
Learning on graphs and hierarchies
Raquel Almeida∗

ImScience and IRISA
PUC Minas and Université de Rennes 1
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Abstract—Hierarchies, as described in mathematical morpho-
logy, represent nested regions of interest that facilitate high-level
analysis and provide mechanisms for coherent data organization.
Represented as hierarchical trees, they have formalisms intersec-
ting with graph theory and applications that can be conveniently
generalized. However, due to the deterministic algorithms, the
multiform representations, and the absence of a direct way to
evaluate the hierarchical structure, it is hard to insert hierar-
chical information into a learning framework and benefit from
the recent advances in the field. This work aims to create a
learning framework that can operate with hierarchical data and
is agnostic to the input and the application. The idea is to study
ways to transform the data to a regular representation required
by most learning models while preserving the rich information in
the hierarchical structure. The methods in this study use edge-
weighted image graphs and hierarchical trees as input, evaluating
different proposals on the edge detection and segmentation tasks.
The model of choice is the Random Forest, a fast, inspectable,
scalable method. The experiments in this work are an outline of
the original study in the related Ph.D. thesis. They demonstrate
that it is possible to create a learning framework dependent only
on the hierarchical data that performs well in multiple tasks.

I. INTRODUCTION

Hierarchies are an inherent property composing several
elements in real life, relating to how we naturally perceive
patterns, scenes, and movement [1]. According to [2], there is
a pattern identifier in the core of our visual perception, ope-
rating hierarchically to recognize parts, objects, and abstract
concepts simultaneously. The perceptual hierarchy mimicking
our ability to perceive reality’s intrinsic nature is difficult to
translate to computer models. But, in visual media processing,
mathematical morphology has an edge in defining, creating,
and manipulating hierarchies.

The hierarchies formulated in mathematical morphology
[3] use the non-linear geometric space generalizing the set
theory of complete lattices [4]. Hierarchical methods represent
nested regions of interest and provide merging operations to
build more semantically significant objects from lower-level
instances. In multimedia processing, the lower-level regions
consider the media’s building blocks, such as pixels, voxels,
and frequency. The semantically significant objects built from
those regions help perform more complex tasks such as object
proposal, semantic contour, and semantic segmentation [5].

. ∗Work related to the Ph.D. thesis entitled Learning on graphs and
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However, most hierarchical methods require thorough pre-
processing of the data [6], [7] and strategies to deal with issues
like over/under-partitioning of the space [8], [9] or selecting
an ideal number of regions [10]. Therefore, it is difficult to
generalize a successful approach to similar media and tasks.

For a generalization in terms of the media, most challenges
regard the characterization of the information, in which the
media data presents different characteristics and the build-
ing blocks have different connotations. These differences in
form and connotation eventually become limiting factors and
models created to solve a problem could only deal with that
particular data type. In terms of task, the generalization is
challenging due to the lack of a measure assessing the quality
of a hierarchy, which requires an empirical refinement through
a series of trial-and-error fittings for a particular application.

Furthermore, a framework operating on hierarchies presents
some considerable additional challenges since the methods
are deterministic, the product is multiform (different sizes,
components, and interpretations) and the same data could
create multiple hierarchical structures depending on the ope-
rators. Therefore, applying the morphological hierarchies in an
agnostic learning framework requires a strategy to overcome
the generalization issues and the deterministic, the quality
assessment, and the heterogeneous aspects.

We argue that it is possible to directly insert the hierar-
chical structures in a learning framework and benefit from
the embedded information to create a model for visual tasks
that is agnostic to the media and task. The main goal is
to design a learning framework that can operate directly on
the hierarchical data and in doing so, it must deal with the
generalization challenges and place a strategy to conform the
hierarchical information to a learning framework.

We hypothesize that hierarchical representations contain
valuable information embedded in their structures for a generic
learning framework (Hypothesis 1). For this purpose, under-
standing the media’s building blocks relation at the low level is
critical to group them into homogeneous regions and the task
definition should not impose assumptions on the data source.

Visual data, such as images and videos, are organized data
structures, and information such as color, spatial distance, or
variance defines homogeneity. An appropriate representation
is ideally shared among most media types and is capable
to retain the information presented in the media. Graphs are
structures used to represent objects, and the primary concern



in graph theory is how these objects are interconnected. They
can depict many data and carry information about the objects
in their components, including from different domains. In this
sense, despite their differences, multimedia data share the form
once modeled as graphs. And although defining homogeneous
regions and their connotations are particular for each media,
the grouping strategy and their storage in the hierarchical
structure follow the same rules. Furthermore, one way to rep-
resent hierarchical data is as hierarchical trees. Therefore, both
graphs and hierarchies have formalisms intersecting with graph
theory and applications that can be conveniently generalized.

The proposed methodology uses the Random Forests [11]
as a model. It is fast, simple, and scalable. Furthermore,
it presents satisfactory results in multiple tasks. The main
challenge in this proposal concerns the regular representation
required by most machine learning algorithms. The regular
representation is inherently opposed to the unconstrained na-
ture of graphs and hierarchies. Hence, the proposed strategy
is to represent the graph’s components as vectors of selected
attributes and assess its capability to retain the information
modeled in the graphs while remaining discriminant for a task.
Using a selection of graph attributes as input to the learning
framework allows the formulation of a model agnostic to the
media, and casting the information at the graphs’ components
level allows assigning each entry with a task label without
imposing assumptions on the data source (Hypothesis 2).

However, depending on the modeling choices of the graphs,
it can create a particular structured space known as a grid
graph, which is close to the spatial domain of the media.
Presuming generalization on a grid graph can be deceptive,
and more than the structural information may be necessary for
a discriminative representation. However, modeling the graphs
from the hierarchical structure provides a non-regular charac-
terization of regions with notions of order and navigation. The
topology of the hierarchical structures alone could be used in
a learning framework to solve multiple tasks if it preserves
their semantical arrangement (Hypothesis 3).

To be explicit, this work does not present a multimedia
application. Instead, the formulations and considerations focus
only on the structures of the graphs and hierarchies. Therefore,
it asses the discriminant information present in these structures
while maintaining a certain level of agnosticism.

This work is organized into three main parts, one the-
oretical and two methodological, each addressing one hy-
pothesis. Specifically: (i) Section II contextualize the theory
of morphological hierarchies, formalizing graphs and hier-
archies on the shared notation, and delimiting the problem;
(ii) Section III presents a case study method for a learning
framework operating on a selection of graph attributes; and
(iii) Section IV presents the culmination of the proposals,
expanding the concepts and strategies to the hierarchical data.
After the main parts, Section V outlines the results of each
proposed approach in an experimental setting and presents a
discussion of the experimental investigation, and Section VI
draws some conclusions and delineates some possible future
work derived from this study.

II. HIERARCHIES AND GRAPHS

The hierarchical functions on mathematical morphology are
rooted in the algebraic theory of complete lattices, modeling
non-linear transformations with set operators to correlate
whole sets of values [3]. In [12], the authors provided formal
links between the morphological partitions and edge-weighted
graphs. In this formalism, a structure could be defined as a
hierarchy if it follows two hierarchical principles [13]: (i)
causality: a particular element at one hierarchical level should
be present at any consecutive level; and (ii) locality: regions
must be stable when creating or removing partitions.

A. Graph’s formalism and notions

A graph G = (V,E) consists of a finite set of vertices,
denoted by V , and a finite set of edges denoted by E, where
E ⊆ V × V . If (u, v) ∈ E for two vertices u, v ∈ V ,
then u and v are adjacent vertices. The notion of vertices
relates to the data’s elemental components and the edges
with the connections and dynamics between the parts. The
set E induces a unique adjacency relation Γ on V , which
associates u ∈ V with Γ(u) = {u} ∪ {v ∈ E|(u, v) ∈ E}.

An edge-weighted graph is denoted by (G,F), in which
F : V × V → R is a function that weights the edges of G =
(V,E) and F(E) is the weighted map for the function F on
the set E. The nature of F determines which characteristics the
graph preserves, and selecting a function could be considered
a similarity measure problem between two finite sets of points,
where {w = F(u, v)|(u, v) ∈ E} is the weight w of an edge
(u, v) ∈ E that could describe the dissimilarity of u and v.

A tree is a particular case of a direct graph ((u, v) ̸=
(v, u),∀u, v ∈ V ). In a tree, we denote vertices as nodes.
The root is the single node at the top of the tree that connects
all the other nodes. From the root, every subsequent node is a
child and the leaves are at the bottom with no children. From
the root, each node in the path to a leaf characterizes one level,
the maximum number of levels defines the tree depth, and the
altitude of a node starts from the leaves and it is inversely
proportional to the depth of the node.

B. Hierarchies: from graphs to graphs

A hierarchy operating on the edge-weighted graph defines
non-gridded regions as subsets of the vertices. For G and G'
the graph induced by V ' is G = (V ', ϵ) where V ' ⊆ V and
ϵ = {(u, v) ∈ E |u, v ∈ V '}. V ' is a connected component of
G if V ' is connected for G and maximal.

A set H ⊆ V, where V denotes the set of all subsets on
V , is a hierarchy on V if H1 ∩ H2 ∈ {∅, H1, H2} for any
two elements H1, H2 ∈ H. These notations characterize a
direct forest that portrays the hierarchy as a Hasse diagram,
also known as a dendrogram representation [14]. Therefore, a
hierarchy is a graph in the form of a hierarchical tree.

A partition P is a set of non-empty disjoint subsets of V ,
meaning that ∀X,Y ∈ P, X and Y are regions, X ∩Y = ∅ if
X ̸= Y and ∪{X ∈ P = V }. The partition set is ordered from
finer in P' to coarser in P'' if any region in P' is present in P''
for any P',P'' ∈ P. The ordered relation conveys the idea of



refinement, in which navigating from finer to coarser is known
as region aggregation and the opposite as region splitting.

A hierarchy of partitions H = (P0, . . . ,Pk) is a sequence of
partitions on V , such that [P]i−1 is a refinement of [P]i ∀i ∈
{1, . . . , k} where k is the number of levels in the hierarchy
characterizing its altitude and depth. The hierarchy preserves
the non-empty disjoint sets notion and the ordered relation.
The union of all partitions of H creates the set of regions
of RH, and the inclusion relation induces a tree structure.
The hierarchical partition tree TH is the tree representing the
hierarchy H = (P0, . . . ,Pk) .

The hierarchical construction algorithms use the weights to
regulate how regions are formed, the criterion to merge and
create new ones, and the order to pursue. This work presents
two particular hierarchical models, namely: (i) the quasi-flat
zones (QFZ), induced directly from the graph with altitudes
ordered based on increasing values of the edge-weights [15];
and (ii) the hierarchical watershed with altitudes ordered
based on a geometric criterion [16]. Each construction algo-
rithm has its particular properties and interpretation of the
data. However, the rules on the hierarchical principles and
the ordered representation of regions create a shared space
convenient for commuting from one type to another if one
representation is inadequate for an application.

In a typical pipeline for an image processing task, after
adequately preparing the image, the graph is created and the
hierarchy is constructed according to the selected method.
Once constructed, it is necessary to decide how to represent the
hierarchies to be applied since most ground-truth references
need a flat (i.e., non-hierarchical) form for comparison. In this
step resides the central problem of this work.

The trivial approach is a series of horizontal cuts selecting
multiple independent partitions representing the hierarchy.
The selection could indicate the desired number of regions
portrayed on the partition (a strenuous job that goes from a
single to the total number of regions) or a threshold of the
hierarchical levels (crucial detail present at one hierarchical
level could be merged on the subsequent levels). Furthermore,
a good horizontal cut for one specific hierarchy does not
guarantee that it will be ideal for another on the same dataset.

Other representation strategies include post-processing the
hierarchies by flattening [17], realigning [18], or filtering the
structure [19]. These strategies rely on identifying less relevant
regions and re-weight or merging these regions, creating more
concise representations. The problem with these approaches is
that defining the region’s importance is subjective and strongly
related to a media type or task. Alternatively, one could search
for the ideal representation with a non-horizontal cut [20],
which is, by all means, a combinatorial problem.

III. LEARNING ON GRAPHS

The discussions about graph creation and manipulation can
be made generic enough to model any data, but, for instance,
we are interested in image graphs, in which the spatial
connectivity of the pixels gives us a structured representation
of a grid graph, close to the spatial domain and strengthened

with relational aspects. For the image graph G defined on the
image domain, the adjacency relation Γ between the pixels
is typically obtained by a structured adjacency relation, such
as 4- or 8-adjacency in a grid form, and the set of vertices
V = {v1, v2, . . . , vN} represents the N pixels of the image.

The set of functions associated with each vertex is denoted
by f : V ⊂ Z2 → R. Common functions in f include low-level
descriptors and variations in the color space or in the gray-
scale magnitudes. The latter is notably important as the most
common source to calculate the weighting function. Ideally,
the weighting function could characterize similarities, and for
such, the Euclidean distance is the most common, defined in
E as Feuc(u, v) =

√
(f(u)− f(v))2.

The edge weights may represent the local variation around
a vertex, and serve as an image gradient operator bounded by
the adjacency relation. Weighting edges as an image gradient
operator acts as a transformation filter on the image creating
a transformed space by changing the contrast of the original
image and spreading the intensity levels. As in the case of
many spatial filters based on local differences, the graph-based
gradient operator defined for Feuc is subjected to respond
strongly to noise. We expect that the attribute selection on the
RF trees can mitigate this aspect and also any eventual poor
topology choice while reinforcing desirable characteristics.

A. Random Forest as regularizers to edge-weighted graphs

An RF is a non-parametric machine learning method that
can be used both for classification and regression. The RF
predictor consists of M randomized trees. The core of the
RF algorithm, as proposed by [11], is the randomization of
sampled data distributed to supervise the training of indepen-
dent decision trees and the aggregation of the results for the
final prediction. RF is empirically successful in suppressing
noise, although the statistical and mathematical properties of
the procedure are still obscure [21]. Some consensus is that
the randomness in RF performs as an implicit regularization
process, behaving as interpolating classifiers that encourage
large consistent regions and reduce the effect of noise [22].

To use the RF implicit regularization process with the
local variation representation of the edge-weighted graph, we
propose to use the information on the graph edges and vertices
to represent the graph on the framework. We represent the
regular input of the RF as Dn = ((X1,Y1), . . . , (Xn,Yn))
with n ⊆ |V | samples of vertices of the edge-weighted graph
(G,F), each represented as a vector X ∈ Rp and label Y.
In our application, edge-weighted graphs are created from
images, each vertice thus corresponds to a pixel. X is a vector
with dimension p = |Gatt| for Gatt representing a set of
selected attributes of the vertices of (G,F). In this work, the
selected attributes belong to two categories:

• vertex attributes (XV ), belonging to the set of vertices
functions f . Each v ∈ V is mapped into a set of low-level
color descriptors proposed in [23].

• edge weights (XF ), for a given vertex v and all its adja-
cent vertices, it is represented by the set of edge weights
between them. Therefore XF = {Feuc(u, v) | ∀u ∈



Γ(v)}. In this work, we go further into the immediate
neighbors of v and include also the neighbors in the
adjacency of the immediate neighbors. Therefore,

XF = {Feuc(u, v),Feuc(w, u)}
for all u ∈ Γ(v) and ∀w ∈ Γ(u).

We thus end with X = Gatt = {XV XF}, by concatenating
the two sets of selected attributes.

To obtain gradients, RF is trained on an edge detection task.
Because each vertex of the graph is created from a pixel of
the image with a unique label on the ground truth, all the n
entries X have a unique discrete label Y ∈ {0, 1} on the task
of edge detection. At inference, all vertices of a test graph
are subjected to the estimations of the RF The final estimated
value, obtained by averaging the M estimates is thus taken as
a confidence value that a certain vertex X indeed represents
an edge. These estimated values for vertices are mapped back
to the image coordinates as an intensity value to create the
image gradient. We called this method graph-based image
gradient operator (GIG) and the produced gradients depict
firm contours of the objects and other characteristics such as
minor components, textures, and large uniform regions.

IV. LEARNING ON HIERARCHICAL ATTRIBUTES

This section presents a learning framework formulated on
the structural components of the hierarchies and a regular rep-
resentation of the structure attributes. We present two strategies
for selecting attributes from the hierarchical structures: (i) a
regular representation selecting topological properties from the
hierarchical trees; and (ii) regional features deduced from the
hierarchies and their conjoined graph.

A. Topological attributes
A hierarchical tree TH representing the hierarchy of parti-

tions H = (P0, . . . ,Pk) created from the edge-weighted graph
(G,F) has a set of nodes N . The depth dn of a node n ∈ N
is its number of parents. At the bottom of this tree, there is
a collection of leaves L representing the partition P0, where
P0 = {[P]v | ∀ v ∈ V } and each l ∈ L corresponds to a
v ∈ V . The proposed representation depicts each leaf l ∈ L as
a vector Tl of selected attributes. The selection corresponds to
one of the following attributes: (i) Altitude: the value inversely
proportional to the depth of the node; and (ii) Area: sum of
the number of leaves on the subtree rooted on the node.

The selected attribute is computed for all parents of l. Each
leaf has a variable number of parents; therefore, the dimension
pt of the vector Tl is standardized by the maximum depth in
all TH computed for a dataset. Also, the leaves with a set of
parents smaller than the maximum depth receive a padding
value of -1.

The semantical meaning is kept by representing the parents
of a leaf node in the order they appear transversing the
hierarchical tree. The order could be ascending (from leaf
to root) or descending (from root to leaf). Early experiments
showed that essential attributes occur at the initial positions
of the feature vector and are favored by the RF model during
training. Therefore, we use the ascending order in this work.

B. Regional attributes

The second strategy uses a set of regional attributes created
on the conjoined graph by the hierarchical structure. Formally,
each node n ∈ N represents a region Rn that is the union of
all regions on the subtree τn rooted on the node n. A cut is
a partition P of V made of regions of H, where a horizontal
cut is a partition P = Pi for i ∈ {0, . . . , k} for all k altitude
levels on the tree. A horizontal cut by altitude levels defines the
partition by a threshold σ on its altitude values. Two regions R
and R′ are in the same region Rn if n is their lowest common
ancestor that have altn > σ.

Consider β as a series of altitude levels to cut the hierarchy.
The proposed representation depicts each leaf l ∈ L as a vector
Rl of size |β|. At each position of this vector, there is a cut Pσ

for σ ∈ β. Thus, the leaf l is represented by a selected regional
attribute for the region Rn where n is the lowest parent of l
whose altn > σ. The selection corresponds to one of the
following: (i) Contour strength: The contour of a node is
the number of edges on the conjoined weighted graph shared
among the regions merged by a node. The contour strength is
the average of edge weights on the contour; and (ii) Gaussian:
Estimates the Gaussian distribution of leaf weights in the
region Rn defined by the node n. The function returns the
mean and the variance. The leaf weights could be defined for
any attribute or set of attributes (on which one could calculate
the covariance). Here, they are the sum of the weights of the
edges comprising the vertice equivalent of the leaf.

The selected attribute is computed for all regions created
by the cut σ ∈ β, and the ordered representation is preserved
on the cut despite not representing every possible region in
the hierarchy. It is proposed to select only a few steps in
the normalized altitudes creating a reduced set of features
guaranteed to be present in all hierarchical types.

The procedure for test instances in both proposed represen-
tations takes the regular representation of each hierarchy in the
test set and individually subjects them to the RF estimations
without the labels.

V. EXPERIMENTS, MAIN RESULTS, AND DISCUSSION

This section outlines the main results obtained with the
trivial, the graph, the topological, and the regional approaches
in two image tasks: edge detection and segmentation. The
graph approach compares three representations: (i) onlyColor:
with only vertex attributes; (ii) GIG-Edge: with only weight
values; and (iii) GIG: with both categories of attributes. The
pipeline (Fig. 1) is formulated on the structural components
of the graphs and hierarchies and the regular representation of
the structures uses the discussed selection of attributes.

The edge detection dataset is the Berkeley Segmentation
Dataset and Benchmark (BSDS500 [24], illustrated in Fig. 2).
It contains 500 (200 train, 100 validation, and 200 test)
natural images, presenting complicated/high-contrast patterns,
occluded objects, and objects indistinguishable from the back-
ground by color. Each image has multiple labels performed
by different annotators; thus, we performed a majority vote
to obtain a single label. For segmentation, the Birds [25]



Fig. 1: Illustration of the framework from the input image to the Random forest predictions performing the task. First, it computes the gradient for
each image in the dataset. Then, it calculates the edge-weighted graphs, here illustrated with the 4−adjacency relation, and the hierarchical
approach constructs the hierarchies from the graphs. The next step creates a regular representation from the selected attributes to serve
as input for the Random Forest model. The regular input for the training set includes the associated label: the unique discrete label on the
task for each component. During the test, the Random Forest subject each leaf of the test hierarchies to prediction, where the estimated
values are mapped back to the image coordinates for evaluation.

(illustrated in Fig 1) is a binary segmentation public dataset.
It contains 50 images of birds with manual annotations and
no official train/test sets division (we randomly selected a
35/15 train/test split). The challenging images usually portray
the birds close to a body of water, with areas of high-
intensity lights and annotations covering only one leading
object, despite the presence of multiple similar objects.

The pipeline takes the colored images and computes the
graph gradient (GIG [26]) without any additional preprocess-
ing. Next, a structured grid obtains the adjacency relation 4-
adjacency. Each vertex is associated with a Euclidean distance
on the gradient magnitudes for the weighting function. In
the hierarchical approach, the hierarchy construction explores
the QFZ and the hierarchical watershed using the number of
parents (WATER-PAR) as topological criterion [27]. We do
not perform any additional post-processing, such as filtering,
realigning, or balancing the hierarchical levels.

All representations are aggregated using Random Forests
(RF) with the parameters set as 500 trees in the forest. The
trivial approach does not involve a learning step and the
experiments explored a large range of parameters for the cut,
in which the best are: (i) 1000 regions for QFZ and 60 for
WATER-PAR using the cut by the number of regions; and (ii)
threshold at 0.22 for QFZ and 0.53 for WATER-PAR using the
horizontal cuts by threshold. The BSDS500 dataset proposes
an evaluation system, which takes an edge map at multiple
threshold values computing the precision-recall F1−score at
all threshold values. The results are then presented in terms

Fig. 2: BSDS500 dataset sampled images with their respective
boundary ground truths. It contains colored natural images pre-
senting complicated patterns, occluded objects, main objects
indistinguishable from the background by color, and objects
with patterns of high contrast. Each image contains multiple la-
bels where line intensities indicate the annotators’ agreement.

of the optimal dataset scale (best threshold representing most
of the images). In the Birds dataset, the pipeline considers
an RF classifier where predictions for each component on the
binary segmentation labels are directly mapped back to the
image space. The evaluation metric use the Jaccard similarity
coefficient score as the metric, which is equivalent to the
precision-recall F1−score on binary sets.

A. Quantitative analysis

Table I shows the main results for the proposed strategies.
While the results with the trivial approach on the BSDS500
dataset are considerably worst compared with the other strate-
gies, they are presented to establish a baseline, not to say that
hierarchical structures are ineffectual for the edge detection
task. On the contrary, many hierarchical proposals in this
dataset present competitive results [20], [28]–[30] given a
proper strategy to improve or filter the hierarchical contours.
As for the segmentation task with Birds, the illumination con-
ditions on the images create a scenario that is very challenging
for many of the best image processing methods. With the hier-
archical methods, the algorithms will create similar partitions
for the many objects portrayed in the images, while only one is

TABLE I: Quantitative comparison of the results obtained in all
datasets for the compared approaches. F1−score for
best dataset scale for the BSDS500 and average Jaccard
score for Birds. Emphasizes the best scores per approach
variation and red emphasis the best score per dataset.

BSDS Birds

G
ra

ph GIG 0.65 0.29
GIG-Edge 0.64 0.28
onlyColor 0.61 0.27

Tr
iv

ia
l Hierarchy Threshold Regions Threshold Regions

QFZ 0.26 0.28 0.14 0.05
WATER-PAR 0.24 0.53 0.28 0.24

To
po

lo
gi

ca
l Hierarchy Altitude Area Altitude Area

QFZ 0.60 0.52 0.30 0.37
WATER-PAR 0.63 0.54 0.32 0.41

R
eg

io
na

l Hierarchy Contour Gaussian Contour Gaussian

QFZ 0.63 0.67 0.53 0.51
WATER-PAR 0.63 0.65 0.71 0.64



considered a valid answer. The graph representations improve
the results from the trivial approach in the BSDS500 dataset
since all considerations regarding the hierarchical levels are
removed from the label attribution before training.

The topological strategy improves the results for almost
all hierarchical types for all datasets (except for WATER-
PAR with altitudes in Birds) when compared with the trivial
approach. The additional benefit is that it does not require
an empirical search on the hierarchical levels and regions
for evaluation. Furthermore, the topological approach presents
best results than the trivial and the graph in the Birds dataset.
In edge detection, the graph and the topological perform better
than using only the color features, with the GIG approach
performing better than the best on the topological strategy.
Regarding the topological attributes, the altitudes perform
better on the edge detection and the area on the segmentation,
which matches the task goals with the attributes’ properties.

The regional strategy presents the best results in all datasets.
Even for the challenging Birds, there is at least one attribute
for all hierarchical types that give a satisfactory result. The
Gaussian presents, in general, superior results on the different
tasks. Because the Gaussian attribute quantifies the region
distribution on the hierarchical trees, it assimilates the rep-
resentation with the task. Future applications of this strategy
may consider the hierarchical type that most agree with the
objectives and use the Gaussian attribute for the representation.

B. Discussion

The great incentive to center the considerations towards
graph processing is that they are critical for hierarchical
analyses, and machine learning operating on graphs provides
a form to create an agnostic model regarding the media type.
Machine learning on graphs is a topic of great interest due
to its autonomy, the multiple possibilities of applications, and
the capacity to represent multivariate information.

The hierarchical structure provides a non-regular characteri-
zation of regions with notions of order and navigation without
needing many parametrizations other than those offered by the
already modeled edge-weighted graph. They introduce a se-
mantic interpretation into media processing through meaning-
ful partitioning of the perceptual space. Hierarchical operators
are idempotent and provide a consistent data organization.

By keeping the formulation on the structures, the proposed
framework evades decisions at the media level. It avoids any
feature extracted from the media and only uses the information
on the hierarchical tree and their conjoined graph. Also, it does
not select any particular region that better suits an application.
Instead, the entire structure is represented in a vectorial form
that preserves its semantical arrangement. Furthermore, the
task label attribution is performed at the leaf level at the bottom
of the tree; therefore, each leaf has a unique discrete label and
does not demand any considerations specific to a task. Similar
methods in the literature use attributes and regions defined
in the hierarchies to gather features from the media for the
learning model [31]–[33].

VI. CONCLUSION

The main goal of this work was to design a generic
learning framework that could operate on hierarchical data,
dealing with the generalization challenges in media and tasks
and placing a strategy to conform the hierarchical data to a
learning framework. Hierarchies are rich structures that could
model a myriad of data. It facilitates the analysis of complex
problems in multiple domains. However, they require careful
consideration, and parsing the structures can be challenging
and limit their applications. Graphs are dynamic structures
for modeling multimedia, but like hierarchies, they require
thoughtful considerations when applied in a machine learning
framework. Using the information on the graph edges and
vertices is a viable method to represent a graph in a learning
framework. It allows controlling the representation size and
selecting the information depicted considering the type of
graph, its proximity to the original data, and the expected
results. Furthermore, representing the graphs at the vertex level
allows maintaining the analyses on the discrete space.

The thesis demonstrated that it is possible to create a learn-
ing framework dependent only on the hierarchical data that
performs well in multiple tasks with different models. It cre-
ated and delivered a learning framework operating directly on
the hierarchical structure, avoiding any feature extracted from
the media and only using the information on the hierarchical
tree and graph while preserving its semantical arrangement.

A. Perspectives and future work

The applications and experiments developed in this study
were all performed on the image space because it allows an
easy visual inspection of the result’s quality. An application
in another media type could take the same considerations
of attribute selection since once the media is modeled as a
hierarchy or graph, they will all share the same rules in that
space. If generalization is not a concern in future applications,
one could use the proposed strategies to transpose the structure
to the vectorial space while taking the appropriate measures
to improve the results on a media-specific task. One possible
direction for future work on the already proposed strategies
is to combine the attributes selected from the graphs and
hierarchies in the same or different categories of features,
enriching the information presented to the machine learning
model. Another possibility is to apply a strategy to reduce
the structure prior to the attribute selection or employ a data
reduction strategy.

B. Main contributions

We list the main contributions in terms of publications:
(i) Learning framework on graph attributes for image pro-
cessing (Published in SIBGRAPI’22 - Awarded as best pa-
per [34]) (ii) Extended formalism on graphs attributes ex-
ploring more extensive input areas through region adjacency
graphs and changes driven by the model mechanics (Published
in PRL [26]). (iii) Learning framework operating directly on
the hierarchical data, focusing the formulations solely on the
structural components of the hierarchies (submitted).



ACKNOWLEDGMENT

The authors thank the Conselho Nacional de Desenvolvi-
mento Cientı́fico e Tecnológico – CNPq – (PQ 310075/2019-0
and Grant 407242/2021-0), Fundação de Amparo a Pesquisa
do Estado de Minas Gerais – FAPEMIG – (Grants PPM-
00006-18, APQ-01079-23), Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior – CAPES – (Grant STIC-
AmSUD TRANSFORM 88881. 14325 8/2017-01, grant
COFECUB 88887.191730/2018-00 and funding Finance Code
001), PUC Minas and INRIA under the project Learning on
graph-based hierarchical methods for image and multimedia
data.

REFERENCES

[1] D. Marr, Vision: a computational investigation into the human repre-
sentation and processing of visual information, M. Acock, Ed. MIT
Press, 1982.

[2] R. Kurzweil, How to create a mind: the secret of human thought
revealed, B. Giffords and R. Ottewell, Eds. Penguin Books, 2013.

[3] L. Najman and H. Talbot, Mathematical morphology: from theory to
applications, 1st ed., L. Najman and H. Talbot, Eds. John Wiley &
Sons, Inc., 2013.

[4] J. Serra, “A lattice approach to image segmentation,” vol. 24, pp. 83–
130.
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