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Abstract—This work addresses the intricate task of recon-
structing mechanically-shredded documents with potential ap-
plication in forensic investigation. Our primary contributions
consist of two novel deep learning approaches for fully auto-
matic reconstruction tested on real-world shredded data that
achieved state-of-the-art accuracy in more realistic scenarios. As
a second major contribution, we introduce a novel framework
for semi-automatic reconstruction inspired by the principles of
active learning. The core of our proposal is a recommendation
module that smartly flags potential errors in the reconstruction
output (permutation of shreds) for human review, enabling even
more enhanced reconstructions. The mentioned contributions
and additional outcomes (datasets and experimental protocols)
resulted in five relevant publications: three journal articles and
two international conferences, including the premier IEEE / CVF
Computer Vision and Pattern Recognition Conference (CVPR).

I. INTRODUCTION

Paper shredders have become a popular instrument to dis-
card large amounts of documents regarding privacy issues.
However, in some scenarios, the sensitive content of such
documents must be revealed, demanding some sort o recon-
struction process. It was through manual reconstruction of
shredded documents that investigative journalists exposed the
influence-buying scandal involving a Korean ambassador and
members of the American Congress [1] (Figure 1). Typical
reconstruction cases may involve thousands of shreds, there-
fore, computational reconstruction [2], [3] is of great value
for forensic investigators, historians, or even individuals who,
amidst a collection of numerous irrelevant documents, have
inadvertently damaged crucial ones.

A standard reconstruction framework comprises two pri-
mary tasks (Figure 2): pairwise compatibility evaluation of the
shreds based on image analysis and an optimization procedure
to deliver the final solution (a permutation of shreds in the case
of strip shredding). Most of the advances in reconstructions are
related to optimization algorithms [4], [5], and a more in-depth
survey of the literature has revealed a pronounced demand
for image processing techniques that can effectively verify
compatibility for real-shredded data. Several works apply
low-level (dis)similarity measures (e.g. Euclidean metric) on
boundary pixels [6], [7]. Nonetheless, the intrinsic pixel data
is susceptible to substantial corruption due to the mechanical
shredding process. As an alternative, shape-based fitting has
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by Thiago M. Paixão.

Fig. 1. Manual reconstruction of documents implying members of the
American Congress in influence-buying scandal. Credits to Lewis Perdue [11].
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Fig. 2. Overview of a typical reconstruction framework. The assessment of
compatibility between shreds occurs in a pairwise manner. The computed
compatibility values drive the optimization search procedure which aims to
determine the permutation of shreds that most accurately embodies the original
document.

been proposed to leverage higher-level information [8], [9].
Notably, our character-matching technique yielded the most
promising outcomes [9]1, however, the reconstruction accu-
racy depends significantly on the density of textual content.
Supervised learning has been utilized for symbol recognition
in order to determine the fitting degree of the shreds. However,
the applicability of this approach is substantially constrained
because of two main reasons: (i) inherent instability in recog-
nition accuracy due to the document corruption [8], and (ii)
the reliance on specific languages [10].

Our primary contributions extend to the domain of deep
learning for compatibility evaluation, where we pioneered
the exploration of deep models trained in a self-supervised
manner for the reconstruction of shredded documents [12]–
[14]. Unlike the competitors, the methods developed in our
thesis were rigorously validated on real-world data, therefore,
issues arising from physical shredding can not be simply

1This work carries the first relevant findings of our thesis, even though it
does not fit the deep learning paradigm.
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Fig. 3. Overview of the classification-based reconstruction approach. Top flow: self-supervised training of a deep model capable of estimating compatibility.
Bottom flow: the reconstruction of shreds potentially from mixed documents.

overlooked. To enable the investigation in more real scenarios,
we produced (and shared) a dataset comprising 120 shredded
documents (2,797 shreds). To the best of our knowledge, this
is the largest current collection of strip-shredded documents
within this specific domain.

Human participation might be useful to obtain more accu-
rate reconstructions [3], [15]. In this regard, we introduced an
interactive framework where a human judge reviews pairs of
adjacent shreds within a solution and decides whether they
should stay together or be separated. The novelty of our
proposal is the smart selection of cases where mistakes are
more likely to occur, thereby maximizing the effectiveness of
human effort.

To summarize, these are the contributions of our thesis
discussed in the rest of this paper:

• A deep classification-based approach [12], [13] (Sec-
tion II). The problem of evaluating compatibility is for-
mulated as a classification problem using a deep model:
the obtained results demonstrate the effectiveness of
this approach in reconstructing 100 documents with an
accuracy superior to 90%;

• A deep metric-learning approach [14] (Section III).
This formulation decouples network inference from pair-
wise calculations, reducing drastically the time cost to
compute compatibilities: approx. 22 times for 505 shreds,
and more pronounced gains for larger numbers of shreds;

• A human-in-the-loop reconstruction framework [16]
(Section IV). This is a scalable framework designed for
interactive reconstruction of strip-shredded documents:
our findings suggest that a manual review of just 25% of
the solution (shreds permutation) may yield a reduction of
over 40% in the mistakes resulting from using the metric
learning approach.

Other contributions include: (i) a collection comprising a
total of 120 documents (2,797 shreds); a novel methodology
to assess multi-page (mixed-shreds) reconstruction; and (iii) a
novel methodology to evaluate the impact of human labor on
the reconstruction accuracy.

(a) (b) (c)

Fig. 4. Samples from the datasets used in the experiments: (a) S-MARQUES
[18]; (b) S-ISRI-OCR [9]; (c) S-CDIP [13]

II. A DEEP CLASSIFICATION-BASED APPROACH

The underlying idea of the classification-based approach is
training a model capable of estimating the (softmax) probabil-
ity of two shreds being adjacent in the original document. The
training and reconstruction pipelines are illustrated in Figure 3.
In the training pipeline (top flow), a collection of digital
documents is “artificially” shredded (simulated shredding), so
that the adjacency relationship comes for free from the data. To
put it plainly, one may say that the algorithm knows – without
human assistance – which pairs are adjacent (positive class)
and non-adjacent (negative class), enabling self-supervision.
Small samples are extracted top-down from the image resulting
from horizontally stacking two shreds. The model is trained
to distinguish (classify) positive and negative samples.

In the reconstruction pipeline (bottom flow), the input com-
prises real digitized shreds whose compatibility is determined
by the trained model (specific details are omitted due to
page limit). The reconstruction instance is then modeled as
a weighted asymmetric graph, where the nodes represent the
shreds and an arc (i, j) with weight w indicates that the
compatibility value between the shreds i and j, with i on
the left of j, is w. This graph is converted into a Traveling
Salesman Problem (TSP) instance so that an optimization
solver [17] is applied to estimate the permutation of shreds
representing the reconstructed document.

A. Results on multi-page reconstruction

A significant contribution of our thesis was the investi-
gation on multi-page reconstruction, particularly, the experi-
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Fig. 5. Multi-page reconstruction accuracy: accuracy w.r.t. number of mixed pages (k).

Fig. 6. Reconstruction of five pages from S-CDIP (accuracy of 82.93%). The full reconstruction involving all the 100 pages of this dataset is available at
https://htmlpreview.github.io/?https://github.com/thiagopx/docs/blob/master/results s-cdip.html.

mental protocol itself which involves cross-database training-
test assessment, and progressive reconstruction of k =
1, 5, 10, 20, . . . , np pages, where np depends on the collection
oh shredded documents. Experiments were conducted on three
collections (Figure 4), from which two (S-ISRI-OCR and S-
CDIP) are contributions of our work. As shown in Figure 5,
our method performs with accuracy higher than 90% for
the three datasets with becomes stable as k increases. This
observation suggests that the introduction of new documents
has a negligible impact on the quality of the reconstruction
process. S-CDIP comprises the most challenging instances due
to its diverse content and intricate layout. Figure 6 exhibits
the reconstruction of five pages from S-CDIP, which reached
accuracy of 82.93%.

B. Comparative analysis

Our method (DEEPREC-CL) was compared to three key
techniques in the field, denoted by their lead authors: Paix ao,
which represents our initial approach grounded in shape
matching; Liang, an OCR-based technique [19]; and Marques,
which relies on edge pixel dissimilarity [18]. Importantly,
due to computational constraints, the Paix ao evaluation was
confined to a dataset of only 5 documents, and the Liang
experiments were restricted to the S-MARQUES and S-ISRI-
OCR datasets, encompassing a subset of 3 documents. To
highlight the role of the compatibility evaluation, we tested our
reconstruction framework with the Marques’ nearest neighbor
optimizer. This adapted version was named DEEPREC-CL-
NN. As depicted in Figure 7, the proposed method consistently
outperformed the competitors in terms of average accuracy.
Notably, our approach demonstrated heightened robustness, as
evidenced by the stable trajectory of the accuracy curve. Re-
markably, DEEPREC-CL-NN significantly outperformed Mar-

ques, despite sharing the same optimizer, and also outper-
formed Paix ao, which employed a more powerful optimizer.

C. Time performance

DEEPREC-CL also exhibits enhanced scalability in terms
of execution time compared to Paix ao and Liang, as seen
in Figure 8. This aspect is of great significance in practical
scenarios since the input is expected to have far more than
just five shredded pages. While Marques demonstrates desir-
able time efficiency, its compromised accuracy (Figure 7) is
unsuitable for real-world data applications.

III. A DEEP METRIC-LEARNING APPROACH

The time performance of DEEPREC-CL depends heavily on
the number of inferences performed during the compatibility
evaluation. For a test instance of size n (i.e. the number of
shreds), the number of inferences is n(n − 1) = O(n2). In
contrast, the novel metric-learning approach (DEEPREC-ML)
decouples the inference step from the pairwise compatibility
evaluation. This strategic separation renders the inference cost
linear with respect to the instance size. A neural network
is trained in a self-supervised manner to produce embedded
representations for the left boundary of the shreds, whereas
a second network specializes in the right boundary. As a
consequence, two inferences are performed for each shred,
totaling 2n = O(n) inferences.

Figure 9 illustrates the underlying principle of the metric-
learning approach. Similarly to DEEPREC-CL, local samples
(x) are collected from boundary zones. Instead of applying
raw pixel-to-pixel comparison, these samples are transformed
into an intermediary representation (e) through projection onto
a shared embedding space Rd. This projection is executed via
two dedicated CNNs: fleft and fright, with f• : x 7→ e, where

https://htmlpreview.github.io/?https://github.com/thiagopx/docs/blob/master/results_s-cdip.html


1 5 10 20 30 40 50 60
k

0

25

50

75

100

ac
cu

ra
cy

(%
)

S-Marques

(a)

1 5 10 20
k

S-Isri-OCR

(b)

1 5 10 20 30 40 50 60 70 80 90 100
k

0

25

50

75

100
ac

cu
ra

cy
(%

)
S-Cdip

method
Deeprec-CL
Deeprec-CL-NN

Paixão
Liang

Marques

(c)

Fig. 7. Comparative accuracy performance. Due to memory and processing consumption, the curves for Liang and Paixão were not fully computed.
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Fig. 8. Comparative time performance.

Fig. 9. Metric learning approach for shreds’ compatibility evaluation.

the subscript indicates on which boundary (left or right) the
network is specialized.

Considering a pair of shreds, each vertical position gives
rise to a pair of samples, as depicted by the blue and orange
squares in Figure 9. An ideal training would lead samples
from positive pairings to be projected nearly in the embedded
space, while embeddings produced from negative pairings
would be set apart. Consequently, the overall compatibility
of a pair is quantified by considering the distances between
their corresponding embeddings.

1) Comparison with DEEPREC-CL.: The performance of
DEEPREC-CL and DEEPREC-ML (the metric learning ap-
proach) was evaluated with respect to accuracy and time effi-
ciency. For this analysis, the 1,370 shreds from S-MARQUES
were mixed to compose the first instance. Similarly, the
second instance consisted of the 505 shreds extracted from S-
ISRI-OCR. DEEPREC-ML achieved accuracy of 94.81% and
97.22% for S-MARQUES and S-ISRI-OCR, respectively. In
comparison, DEEPREC-CL achieved an accuracy of 97.08%
and 95.24% for the corresponding datasets.

In general, both approaches produced high-quality recon-
structions, and the variation in accuracy between them was
minor (around ± 2 p.p.). This marginal difference suggests
that the methods have similar performance in terms of accu-
racy. Concerning time efficiency, the methods behave notably
differently, as evidenced in Figure 10. On the left, it is
shown the elapsed time to reconstruct the 505 shreds from S-
ISRI-OCR for each stage: projection (pro) – applicable only
for DEEPREC-ML–, pairwise compatibility evaluation (pw),
and the optimization process (opt). Clearly, the optimization
expense was negligible in comparison to the execution time
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Fig. 11. Overview of the proposed HIL reconstruction framework. In each iteration, a recommender module indicates potential wrong pairings for human
review.

required for pairwise evaluation. The overall time falls dras-
tically from over 80 minutes to finalize the evaluation stage
(DEEPREC-CL) to less than 4 minutes with the metric learning
approach, resulting in a remarkable speed-up of approximately
22 times. Furthermore, as observed on the right chart, the
estimated growth trajectory for DEEPREC-ML (represented by
the blue curve) is noticeably slower than that of the alternative
method.

IV. A HUMAN-IN-THE-LOOP RECONSTRUCTION
FRAMEWORK (HIL)

The reconstruction can be enhanced by adding the human
in the process. In our proposal, a human is required to review
shreds (in pairs) which were attached after the optimization
step. The reconstruction framework, inspired in the field of
active learning [20], is structured as a repetitive procedure
where, in each iteration, a recommender module flags potential
mistakes for human review: assign the pair as positive or
confirm that the shreds should remain unattached.

A. On the impact of the human effort (workload)

A permutation of the n shreds of a reconstruction instance
results in n − 1 pairs of adjacent shreds. The human effort
(workload) was defined as the percentage of those n− 1 pairs
which has to be reviewed by the human referee. Figures 12 and
13 show the accuracy in function of the workload (αload) for a
single iteration of the framework configured with DEEPREC-
ML and DEEPREC-CL, respectively. The reader can notice
that accuracy growth is roughly linear as αload increases.
The proposed strategies to select shreds for review (OPT-R,
OPT-RL, UNC-R, and UNC-RL) outperform significantly the
random-choice baseline employed in [4]. OPT-R was able to
increase the original solution accuracy of the S-CDIP dataset

on approx. 3.80 p.p. when αload = 0.25, which means that
87/220 mistakes were eliminated (error reduction of approx.
39.50%).

B. Distributing the workload across iterations

We also investigated whether distributing the workload
across a few iterations may yield a faster convergence: more
corrections achieved with the same overall workload. Tests
were conducted for up to three iterations due to the processing
burden caused by running the solver multiple times. Figure 14
presents the results for the strategy OPT-R and the reconstruc-
tion method DEEPREC-ML. On initial observation, transition-
ing from one to two iterations led to a more consistent increase
in accuracy. However, two or more iterations (niter ≥ 2) seem
to be advantageous for higher values of workload. As observed
in the chart, the accuracy for S-CDIP increased by approx.
4.43 p.p. with two iterations, resulting in a substantial error
reduction of about 46.10%.

V. CONCLUSION

This work discussed the contributions of our thesis on the
field of reconstruction of documents fragmented by paper
shredders. The major contribution lies in the robust self-
supervised compatibility evaluation of shreds by using neural
networks. Two approaches were proposed in this matter. The
first models the compatibility evaluation as a classification
problem, whereas the second fits in the metric learning
paradigm. Additionally, it was discussed our proposal for
semi-automatic reconstruction in which the human is required
to provide some feedback on the results to improve the
reconstruction accuracy. In future work, we plan to investi-
gate reconstruction with more damaged and missing shreds,
extend the proposed methods for cross-cut documents, adapt
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and combine new active learning techniques for interactive
reconstruction, and, finally, work on generalizing our methods
for correlated problems (i.e., ancient papyrus reconstruction).
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