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Fig. 1: 2.3 million papers projected using HUMAP. (a) Top-level embedding presented to the user; (b) Second and first levels

visualized according to information demand.

Abstract—High-dimensional data analysis is a ubiquitous task
in practical and research activities. Dimensionality Reduction
(DR) techniques are usually employed as they map high-
dimensional data to lower spaces and allow for knowledge discov-
ery. This thesis focuses on the interpretability and representation
aspects of non-linear DR approaches’ output, such as t-SNE and
UMAP. That is, we propose methods for interpreting and hier-
archically learning embeddings. To accomplish these goals, the
following main research activities were carried out, representing
separate but interconnected works: (1) a sampling method in
visual space (R?) that can preserve class boundary structures
while keeping outliers visible; (2) a technique for understanding
cluster formation by leveraging statistical tests on the feature
values after dimensionality reduction; (3) we advance the state-
of-the-art by adapting SHAP to explain cluster formation after
dimensionality reduction; (4) a novel hierarchical DR technique
that employs an adaptive kernel for global/local neighborhood
learning while preserving context across embeddings.

I. INTRODUCTION

Dimensionality Reduction (DR) techniques are widely used
in a wide range of scientific fields. Embeddings encoded by
scatterplots aid in the analysis of high-dimensional datasets
from different scientific domains—for example, see the 2.3
million papers [1] embedded in R? using HUMAP [2]. How-
ever, non-linear techniques make it difficult to understand
embeddings according to feature contributions for embedding
formation. Scatterplot representations of embeddings become
visually cluttered as the dataset size increases, deceiving
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understanding of the relationship among data points—a lim-
itation that can be addressed by summarizing the data dur-
ing analysis using sampling [3]-[5] or visual summarization
approaches. Interpretation techniques can also improve the
interpretability of embeddings. While many approaches have
been proposed for explaining and interpreting the decisions of
common machine learning models [6], dimensionality reduc-
tion interpretation has been performed with enriching layout
techniques [7], in which visualizations of feature distributions
and other attribute information aid analysts in making sense
of clusters and other patterns perceived in the visual space
(R?)—simple statistics, on the other hand, cannot fully provide
the differentiation among the clusters. Other approaches’ lim-
itations can be summarized as prohibitive runtime execution
of high-dimension datasets [8] or the inability to extend the
analysis for different DR techniques [9].

Finally, traditional DR techniques operate at a single level
of detail, representing the relationship between data points
in a single low-dimensional scatterplot representation—which
limits analysis when important information is prioritized and
details are added as needed. This limitation can be circum-
vented using hierarchical DR (HDR) techniques, which project
subsets of the input dataset and allow the user to select where
to focus during the analysis. The idea behind HDR techniques
is to project dominant structures 1 (a) and let users decide
when to refine for more information (b). The main problems
with previous HDR techniques are their inability to scale [10],
[11] and the non-preservation of the mental map [12].

To address these discussed research gaps, we formulated the



following hypothesis.
A. Main Hypothesis

Hierarchical exploration and interpretation of embeddings
improve the analysis power of DR xtechniques by assisting
in identifying and emphasizing various facets present in data.
While mental map preservation in hierarchical embeddings
allows for context preservation throughout exploration, di-
mensionality reduction interpretation explains feature contri-
butions to layout formation in the visual space.

II. RELATED WORKS
A. Sampling for Dimensionality Reduction

Well-known sampling techniques such as Knuth’s [4] and
Reservoir’s [3] rely on probabilistic mechanisms to extract
samples that depict the dominant structures of a dataset.
On the other hand, deterministic methods, like CSM [5],
select representatives by computing correlation indices through
matrix decomposition. In summary, the idea when sampling
for DR is to maintain the relationship seen in the whole
dataset. HSNE [12] technique selects dominant structures
using Monte Carlo sampling on a Finite Markov Chain.
Nguyen and Song [13] adopt centrality cluster-based sampling
approaches, which employ centrality measures to obtain more
informed samples than random sampling methods.

B. Embedding Interpretation

The literature presents studies that support the analysis
of DR results via the inspection of global information [5],
[14]-[17], emphasizing the importance of features imposed
on the embedded space. These contributions, however, do not
highlight the clusters’ distinct characteristics. ccPCA [8] uses
contrastive PCA [18] to find the unique characteristics for
each cluster—its main limitation stems from PCA, which is
the prohibitively run-time execution time for high-dimensional
datasets. ContraVis [9] is only applicable to textual data and
cannot assist in the interpretation of DR layouts because it is
already a dimensionality reduction approach.

Studies on feature values [15], [17], [19], for example,
do not account for the dimensionality reduction process and
instead concentrate on the reduced low-dimensional space.
Other works [5], [14] retain feature importance through the
principal components (PC). The PCs produce biased results
for classes with high variation [5], and their inability to focus
on local information [8] hinders cluster-oriented analysis.

C. Hierarchical Dimensionality Reduction

DR techniques have traditionally operated at a single level
of detail. These layouts, however, may conceal important data
characteristics, such as differences between samples within a
cluster, which provide an overview of the structures and benefit
analysis when focusing on important information first.

Hierarchical DR approaches try to reduce this problem
by providing embeddings according to information demand.
HiPP [10] creates an overview of the dataset and guides users
through further analysis by using nodes. It uses LSP [20] as

backbone, which does not scale well for datasets with thou-
sands of points. HSNE [12] can successfully depict manifolds
and deal with thousands of data points/dimensions. However,
as the analyst descends the hierarchy, HSNE fails to preserve
the user’s mental map. Multiscale PHATE [11] is able to
handle massive datasets describing continuous phenomena but
does not work well with higher dimensions.

III. METHODS

A. SADIRE'

To deal with visual clutter of embeddings in R?, we
propose a sampling technique called SADIRE (SAmpling from
DImensionality REduction).

SADIRE [21] considers an embedding X C R2. Tt selects
candidates for the representative set using a grid structure
on the projection plane. Then, it eliminates redundant data
instances from the sampled set.

The first stage of the sampling strategy involves sampling
from an R? projection. SADIRE divides the projected space
by generating a grid with cells of size k£ x k (note that &
is measured in pixels). The sampled set is then created by
using only the cells with at least one data point, from which
a number m < n of data points can be retrieved, where n is
the number of data points in each cell. While our explanation
and experiments are geared toward m = 1, keep in mind that
using m > 1 conveys the density of the clusters.

Fig. 2: Defining the grid and selecting samples. (a) A grid
with cells of size k by k is used to divide the R? space; (b)
Only cells with at least one data point are retrieved; (c) The
resulting representative set after redundancy removal.

Second, windowing process is used in the second main
step of the algorithm to reduce redundancy from neighboring
cells. For a window size of aw = 3, the density information
stored in the first step is used to keep useful information about
the embedding structures while reducing redundancy. Starting
with the densest cell, all of its neighboring cells are eliminated
from the possibility in order to be included in the resulting
representative set. This process is repeated for all active cells
from the most to the least densest that were not removed.

SADIRE is the backbone for a exploration approach called
ExplorerTree [22], published in the Big Data Research journal.

Uhttps://github.com/wilson_jr/SADIRE



B. cExpression

The first contribution for helping with the interpretation of
DR results considers the features that are most distinctive for
clusters. The technique, called cExpression [23], consists of
comparing value distributions of different clusters using t-test
to determine if the differences between these distributions are
significant enough to describe clusters. Given a dataset X, let
X § and X]?/ be the feature f values for data observations in
the cluster ¢ and the feature f values for data observations
not in the cluster ¢ (¢/)—c and ¢’ are visual space clusters
from which users want to find unique characteristics. For each
feature (f) and cluster (c), were compare XJ% and X]Cc/ by
extracting t-statistic and p-value. Then, these two numbers give
the information about how well f describes c.

Fig. 3 depicts the idea. The distributions (b) of values for
the cluster and feature are generated using the dataset (a)—
red encodes the feature distribution of data samples within the
cluster, while gray encodes the distribution of data samples
outside the cluster. The t-test is used in these distributions (c)
to determine the probability (p-value, d) to observe the t-score
when the distributions are similar.
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Fig. 3: Comparing feature distributions with t-test.

Fig. 4 (left) depicts a UMAP projection of the Vertebral
dataset, which includes 310 data instances described by six
biomechanical features derived from the shape and orientation
of the pelvis and lumbar spine: pelvic incidence, pelvic tilt,
lumbar lordosis angle, sacral slope, pelvic radius, d. of
spondylolisthesis. The patients of interest have spondylolisthe-
sis, a spine disorder in which a bone slides forward over the
bone below it. To investigate cExpression on this task, we look
at the distribution of values for the key features throughout
the projection. The two most important ones retrieved by
cExpression are shown in Fig. 4 (right). Note how degree of
spondylolisthesis is a very distinctive feature for the class.
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Fig. 4: UMAP projection of the Vertebral Column dataset and
two distinctive features for the Spondylolisthesis class.

1) Visualizing the feature importance: We visualize the
importance of the features for a cluster as their position over
a horizontal axis while providing distribution plots for each
visualized feature. The visualization design is shown in Fig. 5,
where the color hue for the distribution plots corresponds to
an arbitrary cluster
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Fig. 5: A visual summary of the most distinctive features for
a cluster.

The information presented on axes (a) and (b) in Fig. 5 is
the same, namely the number of decimal places after zero
for each p-value. The gray circles in the context axis (a)
represent the analyzed features, and their horizontal position
encodes the p-values. A red-to-blue color scale assists users in
determining feature confidence—blueish colors encode greater
confidence (or lower p-values). We encode the difference
between distributions (t-scores) using another axis in addition
to the confidence in the difference represented by the p-values.
The relationship between these statistical variables is depicted
by line segments, and the color represents the t-score signal
(pink for negative and green for positive).

Note that the visualization of Fig 5 is highly interactive, and
we invite the readers to read the paper [23] for more details.

C. ClusterShapley*

One step further in interpreting DR results can be under-
standing the contribution for cluster formation for embedding
in R2. ClusterShapley [24], our DR interpretation approach, is
based on explaining the contribution of feature values for the
cluster cohesion through the use of Shapley values [25].

1) Shapley estimation: Shapley values are estimated for
each data sample after the cluster definition. That is, we define
a model f that returns the prediction similarities for a data
sample x. We measure the distance from data samples =
to each cluster centroid to return the prediction similarities
for a data sample x. The distances are then converted into
similarities using L1 normalization—lower values indicate
proximity in the visual space and thus cluster cohesion.

The estimated Shapley values correspond to the contribution
of each feature to the embedding. That is, a feature with
high absolute Shapley value contributes significantly to the
cluster formation of the projected dataset. Each data point

Zhttps://github.com/wilson_jr/ClusterShapley



Hierarchy construction

Projection

Akernel function with adaptive
o computes the connection
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k-nearest neighbor graph
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Fig. 6: The hierarchy is constructed from bottom to top. First, a k-nn graph approximates the connection strength among
data points (A). Then, random walks are used to find landmarks (B), the points of superior levels (C). The representation
neighborhood—Ilocal and global relationships (D)—is used for computing the similarity among landmarks (F). In the embedding
(H), we use the influence of superior levels for the mental map preservation (I).

used for Shapley value estimation in this case contains the
corresponding Shapley value. Negative Shapley values indicate
that the feature contributes to cluster formation, while positive
Shapley values indicate that the feature does not.

2) Visual Component for Interpretation: Fig. 7 shows dot
plots of the four most important features ordered by their
influence to the cluster. It is worth noting that the more
the absolute Shapley values (encoded as horizontal position)
deviate from zero, the more influence the feature has in
characterizing the cluster.

The coordination between the scatterplot and the dot plot
assists users in determining which features contributed to
cluster cohesion and which features contributed to cluster
dispersal during the detailed inspection. The selected cluster
in Fig. 7 very cohesive due to the contribution of petal length
(see negative Shapley values), that is, data points with lower
values for this feature are very distinctive from the others.
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Fig. 7: Each line segment represents a point in the scatterplot.

D. HUMAP?

The fourth contribution advances the state of the art of hi-
erarchical embeddings by providing means for large scale and
mental map-preserving hierarchical dimensionality reduction.

The method, called HUMAP [2], is composed of two major
components: hierarchy construction and projection (Fig. 6). In
the former, we use a similarity measure among landmarks to
impose a hierarchical structure on the dataset. In the latter,
we embed the hierarchy levels based on the user’s demand
for more detailed information. All of the steps (A-G) of these
components are depicted in Fig. 6.

The first step in building a hierarchy from bottom to top is
to use a kernel function to determine the connection strengths
(local affinities) of a k-nearest neighbor graph of data points in
the high-dimensional space R™ (step A). Then, as in previous
work [12], we use the Finite Markov Chain (FMC) to find
the most visited nodes (step B), which are the superior level
landmarks (step C). The FMC procedure is also used to build
a neighborhood structure for high hierarchy levels (level > 1)
and to encode local and global neighborhood information for
each landmark (steps (D) and (E)). Finally, using the computed
similarity to define a new hierarchy level (step F), a new
neighborhood graph is created (step G).

The neighborhood graph is first symmetrized (step H) before
projecting hierarchy levels. Except for the top hierarchy level,
the low-level projection is influenced by the low-dimensional
positions (I) of data points in higher levels for mental map
preservation. This is performed through the modification the
Stochastic Gradient Descent algorithm, where we limit the
movement of already projected data points and influence the
projection of new points.

3https://github.com/wilson_jr/humap



Thus, instead of presenting the embedding with the whole
dataset, HUMAP provides an overview as in Fig. 1 (a). Users
can request for more data for certain clusters or for the whole
projection, as shown for the middle and right embeddings.

IV. RESULTS

A. SADIRE

To evaluate SADIRE, we employ the concept of represen-
tativeness [26] given by the metrics redundancy and coverage.
Here, we report the results for the Coverage metric against
CSM, Knuth, and Reservouir upon several datasets—see the
paper [21] for the embedding results and the other metrics.

B. Coverage

To model the Coverage of a sampled set, we take the mean
and std. deviation of the distance among sampled points and
non-sampled points. Thus, lower mean and std. deviation are
better and encode the information that a non-representative
point is close to a sampled point.

Fig. 8 shows the results for coverage metric. For a few cases,
SADIRE presents (for fiber and photographers-36k, for exam-
ple) higher results than Reservoir and Knuth’s. This is due to
the fact that the majority of the points selected from them are
concentrated in denser areas—mean of lower distances gives
lower values. However, the standard deviation shows that a few
points are too far from a representative (sampled point), which
implies in bad results for Knuth and Reservoir techniques.
CSM results are related to its formulation, in which there is
no way to control where to focus for extracting sample points.
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Fig. 8: Coverage metric to assess if a sampled set is able to
represent all data structures.

C. cExpression

To investigate more about the class of patients with Spondy-
lolisthesis (mm) using cExpression, the selection of the features
with high confidence on their distinction aspects (that is,
features whose p-values are lower than 10~°) shows that the
distribution plots present the values skewed to the right, as
illustrated in Fig. 9. The distribution plots also show how
data instances of patients with Spondylolisthesis present higher
values for D. Spondylolisthesis, L. Angle, P. Incidence, and S.
Slope. According to [27], these features are prone to be higher
in patients with developmental spondylolisthesis.

Fig. 9: The class of patients with Spondylolisthesis shows
greater values for all of the features, except for Pelvic Radius.

D. ClusterShapley

Continuing with the same dataset, we now employ Cluster-
Shapley to understand the contributions of the dataset for the
embedding in R?. Fig. 10 shows the projected instances using
t-SNE, colored based on the ground truth classes: class 2 M
for normal patients, class 0 M for patients with Hernia, and
class 1 M for patients with Spondylolisthesis. Again, there is
separation of class 1 I among the remaining data points.

The dot plot shows that the degree of spondylolisthesis is
a determinant factor for the presence of Spondylolisthesis. By
coordinating the scatterplot and the dot plot for class 1 I,
we can see that its data points have higher values for the
degree of spondylolisthesis with negative Shapley values—
which contribute to cluster formation. The other three most
important features also contributed to clustering cohesion.
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Fig. 10: Correlation between feature values and their contri-
bution to cluster formation.

E. HUMAP

We compared HUMAP against HSNE, Multiscale PHATE
and UMAP upon various evaluation metrics and different
datasets. Here, we report the two most important results.

1) DEMaP: To analyze how well the techniques convey
manifolds, clusters, and other high-dimensional space struc-
tures, we use the DEMaP metric [28]. Fig. 11 shows that
HUMAP presented better results than HSNE and UMAP
on level 2 and HSNE-GPU on level 0 for the MNIST and
FMNIST datasets. For the mammals dataset, HUMAP shows
higher values when embedding the whole dataset, providing
evidence of our technique’s stability across hierarchical levels.

2) Mental map preservation: To quantify the mental map
preservation, we use Procrustes Analysis on subsequent hi-
erarchy levels. That is, for the hierarchy levels ¢ and ¢ + 1,
we retrieved the points present in both ¢ and ¢ + 1 and used
them to compute disparity between the sets of points. Fig. 12
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shows that HUMAP is superior over the other techniques at
preserving the mental map (the lower disparity the better).
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Fig. 12: Mental map preservation measured with Procrustes
Analysis.

V. FINAL REMARKS

In this section, we discuss practical implications of our work
and summarize this doctorate’s scientific output.

A. Practical Implications

B cExpression: a method for differentiating cluster forma-
tion. While this concept is broadly applicable to cell-type
annotation [29], the cExpression visualization component
enhances the analysis’ visual scalability. Annotation and
class definition for textual datasets is an important prac-
tical application of cExpression.

B ClusterShapley: we detail a technique that provides ad-
dictive explanations for the organization of the embeded
layout after dimensionality reduction. ClusterShapley can
also be used to understand the separation ability of
deep learning models after projecting bottleneck layers.
Finally, ClusterShapley has also been used in the material
science domain [30].

B HUMAP: we present a novel hierarchical dimensional-
ity reduction technique. HUMAP provides an overview
of the dataset, making analysis easier and emphasizing
intracluster characteristics that are difficult to see using
traditional projections. The discovery of cell types and
subtypes is a direct application of this characteristic [31].

B. Scientific production
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state, Brazil. WE Marcilio-Jr, DM Eler, RE Garcia, RCM
Correia, RMB Rodrigues. Journal of Biomedical Infor-
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3. Explaining dimensionality reduction results using Shapley
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Applications 178, 115020.
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