when R ≡ I . If a segmentation S is provided, the popular

approach is to assign R(p) = µ(Si) for all p ∈ Si and every

Si ∈ S.

A. RGB Bucket Descriptor

We argue that the color information of any superpixel can be

represented by a minimal set of colors due to its homogeneity

property. In order to build the palette of the most relevant

colors in each superpixel Si ∈ S, we exploit the RGB space,

represented as a cube in [0, 1]
3
. By merging the white and

black color vertices, the vertices correspond to the colors with

maximum intensity in some channels. Therefore, considering

an image I = (I, I) and the reconstructed image R = (I, R),
I and R map to normalized RGB colors.

First, let GSi ∈ S(Si, 7) represent the set of 7 disjoint

groups related to each of the cube’s vertices, whose colors

are V = {c1, ..., c8}, in which cl ∈ [0, 1]
3

for 1 ≤ l ≤ 7. One

TABLE I
FEATURES CATEGORIES IN TAXONOMY

Feature category Explanation

Pixel-level
Raw data resources in images — e.g., pixel color,
position, and depth

Mid-level

features that can be computed based on a set
of pixels, smaller than the entire image — e.g.,
patch-based feature, path-based feature, gradient,
or boundary

High-level

features that combine pixel properties and high-
level information. The high-level information
cannot be extracted from a small set of pixels.
They are given directly by the user or predicted
by other models — e.g., saliency map, semantic
features, texture, or a desired object geometry

may divide the RGB space according to the vertices of its

cube representation and merge the white and black vertices to

represent gray levels. Therefore, V corresponds to all possible

combinations of RGB color channels. Let x = ⟨xi⟩
m
i=1 a vector

that indicates the color channels with maximum intensity in

I(p) such that xi = ✶(Ii(p) = ∥I(p)∥∞). We populate each

GSi

l ∈ GSi by assigning every p ∈ Si to its most similar

group using a mapping function M(p) (Equation 1).

M(p) = argmin
ci∈V

{∥x− ci∥1} (1)

Although GSi

l contains pixels similar to cl, they may present

significantly distinct luminosities (i.e., color shades), which

can be suppressed if the mean color is desired. Thus, we split

it into λ ∈ N
∗ subgroups (or buckets), denoted by ĜSi

l ∈
S(GSi

l , λ). Without abuse of notation, we insert every p ∈ GSi

l

into its respective group ĜSi

l,b given b = ⌊∥I(p)∥∞ λ⌋.

We name RGB Bucket Descriptor (RBD) the descriptor

RBD(Si) = {c1, ..., cα}, in which ci ∈ [0, 1]
3
, resultant from

the selection of the α ∈ N
∗ most relevant colors within GSi by

some predetermined criterion. In this work, RBD(Si) selects

the average color µ(GSi

l,b) of the most populated buckets, irre-

spective of l (i.e., its vertex-based group). Although inaccurate

for heterogeneous sets of pixels, the refinement for generating

GSi

l,b leads to a better approximation of the most predominant

colors by the mean operator. On the other hand, by promoting

such grouping, colors with visually indistinguishable differ-

ences are assigned to the same bucket, reducing the probability

of selecting slight variations of the most frequent color.

B. Similarity between Image and Reconstruction from Super-

pixels

Given RBD(Si) = {c1, . . . , cα}, one could generate a

proper approximation of the original texture by the cor-

rect ordering, but such task is challenging. Conversely, we

propose evaluating the best reconstruction possible from

the most relevant colors for measuring the color variation

description of Si. Thus, we build R such that R(p) =
argmincj∈RBD(Si)

{
∥I(p)− cj∥1

}
.

After generating R from S, we may compute the Mean

Exponential Error (MEE), shown in Equation 2 between it and



the original image I for weighting each error accordingly:

MEE(S) =
1

|I|

∑

Si∈S

∑

p∈Si

∥R(p)− I(p)∥2−ψ1 (2)

in which ψ = max
{
∥cl − cj∥1

}
and cl, cj ∈ RBD(Si). If a

superpixel requires a palette of highly discrepant colors, the

error impact should be greater since it describes a complex

pattern. Conversely, if the relevant colors are similar and,

thus, represent a more uniform texture, such impact must be

small. Finally, we may define the Similarity between Image

and Reconstruction from Superpixels (SIRS), in Equation 3,

by a Gaussian distribution centered at MEE(S):

SIRS(S) = exp−
MEE(S)

σ2 (3)

in which σ2 is a parameter that controls the importance of

small error variations. In SIRS, the higher the value, the better

the color homogeneity in S, represented within [0, 1].

IV. TAXONOMY FOR SUPERPIXEL SEGMENTATION

A suitable categorization must satisfy the following state-

ments: (i) the categories must be abstract enough to encompass

(i.e., be valid for) all methods; and (ii) the categories must

be distinct from each other to allow comparing and merging

strategies. For a superpixel method, one may identify at most

three steps: (i) initial processing, (ii) main processing, and

(iii) final processing. The former performs a pre-processing

whose output is used in the main processing for the superpixel

computation strategy. Finally, cluster refinement may be per-

formed in the final processing step to ensure connectivity or for

fine-tuning. Superpixel methods may also use several features,

such as boundary maps, semantic features, affinity maps,

and saliency maps. Therefore, in addition to the processing

steps, our taxonomy includes a feature classification based

on their abstraction level. As a superpixel method can use

more than one feature (e.g., pixel colors and boundary map),

our feature classification considers the used feature with the

highest abstraction level among the categories in Table I.

We reviewed 45 superpixel methods and categorized their

processing steps. For superpixel segmentation, neural archi-

tectures are not restricted to the main processing, being also

used to extract features or for superpixel refinement. Although

superpixel segmentation is a pixel labeling task, some neural

architectures are trained for other tasks, such as image recon-

struction or inpainting. Therefore, we categorize the neural

networks in superpixel methods based on their architectures

and training tasks. An extensive review of classical and recent

superpixel methods along with the proposed taxonomy applied

to the analyzed methods were omitted in this paper and can

be seen in the dissertation text.

V. EVALUATING COLOR HOMOGENEITY MEASURE

In this Section, we present the experiments for our pro-

posed evaluation measure, SIRS, in Birds [17], Sky [18],

and Extended Complex Scene Saliency Dataset (ECSSD) [19]

datasets using five superpixel methods with different proper-

ties. The Birds [17] consists of 150 images of Birds whose
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Fig. 2. Results for Birds, Sky, and ECSSD for EV and SIRS.

thin elongated legs are difficult to segment and, thus, may

compromise the color description. The Sky [18] has 60 images

with large homogeneous regions with subtle luminosity varia-

tions. Finally, the Extended Complex Scene Saliency Dataset

(ECSSD) [19] has 1000 images with objects and backgrounds

with complex textures. Specifically, DISF [20] and SH [21] are

recent superpixel methods focused on object delineation, while

IBIS [22] and SLIC [23] present high compactness with fair

delineation. Finally, we consider a grid-based segmentation

(GRID), representing maximum compactness but poor delin-

eation. The implementation of SIRS is available online 3.

A. Quantitative results

As one can see in Figure 2, both SIRS and EV dis-

tinguish methods that maximize delineation (i.e., DISF and

SH) with those opting for more compact superpixels (i.e.,

GRID, SLIC, and IBIS). However, EV presents a lesser spread

than SIRS, as exemplified in the distance between IBIS’ and

SH’s curves. Moreover, EV tends to result in significantly

higher values, especially in contexts where superpixels are

increasingly heterogeneous. For example, GRID obtains a

score over 0.5 on the Sky dataset with only 25 superpixels.

Conversely, SIRS offers a more meticulous discrepancy even

with methods with similar performance, like DISF and SH.

Also, due to its penalization, SIRS exhibits a more coherent

range of values when few superpixels are generated — i.e.,

in a more heterogeneous segmentation. In the same example,

GRID scored less than 0.4 on the same dataset.

B. Qualitative results

Figure 3 presents a visual comparison between SIRS and

EV in images with large homogeneous (Figure 3(a)-(c)) or

texturized (Figure 3(d)-(i)) regions. As shown in Figure 3(a)-

(c), while EV has a higher penalty even in smooth color

transitions (the sky in Figure 3(a)-(c)), SIRS is robust to

such changes. Concerning more textured backgrounds, SIRS

also demonstrates robustness in simpler textures (Figures 3(d)-

(f)). However, more complex textures (Figures 3(g)-(i)) may

receive a significant penalty in SIRS, but are generally softer

3https://github.com/IsabelaBB/SIRS-superpixels
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than EV. Moreover, our measure tends to be more correlated

to delineation than EV, given the penalizations in regions

with high color variance — often at the object borders. As

the delineation performance decreases, the color variation

captured tends to be more heterogeneous (i.e., RBD generates

a more diverse palette), leading to a more drastic penalization.

We argue that such robustness is directly linked to the accurate

color selection from RBD, correctly describing superpixel

homogeneity.

VI. EVALUATING SUPERPIXEL METHODS

We selected a total of 20 superpixel methods, where 13

are recent proposals not evaluated in previous benchmarks:

DISF [20], RSS [24], ODISF [25], IBIS [22], DRW [26],

DAL-HERS [27], LNSNet [28], ISF [29], SNIC [30], SH [21],

GMMSP [31], LSC [32], and SCALP [33]. We also selected

the 6 methods recommended in [8]: SLIC [23], SEEDS [34],

ERS [35], ETPS [36], CRS [37], and ERGC [38]. Finally, a

grid segmentation (GRID) was used as a baseline. We eval-

uated according to: (i) boundary adherence using Boundary

Recall (BR) [39] and Undersegmentation Error (UE) [14];

(ii) compactness with Compactness index (CO) [10]; and (iii)

color homogeneity with Explained Variation (EV) [13] and

SIRS. We also analyzed stability but we omitted these results

due to lack of space. As the SIRS assessment in Section V,

we selected Birds, Sky, and ECSSD datasets as they contain

different challenging aspects. We also choose the Insects

dataset [17], composed of 130 images of spiders, insects, and

other invertebrates, whose images have more homogeneous

backgrounds than Birds.

A. Quantitative evaluation

As one may see in Figure 4, the differences between the

best methods in BR and UE delineation are minor and most

methods have low leakage due to low UE scores. Concerning

CO (third row in Figure 4), methods with higher compactness

(GRID, CRS, ETPS, SCALP, SNIC, SLIC, and IBIS) have a

parameter to control compactness. When evaluating the color

homogeneity (fourth and fifth rows in Figure 4) with EV and

SIRS, the results of the former were generally too high and

closer to each other compared to the second one. However,

in both, the higher color homogeneity was achieved by DISF,

followed by SH, ISF, LSC, RSS, GMMSP, and SCALP.

Most path-based clustering methods had similar perfor-

mance in object delineation, compactness, and homogeneity.

Conversely, neighborhood-based clustering approaches had

more variate results. Although methods with path-based clus-

tering had optimal delineation, their superpixels have low

compactness. Among these, DISF and ERS showed the best

results in delineation and homogeneity. In contrast, LSC

and SCALP, both neighborhood-based clustering approaches,

produced more compact superpixels. Clustering methods based

on contour optimization also had variable results, with IBIS

achieving the best ones and CRS and SEEDS producing the

worst results. Contour evolution-based methods had higher

compactness but worse object delineation and color homo-

geneity.

Concerning clustering with a dynamic center update, DRW,

and SNIC use strategies to adapt the number of generated

superpixels to the image content. Despite their similarities,

DRW and SNIC use different features and optimization func-
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Fig. 4. Results for Birds, Sky, ECSSD, and Insects for BR, UE, CO, EV, and SIRS.

tions, which explains their different results. DRW has bet-

ter delineation and fewer superpixels, while SNIC generates

more compact and homogeneous superpixels. In our analysis,

both hierarchical approaches, SH and DAL-HERS, had low

compactness and high color homogeneity. However, SH had

competitive delineation in contrast with worse results with

DAL-HERS. Finally, GMMSP and LNSNet showed excellent

delineation with BR, but LNSNet had heterogeneous superpix-

els with moderate compactness and more leakage. GMMSP

achieved great results in all evaluated measures.

B. Qualitative results

Figure 5 presents superpixel segmentations, where the su-

perpixel boundaries are shown in red. Concerning the path-

based clustering methods, RSS produces elongated and thin

superpixels at the strong image boundaries (i.e., low compac-

ity), while ISF produces compact superpixels in homogeneous

regions but its high sensitivity to color variations generates



O
ri
g
in
a
l

D
R
W

G
M
M
S
P

L
S
C

S
E
E
D
S

C
R
S

E
R
G
C

IB
IS

O
D
IS
F

S
H

D
A
L
-H

E
R
S

E
R
S

IS
F

R
S
S

S
L
IC

D
IS
F

E
T
P
S

L
N
S
N
et

S
C
A
L
P

S
N
IC
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non-smooth superpixels in less homogeneous regions. Both

DISF and ODISF maintain excellent boundary adherence and

generate larger superpixels in homogeneous regions, but their

superpixels are neither compact nor smooth. Similarly, ERGC

has good boundary adherence, its superpixels do not have a

high variance in size and they have smooth contours, but for

fewer superpixels, the delineation reduces significantly.

Concerning neighborhood-based methods, SLIC and

SCALP have highly compact superpixels with good boundary

adherence. For fewer superpixels, SLIC compactness and

delineation decrease. In contrast, LSC only produces compact

superpixels in homogeneous regions but has smooth contours

in simple textured areas. Similar to SLIC, SNIC produces

more compact and well-defined superpixels, while DRW

generates fewer, less compact, and more adherent superpixels.

In contrast, superpixels in SEEDS are non-compact and

non-smooth, which may lead to small leakage regions. CRS

generates highly compact superpixels but with low adherence

to the image boundaries. Similarly, ETPS and IBIS produce

smooth and compact superpixels, but the compactness and

smoothness in IBIS may vary depending on the region’s

homogeneity. In both ETPS and IBIS, the adherence to

contours is significantly reduced with fewer superpixels.

Conversely, hierarchical methods (SH and DAL-HERS)

have excellent delineation, but with non-smooth superpixels

in highly textured areas and elongated and thin ones at some

of the prominent image boundaries. DAL-HERS also generates

several tiny superpixels, resulting in visibly poor segmentation.

In contrast, LNSNet produces compact superpixels in homo-

geneous regions, but its sensitivity to color variations implies

non-smoothness and its delineation may fail in regions with

strong boundaries, causing small leaks. Methods with others’

clustering strategies had excellent delineation. For instance,

with graph-based clustering, ERS produces superpixels with

low smoothness while GMMSP, with a data distribution-

based clustering, produces smooth and compact superpixels,

especially in homogeneous regions.

VII. CONCLUSION

In this work, we extensively review the recent literature on

superpixel segmentation and propose a taxonomy for them.

We also propose a new evaluation measure called SIRS to

assess color homogeneity in superpixels. Compared to the EV,

SIRS is more robust to less perceptual color variations. We

also evaluate 20 superpixel methods. Our results demonstrate

that path-based (ISF, DISF, ODISF, and ERGC) and hierar-

chical methods (SH and DAL-HERS) usually have the best

delineation but low compactness. In contrast, most boundary

evolution clustering methods (SEEDS, IBIS, CRS, and ETPS)

have the highest compactness and the worst delineation. Also,

neighborhood-based (SLIC, LSC, and SCALP) and dynamic

center update clustering (SNIC and DRW) methods usually

produce compact superpixels with moderate delineation. Con-

cerning other clustering categories, graph-based (ERS) and

data distribution-based clustering (GMMSP) obtain moderate

compactness while a convolutional network for lifelong learn-

ing (LNSNet) had no compactness. The delineation is moder-

ate for ERS and excellent for the others although LNSNet had

more leakage. This study is part of the tutorial ”Superpixel

segmentation: from theory to applications”, in SIBGRAPI

2023. It also has an international conference paper [40], and

a journal under review in ACM Surveys. Another conference

paper [41] was published in parallel but is not part of the

dissertation.
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“Slic superpixels compared to state-of-the-art superpixel methods,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 11, pp. 2274–2282, 2012.

[24] D. Chai, “Rooted spanning superpixels,” International Journal of Com-

puter Vision, vol. 128, no. 12, pp. 2962–2978, 2020.
[25] F. C. Belém, B. Perret, J. Cousty, S. J. Guimarães, and A. X. Falcão,
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