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Abstract—The forestry assessment field uses the Non-
Destructive Tests (NDTs) to analyze woods logs. To assist the
identification of anomalies inside the trunks, the ultrasonic
tomography can be used as an alternative. With this technique
is possible to evaluate the internal conditions of wooden trunks,
through wave propagation applied at specific points. To help
the identification and analysis of defects in the tomographic
image, this work uses resources from the area of Machine
Learning approach in order to identify tomographic images with
anomalies. In this study is considered three different classifiers:
K-Nearest Neighbors (k-NN), Support Vector Machine (SVM)
and Convolutional Neural Network (CNN). The experiments
performed were compared using metrics: Accuracy, Precision
and Recall. To carry out the experiments, a dataset with
5000 ultrasonic tomography images was build using the Data
Augmentation process. In the first experiment, the metrics are
calculated based on texture descriptors. The best accuracy results
obtained for the CNN, SVM and k-NN models were respectively
89.00%, 80.70% and 79.81%. In the second experiment, the
anomaly segmentation was performed with Otsu’s segmentation,
then it was tested in the SVM classification model. The results
found that the SVM model has superior results of demarcation
when compared to the CNN model.

Index Terms—Ultrasonic tomography, Non-Destructive Tests,
Wood defects

I. INTRODUCTION

There are many factors that contribute to the natural forests
reduction, such as: natural phenomena, fires, cutting of trees
for commercial purposes and devastation of land for farming
activities. In terms of commercial purpose, private landowners
who intend to deforest areas for livestock or cutting trees,
tend to invest in assertive methods for clearing natural forests,
destroying only trees that are of interest and have commercial
value. These methods evaluate the internal conditions of the
trees before cutting, verifying whether or not the wood is in a
good condition before being sold. The trees with low quality
do not have high commercial value, but they can be part of
the preservation of the forest, as they are important as seed
producers, food sources and shelter for animals [1].

The Non Destructive Tests (NDTs) are studied as they allow
the internal evaluation of the test specimen while preserving
the integrity of the object. The NDTs are interesting for
scientists to decide what information is needed to characterize
each wood and to know how to use the information to
explain the behavior of wood [2]. One of the most known

non-destructive techniques applied to trees is the ultrasonic
tomography.

This technique allow the evaluation of internal conditions of
trunks, by measuring the wave propagation time in the wood
logs, without the need to damage the specimen. Therefore, one
of the main tasks of ultrasonic tomography is the identification
of defects in wood. With regard to the types of wood defects
studied, the following can be mentioned: artificial hollows
[3], fungal decomposition [4], cracks [5] and termite attack
[6]. The images generated by ultrasonic tomography can be
improved with spatial interpolation techniques.

The use of computational tools is also required. These tools
are capable of generating images that reconstruct the internal
properties of the wood. In summary is essential the continuous
research for solutions that can handle the generation of images
and the identification of defects through ultrasonic tomography
in wood logs. The automation to identify the defects in wood
is also important, since there would be no need for a specialist
to identify the presence or absence of anomalies in the wood.

A. Related works

There are several of works that demonstrate the wide use
of the ultrasonic tomography, considering: different types
of interpolation methods, experiments setup, organization
of transducers, evaluation of the quantitative analysis and
improvements of the tomograms.

Primarily, we can cite some works that focus on
understand the behavior of ultrasonic tomography in wood,
by understanding the relationships about: the coupling of
transducers in the wood, problems related to the anisotropy of
the wood, signal attenuation, number of measurement points,
frequency used in the test, arrangements or meshes for the test
and type of transducers ( [7], [8], [4], [6]).

The use of spatial interpolation algorithms is also reported
in some works, with the goal of reconstructing the internal
characteristics. In [9], an approach is presented using affected
zones through an ellipse with the same eccentricity. This
method was further improved considering ellipses with
different eccentricities, giving rise to the Ellipse Based
Spatial Interpolation (EBSI) [10]. As a way of evaluating
wood considering different axes, the author [11] performs an



experiment with the Radial and Longitudinal axes, and also
proposes the method Velocity Correction Interpolation (VCI).

The quantitative analysis to verify the accuracy of the
image is also something relevant to research. In [12], it is
presented a proposal for quantitative evaluation through the
confusion matrix. In [13] and [5] is presented improvements
to the interpolation method Ellipse Based Spatial Interpolation
(EBSI).

For the identification of defects, some works use artificial
intelligence, specifically the artificial neural network [14],
[15]. The reconstruction of the internal characteristics of wood
using AI is also related in [16], [17]. However, in these works
other types of inspection techniques are considered, like: CT
and X-ray.

The use of artificial intelligence for identifying defects in
wood logs is increasing. Nevertheless, there are opportunities
to be developed, precisely because ultrasonic tomography
that address the classification and identification of anomalies
are not often found, with the exception of the work [5].
In that work, a dataset with 10,000 images is created, to
ensure that the samples are sufficient during the training of
the classification network. The dataset was generated using
software that simulates the internal defects of the wood.
The defects were randomly generated according to: location,
quantity, shape and transducer number. However, the work
does not specifically report how the dataset is generated, only
that real and artificial log defects were used. Furthermore,
the dataset is not available in a repository, which makes it
difficult to validate and reproduce the results. To cover this
gap in ultrasonic tomography studies applied to wood, this
work intends to implement classification techniques for the
identification of defects in different wood species.

B. Objective

This work aims to classify images generated by ultrasonic
tomography in wood logs to identify anomalies. To achieve
the results, supervised algorithms will be used, specifically:
k-Nearest-Neighbor (k-NN) and Support Vector Machine
(SVM). As an attempt to compare with the recent works,
a Deep Learning approach will also be used through a
Convolutional Neural Network (CNN) architecture.

Additionally, this work intends to make a comparison
between the classification results by using a confusion matrix,
so the metrics Accuracy, Recall and Precision will be used.
As a secondary objective, it is proposed to gather data of
experiments to generate a dataset.

II. PROPOSED APPROACH

This work is organized in the follow main steps: Dataset
construction, Data preprocessing, Classification and Analysis
of the results. The steps are illustrated in the Figure 1.

Fig. 1. Proposed Flowchart.

All the steps of the process flow will be discussed in the
following subsection.

A. Dataset

The dataset creation is a essential process to further use the
tomography images in the classification model. In this work,
it will be used the wood logs available from the work [18].

In order to generate the tomograms, these wood logs will
be submitted to a test, which consists of measuring the
propagation time between the transducers organized by a
diffraction mesh.

The choice of the interpolation methods to estimate the
unmeasured data will be also required. Two methods will
be utilized: The Ellipse Based Spatial Interpolation (EBSI)
and the Contextual Analysis. After the interpolation process,
a computer program will generate tomography images.

B. Feature Extraction

The extraction of features is a phase that precede the
classification. This step is exclusive to the k-Nearest-
Neighbor (k-NN) and Support Vector Machine (SVM), as the
Convolutional Neural Network (CNN) does not require the
feature extraction. In [19] the experiments were performed
only with the descriptors Grey Level Coocurrence Matrix
(GLCM) and Local Binary Pattern (LBP). In the interest of
expand the variety of the results, the following descriptors will
be added: Hu Moments, Gabor Filter, Wavelet Transformation,
and Fourier Transformation.

C. Classification

The goal of this works is to use machine learning to
categorize image that presents anomalies. Due to the reduced
amount of machine learning applications in wood logs, this
study has an exploratory nature.

In supervised learning, specifically in classification, samples
of desired inputs and outputs are presented to the model, which
was previously defined by an expert and as a result the model
must associate inputs and outputs to all the data. In the case
of tomography images, two classes will be considered: defect
region and healthy region. These regions will be obtained
through Non-destructive testing laboratory (LabEND) assays,
which were previously labeled by an expert.

Two classification techniques will be studied: k-Nearest-
Neighbor (k-NN) and Support Vector Machine (SVM). These
two techniques were chosen because of their common use in
classification on CT images. The application of k-NN will be



done in an exploratory way, it is expected to note whether
metrics such as: accuracy, recall and precision are improved
by a k, in particular, when associated with the descriptors. On
the other hand, the SVM will also be applied to tomography
images with several parameters, among them, different types
of Kernel will be used, such as: Linear, RBF, Polynomial and
Sigmoid.

A Deep Learning approach will also be used as an effort
to compare the classification performance with the supervised
technique. The architecture that will be used is the MobileNets
combined with the Single Shot MultiBox Detector (SDD). The
MobileNetV2 architecture will be used to produce the feature
maps, and the fully connected layer will be replaced by the
SDD classification network.

The main reason for choosing the SDD-MobileNetV2
architecture is to perform a comparison with the classification
results of recent works. In [5] the SDD-MobileNetV2
architecture was used to support and to improve the data
interpolation.

D. Comparison

Finally, a comparisons between the classification models is
proposed. The confusion matrix is a validation matrix that
calculates the classification results. The metrics derived from
the matrix are: accuracy, recall e precision.

The accuracy will be used to give an overview of the
performance of each model. The recall metric will give us an
idea of the sensitivity of the model, to predict the proportion
of hits for the positives. Finally, the precision metric gives us
an idea of precision, that is, what is the proportion of correct
answers for the classes predicted as positive.

III. RESULTS AND DISCUSSION

This section presents the results of the classification models
for tomography images and also the quantitative analysis of
the metrics obtained by the confusion matrix: accuracy, recall
and precision.

A. Dataset creation

The equipment used to measure the time propagation
was the USLab, Agricef, Brazil with 45kHz frequency and
exponential transducers. The test generated the images through
a computer program, using interpolation methods. The Figure
2 illustrates the result of the images with the methods on the
wood log Liquidambar styraciflua.

(a) (b) (c)

Fig. 2. Image of the result of the ultrasonic tomography. (a) Image of the
wooden log: Liquidambar styraciflua. (b) Interpolation by method: Ellipse
Based Spatial Interpolation. (c) Interpolation by method: Contextual Analysis.
Source: [18].

Each wood logs available in LabEND resulted in two
different tomograms, the first tomogram was obtained by
the Ellipse Based Spatial Interpolation (EBSI) interpolation
method and the second by the Contextual Analysis method.
Initially 5 logs of different woods were available, at the end,
10 different image tomography were generated.

After generating the images, the Data Augmentation step
to increase the amount of available images and the quality
of the data [20]. Regarding the approach, this work will use
based on geometric transformations and techniques based on
color transformations. The Table I details the transformation
and parameters used.

Transformation Parameters
Rotation 30°, 60°, 90 °, -30°, -60°e -90 °.

Saturation Increase of 10% Saturation.
Brightness Increase of 30% Brightness.
Contrast Increase of 25% Contrast.

Blur Addition of 5% blur.
Re dimension Zoom In of 15% .
Re dimension Zoom Out of 30% .

Color scale Transformation to the gray-scale.
TABLE I

TECHNIQUE DESCRIPTION OF DATA AUGMENTATION APPLIED IN THE
TOMOGRAPHY IMAGES.

As an attempt to increase even more the dataset, the images
were submitted to the addition of Salt & Pepper noise.

B. Feature Extraction
To perform the classification is required a feature

extraction for each tomography image. First, the images were
transformed into gray-scale and then the characteristics were
computed. The Table II shows each of the descriptors and the
characteristics used to form the vectors.

Descriptor Feature
Grey Level Coocurrence
Matrix (GLCM)

Contrast, Dissimilarity,
Homogeneity, Energy, Correlation
and Angular second moment
(ASM)

Local Binary Pattern Energy & Entropy
Hu Moments H1, H2, H3, H4, H5, H6 e H7

Gabor Filter Energy & Entropy
Wavelet Transformation Coefficients
Fourier Transformation Coefficients

TABLE II
DESCRIPTION OF DESCRIPTORS WITH METRICS FOR THE FORMATION OF

FEATURE VECTORS.

The assignment of the pixels that indicates the regions with
defects and the regions that is healthy is required. Two classes
were defined: class (1) for the hollow region, and class (2) for
the healthy region of the wood.

The feature vectors generated by the descriptors were
further used as an input to the SVM and k-NN classification
models. However, it is still necessary to validate the balancing
of classes for the classification. As previously mentioned, for
all tomography images, the hollow regions and the healthy
regions were already known from the previous works available
by LabEND. This implies the construction of a biased dataset,
with all images labeled correctly.



To avoid a possible problem of bias in dataset, 20% of
class assignments were inverted. Images with inverted classes
were randomly defined so that there was no intervention in
the construction of the classification model.

For the execution of the classification models, the dataset
was separated into two parts, with 70% of the images for the
training phase and 30% of the images for the test phase. The
two experiments of this work are explained below.

C. First Experiment

The first experiment refers to the study of different
parameters for the classification models of images with a
healthy region and images with an anomaly region. The
Kernel: Linear, Polynomial, RBF and Sigmoid, was used in the
SVM classifier. In the k-NN, different values of k were used.
These values were defined through a small experiment with
the Local Binary Pattern (LBP) and Gray Level Co-occurrence
Matrix (GLCM). Initially the value of k was incremented from
k=1 to k=150 for both descriptors. During this attempt, it was
noticed that the values of k had more expressive accuracy
values for the values k=50, k=100 and k=150. Therefore, it
was agreed that the values of k for all descriptors will be:
k=50, k=100 and k=150.

As an attempt to evaluate the performance of classified SVM
and k-NN, the cross-validation approach will be used.

1) Supervised Learning: First, the different configurations
of the SVM model are presented. Table III displays the results
of the SVM model with different types of Kernel. The top
performer for each metric is highlighted in bold.

Model SVM (Kernel) -
Descriptor

Accuracy
(%)

Recall
(%)

Precision
(%)

(a) SVM (Linear) - LBP 78.98 78.42 79.51
(b) SVM (Linear) - GLCM 79.43 80.23 79.12
(c) SVM (Linear) - Gabor 63.46 81.97 60.00
(d) SVM (Linear) - TWD 57.83 51.12 59.35
(e) SVM (Linear) - TF 74.66 76.30 74.14
(f) SVM (Linear) - Hu

Moments
79.86 78.68 80.82

(g) SVM (Polynomial) - LBP 78.57 76.88 79.77
(h) SVM (Polynomial) - GLCM 70.02 54.33 79.51
(i) SVM (Polynomial) - Gabor 62.60 71.22 60.97
(j) SVM (Polynomial) - TWD 70.66 54.05 80.00
(k) SVM (Polynomial) - TF 77.33 62.12 78.46
(l) SVM (Polynomial) - Hu

Moments
71.71 58.13 80.18

(m) SVM (RBF) - LBP 67.87 48.30 79.84
(n) SVM (RBF) - GLCM 79.15 79.87 78.89
(o) SVM (RBF) - Gabor 63.57 88.90 59.16
(p) SVM (RBF) - TWD 80.23 80.74 80.15
(q) SVM (RBF) - TF 80.30 80.60 80.34
(r) SVM (RBF) - Hu Moments 79.83 79.93 79.96
(s) SVM (Sigmoid) - LBP 50.28 99.98 50.28
(t) SVM (Sigmoid) - GLCM 67.58 66.63 68.12
(u) SVM (Sigmoid) - Gabor 49.90 49.70 50.26
(v) SVM (Sigmoid) - TWD 65.93 57.89 69.28
(w) SVM (Sigmoid) - TF 65.36 68.82 64.67
(y) SVM (Sigmoid) - Hu

Moments
20.43 20.90 20.87

TABLE III
EFFECTIVENESS OF THE SVM CLASSIFIER USING DIFFERENT

COMBINATIONS OF Kernel AND DESCRIPTOR. (IN BOLD, THE HIGHEST
OBSERVED VALUE OF EACH COLUMN).

The performances shown in Table III show relevant results
for SVM models. In order to verify if there are improvements
in the SVM model, another experiment is carried out with
the combination of the descriptors that obtained the best
accuracy results. According to Table III, the descriptors that
had consistency in good results were: LBP, GLCM and TWD.
The table IV below shows the results of combining these
descriptors for the different types of Kernel.

Modelo SVM (Kernel) -
Descritor

Accuracy
(%)

Recall
(%)

Precision
(%)

(x) SVM (Linear) - LBP &
GCLM

80.16 80.67 80.09

(z) SVM (Linear) - LBP &
TWD

66.00 60.55 68.33

(aa) SVM (Linear) - GCLM &
TWD

60.43 28.39 80.33

(ab) SVM (Polynomial) - LBP &
GCLM

79.56 80.80 79.08

(ac) SVM (Polynomial) - LBP &
TWD

80.43 80.07 80.88

(ad) SVM (Polynomial) - GCLM
& TWD

80.46 80.14 80.89

(ae) SVM (RBF) - LBP &
GCLM

80.26 80.74 80.21

(af) SVM (RBF) - LBP & TWD 80.70 80.83 81.31
(ag) SVM (RBF) - GCLM &

TWD
80.36 80.60 80.44

(ah) SVM (Sigmoid) - LBP &
GCLM

61.70 62.14 61.93

(ai) SVM (Sigmoid) - LBP &
TWD

80.36 80.41 80.57

(aj) SVM (Sigmoid) - GCLM &
TWD

76.60 70.79 81.04

TABLE IV
PERFORMANCE COMPARISON BETWEEN THE BEST SVM CLASSIFIERS (IN

BOLD, THE HIGHEST OBSERVED VALUE OF EACH COLUMN).

According to Tables III and IV, it can be seen that model
(y) presents the worst results for all metrics. The models (s)
and (o) have high recall values, but low accuracy values.

Likewise, we can highlight the model (l) and (m). These
models have considerable accuracy, precision values but low
recall values. In this case, the model has a high False Negative
(FN) value, so, if there is a defect in the wood, it is not
possible to identify with conviction. According to Table IV,
improvements can be observed in the results of the metrics,
regarding the best model we can highlight (af).

The second phase of the experiment consists of analyzing
the k-NN classifier. The Table V shows the results of the k-
NN model considering the following values of k: 50, 100 and
150.

In the case of the k-NN classifier, the best accuracy results
were obtained by the Hu Moments descriptor, with the models:
(ap), (av), (ba). Therefore, using the same approach of the
SVM , the combination of LBP, GLCM and TWD descriptors
will be performed. The Table VI illustrates the results of the
combination, considering k: 50, 100 and 150.

The results shown in Tables III and VI show good accuracy
values. It can be seen that the results were similar between
the descriptors. However, there was no better result when
compared to the SVM classifier. According to Table VI it is
not possible to identify improvements in the metrics when the
descriptors are combined. Finally, the best models considering



Model k-NN (k) - Descriptor Accuracy
(%)

Recall
(%)

Precision
(%)

(ak) k-NN (k=50) - LBP 79.43 80.17 79.19
(al) k-NN (k=50) - GLCM 79.13 79.85 78.87
(am) k-NN (k=50) - Gabor 62.70 72.21 60.87
(an) k-NN (k=50) - TWD 79.60 79.13 79.78
(ao) k-NN (k=50) - TF 79.50 80.49 78.81
(ap) k-NN (k=50) - Hu Moments 79.81 79.93 79.93
(aq) k-NN (k=100) - LBP 79.45 80.09 79.26
(ar) k-NN (k=100) - GLCM 79.16 79.93 78.87
(as) k-NN (k=100) - Gabor 62.94 75.31 60.57
(at) k-NN (k=100) - TWD 79.55 78.85 79.86
(au) k-NN (k=100) - TF 79.42 80.51 78.68
(av) k-NN (k=100) - Hu

Moments
79.80 79.93 79.91

(aw) k-NN (k=150) - LBP 79.46 80.11 79.27
(ay) k-NN (k=150) - GLCM 79.10 79.95 78.77
(ax) k-NN (k=150) - Gabor 62.98 76.17 60.46
(ay) k-NN (k=150) - TWD 79.43 78.51 79.88
(az) k-NN (k=150) - TF 79.37 80.49 78.61
(ba) k-NN (k=150) - Hu

Moments
79.80 79.93 79.90

TABLE V
EFFECTIVENESS OF THE k-NN CLASSIFIER USING DIFFERENT

COMBINATIONS OF Kernel AND DESCRIPTOR. (IN BOLD, THE HIGHEST
OBSERVED VALUE OF EACH COLUMN).

Model SVM (Kernel) -
Descritor

Accuracy
(%)

Recall
(%)

Precision
(%)

(bb) k-NN (k=50) - LBP &
GLCM

79.13 79.95 78.85

(bc) k-NN (k=50) - LBP &
TWD

63.26 36.20 79.85

(bd) k-NN (k=50) - GLCM &
TWD

62.86 35.98 80.70

(be) k-NN (k=100) - LBP &
GLCM

79.17 79.95 78.91

(bf) k-NN (k=100) - LBP &
TWD

61.40 31.23 79.86

(bg) k-NN (k=100) - GLCM &
TWD

60.70 30.57 80.44

(bh) k-NN (k=150) - LBP &
GLCM

79.14 79.95 78.86

(bi) k-NN (k=150) - LBP &
TWD

60.43 28.39 80.33

(bj) k-NN (k=150) - GLCM &
TWD

59.80 27.83 81.17

TABLE VI
PERFORMANCE COMPARISON BETWEEN THE BEST SVM CLASSIFIERS (IN

BOLD, THE HIGHEST OBSERVED VALUE OF EACH COLUMN).

the accuracy of the k-NN classifiers are the models that
consider the Hu Moments descriptor.

2) Deep Learning: The last classification method discussed
in this work was the CNN. In this case, the experiment consists
of comparing one of the best performances of SVM and k-NN,
with the results obtained using SDDMobileNetV2 architecture.
The Table VII shows the results.

Model Description Accuracy
(%)

Recall
(%)

Precision
(%)

(bk) SDDMobileNetV2 89.00 93.40 97.30
(ap) k-NN (k=50) - Hu Moments 79.81 79.93 79.93
(af) SVM (RBF) - LBP & TWD 80.70 80.83 81.31

TABLE VII
PERFORMANCE COMPARISON (IN BOLD, THE HIGHEST OBSERVED VALUE

OF EACH COLUMN).

In Table VII, the performance of the SDDMobileNetV2
classifier was in all cases superior to the performance obtained
by the other classifiers. However, these results refer to the task
of classifying the tomography image that contains or does not

contain the anomaly. The results shown above do not show
the specific region of the image associated with the anomaly.

D. Second Experiment

The second experiment intends to specifically identify and
classify the region of the anomaly in the tomograms. For this,
the images were submitted to the Otsu [21] segmentation.
The use of Otsu technique is unique to the SVM and k-
NN models, as CNN uses the bounding box approach to
perform region classification. First, all tomography images
from the dataset were submitted to the Otsu segmentation.
After the segmentation process, two images are generated, the
first referring to the healthy region and the other referring to
the defect region. Afterwards, the trained classification model
will identify which class the images belong to.

The Figure 3 illustrates the results of different wood types
for defect region classification. In the following images,
the supervised model that obtained the best performance
in the previous experiment and the CNN model are
used as a comparison. Thus, the first column of images
((a),(d),(g),(j),(m)) illustrates the images of wood, the second
column ((b),(e),(h) ,(k),(n)) uses the SVM classifier (RBF) -
LBP & TWD and the third column of images ((c),(f),(i),(l),(o))
uses the SDDMobileNetV2 network model.

Fig. 3. Region ranking comparison between models: SVM (RBF) - LBP
& TWD and SDDMobilenetV2. First column: wood logs; Second column
(SVM); Third column (CNN).

Regarding the images with the supervised model, observe
the presence of defects in the regions delimited by Otsu



technique (region in green). Compared to the CNN model,
this information is more accurate when compare to the original
wood image. This defect detection is relevant from the point of
view of classifying the use of wood, specially for commercial
purposes.

IV. DISCUSSION

This work presents a comparative study of classification
through two experiments. The first experiment refers to the
classification of tomography images with anomaly or defects.
For this, the experiment uses supervised methods: k-NN,
SVM, CNN and different types of texture descriptors. The
second experiment compares the classification of the region.
In this second experiment, the supervised SVM method
is compared with Otsu’s segmentation, and the Network
SDDMobileNetV2, which uses the object detection approach
for classification. In the result of the first experiment, it
was possible to identify the classification techniques and
the descriptors that helped for the best results of accuracy,
recall and precision. Therefore, it is essential to choose the
descriptors with the combination of classification algorithms
for the composition of results in tomography images.

The result of the second experiment concerns the
classification of the location of the anomaly in the tomography
image. As mentioned, in the work of [5], a reconstruction
of tomography images using a Convolutional Neural Network
(CNN) was proposed. This technique was used to detect the
size, texture and limit the outline of defects in the wood. In
this work, a dataset consisting of 5,000 tomography images
is used. Despite this, the data set created by the authors is
not available, making it impractical to compare it with other
anomaly identification approaches. Due to the difficulty of
comparison, in this work, there was a need to generate a set
of data with the addition of data augmentation techniques for
the implementation of CNN. After generating the data set,
this work makes a comparison between: a CNN with the
object detection approach and an anomaly identification model
through the segmentation process with the Otsu method.

The results obtained by this work have accuray, recall and
precision results greater than 89%. In [5]’s work, the Stress
Wave technique is used as Non-Destructive Testing (NDT)
and the EBSI interpolation method for image generation. At
work, improvements are also made to the SDD MobileNet
network to delimit the defect region. Although the accuracy
of the classification models of this work are not superior to
that of [5], whose accuracy is 93.6%, this work proposes
a comparative study of classification techniques for the
identification of anomaly, with images of different species
of wood obtained by ultrasonic tomography and interpolation
methods.

V. CONCLUSION

Acoustic methods have been used as an alternative to Non-
Destructive Testing (NDTs) in the forest area, especially the
ultrasonic tomography method, as it is cheap and portable.
Images of the inside of wooden logs shows the internal

structures and features, which can be reconstructed by using
interpolation algorithms.

In this work, a study on the use of data classification
techniques in wood tomography images is presented. Our
dataset is composed of images obtained in tomography, a
non-destructive method capable of evaluating the internal
characteristics of wood logs without causing damage.

In order to identify whether an image has anomalies or
not, three different image classification methods were applied:
k-NN, SVM and CNN with SDDMobilenetV2 architecture.
The performance of these methods was evaluated according
to the accuracy, precision and recall metrics, calculated from
a confusion matrix constructed based on the classification
results. We also performed a classification task of the image
region, in order to obtain the region corresponding to the wood
anomaly.

Our first experiments showed that the best results are
obtained by the convolutional classifier, specifically for the
metrics accuracy and precision. For this classifier, the values
of accuracy, precision and recall are greater than 85%. A
last experiment carried out in this work was dedicated to
identifying the region in the image associated with the internal
defect. In this case, the defect identification by the Otsu
method obtained a more detailed result on the shape and size
of the defect when compared to the convolutional classifier,
which displays the defect in a rectangular format. Due to the
difficulties in obtaining tomography images, our contribution
is also associated with the creation of a dataset composed of
5000 images using the Data Augmentation technique.

There are several suggestions for future work. First,
to improve the variability of the dataset, we need more
tomographic images of wood from different species and types
of anomalies. Furthermore, the use of a combination of texture
descriptors of different types should be the subject of future
studies. There is also a suggestion to use a classifier with the
image segmentation approach, instead of an object detection
approach. And finally, as future work, we would like to
properly identify the anomaly, its location and dimensions.
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