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Abstract—Video captioning is a computer vision task aimed
at providing textual descriptions for videos. There are numerous
strategies and datasets that can be employed to create models
capable of addressing this task. In this study, we have devised a
deep learning-based strategy that leverages both audio and image
content to generate captions using resource-constrained devices.
The datasets utilized include MSR-VTT and TREC-VTT22. We
have developed an application tailored for resource-constrained
devices that utilizes the optimal model resulting from our training
process. Both modalities of data are then combined and processed
by the model to generate a comprehensive description related to
the captured data. The primary contribution of this work lies
in the introduction of an innovative end-to-end application that
leverages audio and image data. This application can be utilized
on a mobile device to autonomously produce descriptions.

I. INTRODUCTION

Video captioning involves converting video content into
textual descriptions. In video processing, a common approach
involves combining frames to generate captions, often utilizing
techniques like 3D convolution. This method increases com-
plexity by requiring information extraction from the temporal
dimension [1], which can be challenging within the mobile
devices context.

Moreover, videos can include audio, which introduces both
potential and complexity to this task [1]. These attributes, com-
bined with the limitations imposed by mobile devices, present
challenges for autonomously conducting video captioning, i.e.,
without external resources such as internet connectivity and
access to powerful models.

In the realm of mobile or resource-constrained devices,
a range of strategies has been employed to surpass these
limitations, including distillation, pruning, and quantization
[2]. Moreover, numerous deep learning models, proven ef-
fective for tasks like classification and segmentation, can
perform admirably under such constraints. When addressing
video captioning, one can adapt and utilize these models to
tackle the various aspects of the task, capitalizing on their
high accuracy even within compact architectures and minimal
resource consumption.

An example in the context of image captioning is the
work by [3], in which the authors use TinyBert [4] in the
development of an captioning framework named LightCap that
was tailored for resource-limited devices. In a broader context,
studies have demonstrated the utility of the audio modality in
enhancing caption generation [5]–[8].

Specifically, audio information complements the visual as-
pect, for instance, when capturing speech or sounds associated
with events occurring. Nevertheless, the exploration of this
information in the context of video captioning on mobile
devices remains limited.

The aim of this study is to evaluate whether integrating
image and audio data enhances video captioning perfor-
mance in scenarios involving resource-constrained devices. To
conduct our experiments, we employed an Encoder-Decoder
transformer-based architecture and explored three training
strategies: a) utilizing solely image features, b) utilizing only
audio features, and c) utilizing both feature types. While it
is recognized that audio content within videos can enhance
video descriptions, this aspect remains relatively unexplored
within the realm of mobile devices, where hardware limitations
present significant challenges.

The paper is structured as follows. We introduce recent
literature related to Video Captioning, Multimodality, and Mo-
bile Devices in Section II. Section III outlines the application
framework, experiment setup, and training configurations used
in our study. In Section IV, we present the preliminary results
obtained from our experiments. Lastly, Section V provides the
paper’s conclusion and outlines the next steps we intend to
take.

II. RELATED WORKS

Numerous studies have tackled the challenge of transform-
ing video content into textual descriptions. For example, in
the work by [9], a model named VPCSum was introduced to
create paragraphs from video data. The approach adopted by
the researchers encompasses three key components: 1) image
selection; 2) depiction of chosen images, and 3) synthesis
of the descriptions. [10] proposed an analytical framework
designed for video surveillance, which can identify objects
and establish their connections to events.

Related to the usage of both image and audio data, the work
[11] introduced a deep neural approach that employs multiple
modes to generate detailed captions for videos. The authors
developed a model consisting of event detection and two neural
networks: a 3D convolutional network for processing sets of
frames, and a VGG-based network for audio data.

Regardless these work‘s importance, they have not focused
on mobile devices. In this way, the work [12] created an
application responsible for converting video content into audio



descriptions, which was implemented on ARM-based proces-
sor hardware. The researchers utilized a series of specialized
models for fine-grained object classification, each focusing on
a specific category. These objects are then transformed into
audio using a text-to-speech library.

In [13], the authors have developed a smart device utilizing
ARM-based processor hardware for video surveillance. The
system incorporates a YOLO network that receives data cap-
tured by a video camera triggered by motion detected through
an infrared sensor. The primary objective was to create a
system capable of identifying individuals and environmental
intrusions.

The work by [14] involved the development of a neural
network with residual connection features, which was then
integrated into an application named WeCapV2 designed for
Android systems. As per the authors, this application au-
tonomously generates video descriptions. The proposed model
underwent training using the Microsoft Research Video De-
scription Corpus (MSVD) dataset and was subjected to evalu-
ation using metrics such as BLEU-n, ROUGE-L, SPICE, and
CIDEr. The model comprises an ”Encoder” featuring CNN and
RNN structures, along with a ”Decoder” equipped with RNN,
embedding, and fully-connected layers. The RNNs utilized are
based on multi-layered GRUs, which address the challenge
of the “vanishing gradient” problem. During the integration
of the model into an Android operating system application,
dynamic quantization was applied, and the initially developed
PyTorch model was converted into the “TorchScript” format.
It is important to note that, in contrast to our work, the training
was solely focused on the image domain, given that the MSVD
dataset lacks audio data.

In [15], the authors developed the MoviNet network, which
deals with optimizations of 3D video networks for mobile
devices. In this context, many operations of 3D video networks
require a set of frames to be processed at once, which limits the
feasibility of these networks on resource-constrained devices.
In this work, three strategies were employed to optimize the
networks: a) neural architecture search; b) stream buffer; and
c) temporal ensemble. These type of network could also be
utilized in a different task, similar to their application in our
work.

The work [5] applied three audio and image-based ap-
proaches to tackle the task of “Video Captioning.” The argu-
ment put forth is that the auditory channel can provide context
in describing the content of videos. The authors developed the
following approaches: concatenation of image feature vectors
and Mel-Frequency Cepstral Coefficients; weight sharing be-
tween the initial layers fed separately with image and sound
information; and weight sharing among intermediate and final
layers. The authors evaluated these strategies on the MSR-
VTT and MSVD datasets, with the latter focusing solely on
the visual modality, as the videos lacked audio tracks. The
results demonstrated that audio can indeed contribute context
to the generation of descriptions for videos.

Differently, our focus lies in strategies aimed specifically
at mobile devices, encompassing an end-to-end application
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Fig. 1. Application’s framework for mobile device video captioning.

responsible for capturing, pre-processing, and generating de-
scriptions in near real-time. Furthermore, our application uses
feature extractors tailored for resource-constrained devices.

III. METHODS

A. Application’s Framework

Figure 1 presents the application design for performing
video captioning with data captured from mobile devices.
The framework is composed of three modules: i) sensors
module, ii) image and audio module, iii) presentation module.
The sensors module refers to the hardware responsible for
capturing and storing the data from the image and audio
modalities on disk.

A neural network based on Encoder-Decoder constitutes
the image and audio module. Initially, a set of images and
a portion of audio data are processed through efficient mobile
neural networks such as ConvNeX Tiny and YAMNet, with the
objective of extracting image and audio features, respectively.

The neural networks used to extract features from the image
and audio modalities were versions pre-trained on ImageNet
and AudioSet, respectively. In the case of ConvNeXt Tiny, pre-
trained on the ImageNet dataset, the input resolution is 224
by 224 pixels. The selected versions are the most compact
in terms of size, aligning with the goal of integrating them
into the application designed for mobile devices. Our research
focuses on training the decoder component, responsible for
text generation. This is achieved by utilizing the feature vectors
generated by these network backbones as input.

The subsequent phase involves employing these feature
vectors for the purpose of feeding the captioning model.
Subsequently, this model generates a caption constrained
within a predefined vocabulary and a specified word count.
The application employs this information to furnish the user
with a description of the scene captured by the sensors of
the mobile device. The entire process occurs internally and
autonomously within the device. This Work in Progress paper
encompasses the initial stages of our research, which involve
training audio and image-based networks. The subsequent
steps will entail amalgamating these two types of networks
into a single multimodal network to harness both audio and
image data contexts.

B. Experiment Setup

1) Datasets: We have trained the multimodal video cap-
tioning model using both the “TREC 2022 Video-to-Text”
(TREC-VTT22) dataset and the “Microsoft Research Video
to Text” (MSR-VTT) dataset [16]. The TREC-VTT22 dataset



is provided by the “Text Retrieval Conference (TREC)” for
a competition and contains a total of 1,000,000 small video
segments. For our study, we focused on a subset of approxi-
mately 2,000 videos from this dataset, each accompanied by
five descriptions1. The MSR-VTT dataset comprises 10,000
videos, each with 20 associated captions.

2) Pre-processing: Before commencing the training pro-
cess, we extracted and stored image and audio file features
from the MSR-VTT and VTT22 datasets in Numpy for-
mat (*.npy). Concerning images, we took into account 80
frames per video, resulting in matrices with dimensions of
80× 7× 7× 768. The final three values, 7× 7× 768, indicate
the output dimensions of the ConvNeXt Tiny-based feature
extractor.

Regarding the audio feature extractor, YAMNet generates
matrices with dimensions of (N, 1024), where N signifies the
count of 0.48-second audio segments in each video. For the
VTT22 dataset, N = 27, while for MSR-VTT, N = 74; these
values correspond to the medians of video durations in the
VTT22 and MSR-VTT datasets, respectively.

In the case of the captions, all annotations in the dataset
underwent preprocessing to remove punctuation, convert char-
acters to lowercase, and eliminate double spaces.

3) Training: We have trained a set of neural networks
considering solely the audio modality and solely the image
modality. Furthermore, we present the results of the train-
ing procedure conducted using the MSR-VTT dataset. The
hardware used during the training phase is composed of dual
GPU NVIDIA A5000, each with 24GB of RAM. For training
and evaluating the models, we have used the TensorFlow
framework in a Jupyter Notebook environment.

During the training phase, we experimented with various
model configurations, including vocabulary size ranging from
1,500 to 5,000, different caption lengths, number of heads, and
number of layers. While getting the best values with respect
to caption and vocabulary size, we conduct training of several
audio-based and image-based networks varying the number of
heads and layers. The utilization of VTT22 will be carried
out in the subsequent stages, focusing on training a network
incorporating both types of data.

C. Mobile Application

The end-to-end application was implemented on a Rasp-
berry Pi 4 Model B, equipped with 8GB of RAM and a
processor based on ARM-v8 architecture. We selected this
hardware for its versatility, as it allows the integration of
additional components such as batteries, cameras, and sensors.
Despite having a large amount RAM, our intention was to
utilize only portion of it with a 64-bit Raspberry Pi system
loaded Desktop environment. Furthermore, it is possible to
adapt the mobile application for use on smartphones or other
resource-constrained devices.

1We obtained the videos and descriptions from https://trecvid.nist.gov/
trecvid.data.html, accessed on March 10, 2023.

We have used the Python programming language in the
deployed application which uses the TensorFlow Lite frame-
work. Figure 2a depicts a Raspberry Pi 4 Model B, equipped
with a video camera, along with an example of a captured
frame. Figure 2b illustrates a typical scenario showcasing the
potential applications of the mobile application: a park scene
with sidewalks, trees, and shadows, where pedestrians could
appear at times.

IV. RESULTS

This section presents the preliminary results we have ob-
tained concerning strategies based solely on audio and solely
on image data. All training procedures were standardized
with regard to the following parameters: a vocabulary size
of 2,500 and a maximum limit of 40 words for the generated
descriptions, values that we chose in previous training stages.

In Table I, we display the masked accuracy values across
thirteen distinct architecture configurations, varying the num-
ber of heads and layers. The metric “masked accuracy” is
related to a masked language model, where, during the training
phase, random words are replaced by a special token (usually
represented by the term “[MASK]”), and then the goal is
to predict which word originally existed there before the
replacement [17]. In the next stages of this work, we will
compute the BLEU-n, CIDEr and other metrics that are related
to image and video captioning tasks.

TABLE I
MASKED ACCURACY FOR THE AUDIO-BASED NETWORKS.

Name Heads Layers Parameters Size (MB) Masked Acc.
A1 10 10 95,846,340 365.62 0.3319
A2 10 2 20,203,460 77.07 0.3363
A3 2 10 22,323,140 85.16 0.3445
A4 4 4 17,057,220 65.07 0.3547
A5 6 6 35,967,940 137.21 0.3541
A6 8 8 62,230,980 237.39 0.3318
A7 1 1 2,476,740 9.45 0.3355
A8 2 2 5,498,820 20.98 0.3469
A9 4 2 9,174,980 35.00 0.3277
A10 2 4 9,704,900 37.02 0.3411
A11 2 6 13,910,980 53.07 0.3489
A12 1 8 10,764,740 41.06 0.3230
A13 2 7 16,014,020 61.09 0.3508

Network model A4 exhibits the highest masked accuracy
while maintaining a small size (approximately 65 MB), al-
though still larger than the most compact architecture, A72,
which has a size of 9.45 MB. We can observe that having
more heads and layers does not necessarily equate to higher
accuracy; instead, it results in a larger size.

Table II presents several examples of captions generated by
this network and the network labeled I7, which was trained
exclusively on image features. We also display the BLEU-2
and BLEU-3 scores for these predicted captions with respect
to the ground-truth data available in the datasets; the BLEU-4
scores resulted in zero.

2The “A” in A7 stands for the word “Audio.” We use this notation to
indicate whether a network was trained with only audio (A7), images (I7),
or both images and audio (IA7).



(a) Rasberry Pi 4B and video camera (b) An example of frame captured by the mobile application

Fig. 2. Raspberry Pi 4B equipped with a video camera and an example of captured frame.

TABLE II
EXAMPLES OF CAPTIONS AND METRICS BLEU@2-3 (B@2-3) OBTAINED

BY AUDIO AND IMAGE-BASED NETWORKS (N) FOR VIDEOS IN THE
MSR-VTT (M ) AND VTT22 (V ) DATASETS.

N ID Caption B@2 B@3
A4 M9004 A man is cooking food 0.165 0.140
I7 A woman is cooking food 0.233 0.222
A4 M1990 A man is singing 0.707 0.630
I7 A man is talking about a man 0.690 0.000
A4 M3106 A man is talking about the 0.558 0.427

benefits of the car
I7 A man is performing a stage 0.437 0.000
A4 V 1010 A man is talking about a man 0.221 0.000

in a man
I7 A man in a white shirt is 0.248 0.000

walking down a runway

On one hand, we can observe that the audio modality
effectively captured the cooking action, as expected for video
ID M9004. We use the notation M to indicate that the
video belongs to the MSR-VTT dataset, and the character
V corresponds to VTT22. This particular video depicts a
woman cooking food, and one of the corresponding ground
truth captions reads: “A woman using a red spoon cooks and
stirs pieces of meat and onion in a pan.”

On the other hand, the image modality managed to identify
the person in the video as a woman. However, many objects
were not detected or explicitly mentioned in the generated
caption. Increasing the vocabulary size can be effective in
addressing undetected objects, which will be carried out in
the upcoming stages of this research.

Regarding the video V 1010, the audio modality provides
information about an urban scene, which is indicated by the
term “runway.” The image modality was not able to detect
or provide a meaningful caption. It is important to note
that network I7 has only one layer and one head in its
architecture. Additional configurations will undergo training
and are anticipated to result in more meaningful captions, akin
to those generated by the audio-based networks featuring four
layers and four heads.

We intent to take into account strategies tailored for ma-
chine learning model deployment on mobile devices, such as
knowledge distillation. Throughout this technique, the work

by [18] has reduced the inference time by 80%, with a small
drop in captioning accuracy.

V. CONCLUSION

In this work, we delve into techniques aimed at enabling
video captioning on mobile devices by utilizing pre-existing
audio and image feature extractors. We implement an Encoder-
Decoder architecture based on transformers, providing the net-
work with features previously extracted from these modalities’
data. The first technique employed was solely based on the
auditory modality and was capable of detecting significant
elements present in the video sequences of the MSR-VTT and
VTT22 datasets. The second technique captured the inherent
presence within the visual channel.

The combination of both strategies will be the next step to
be pursued in this study, along with conducting further experi-
ments involving the image modality. It is worth noting that the
models utilized are suitable for deployment on devices with
limited computational resources, such as smartphones. The
objective is to investigate these strategies within an application
for these devices autonomously, which means without reliance
on internet resources and more powerful models.

In our initial experiments, the best model generated through
our training procedures has been integrated into a mobile
application deployed on Raspberry Pi hardware equipped
with a camera and microphone. The application records and
preprocesses data from both modalities, feeding the network to
generate a comprehensive description related to the captured
data.
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