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Abstract—Facial expression analysis has been widely used as
one of the main approaches for pain diagnosis, both by humans
and computing systems. However, in clinical practice, newborns
who remain hospitalized in Neonatal Intensive Care Units often
have devices connected to their faces, such as enteral/gastric
probes, orotracheal intubation tubes, and phototherapy goggles,
which hinder the visualization of facial regions making the
proper diagnosis of pain much harder in practice. Therefore,
to address this issue, we have evaluated the state-of-the-art
Segment Anything Model (SAM) tool combined with RetinaFace
for segmentation of 2D face images of neonates, including free
faces and the ones with devices connected, against a simple
and traditional landmark method, and a recently proposed deep
neural network fine-tuned for face segmentation under occlusion.
SAM performed comparatively better than the other two models
for both no occlusion and high occlusion 2D face images, scoring
on average impressively 0.98 and 0.91 at the standard dice
similarity coefficient respectively.

I. INTRODUCTION

Numerous studies have been conducted to understand the
approach of healthcare professionals in assessing neonatal pain
[1]. These investigations range from describing the perceptions
of these professionals [2], [3] to exploring the visual tracking
employed by them [4], [5], [6], [7]. In recent years, in addition
to conventional methods [8] of pain assessment in this popu-
lation, computational methods [9] have been developed with
the aim of automating this process and assisting professionals
in decision-making.

Facial expression analysis has been widely used as one of
the primary approaches for pain diagnosis, both by human
evaluators [10], [11] and computer systems [12], [13], [14].
However, some assessment scales employed by healthcare
professionals allow for the identification of specific facial
characteristics [10] that discriminate the presence or absence
of pain, whereas recent computational methods only perform
a global analysis of the face [12], [13], [14]. In other words,
unlike the clinical scales used by health professionals that
allow identifying specific facial regions that help to infer the
presence or absence of pain [10], the current computational
methods perform only a holistic or global analysis of the
neonatal face. Therefore, such methods do not address the
practical difficulties of identifying pain in neonates who re-
main with devices attached to their faces [8], including the
enteral/gastric tube attachment, orotracheal intubation attach-
ment, and phototherapy goggles.

In this work, we propose and implement a computational
method for neonatal face segmentation [15], based on the state-
of-the-art Segment Anything Model (SAM) [16] combined
with the well-known RetinaFace [17] tool, as an initial step to
address this issue. For evaluation, we compare its performance
against a simple segmentation approach based on landmark
localization [18] and a recently proposed deep neural net-
work fine-tuned for face segmentation under occlusion, named
DeepLabV3+ [19], using two separate datasets of neonatal face
images with and without clinical devices.

II. MATERIALS

We have used the UNIFESP face database [20], which
contains 122 and 238 images of neonates before and after
a painful procedure, respectively, with image resolution of
450x233 and no facial occlusions. All images are labeled
accordingly to the Neonatal Facial Coding System (NFCS)
[10]. In addition to this dataset, we have created another set
of neonatal face images, named here as the occlusion dataset,
using only 10 images of 5 different infants (two of each) with
medical equipments that partially obstruct their faces. All these
10 images have image resolution of 2322x4128 and, as well
as UNIFESP dataset, were captured with parent consent and
after approval of the Research Ethics Committee (1.150.901,
07/15/2015).

III. EXPERIMENTAL METHODOLOGY AND RESULTS

Firstly, we used SAM as a tool to help generate masks for all
the 360 UNIFESP and 10 occlusion 2D face images. All masks
were then manually adjusted to be used as ground truth. To
infer the bounding box coordinates we applied the RetinaFace
model.

All the UNIFESP images were successfully processed, but
out of the 10 images with occlusion, we were able to extract
the correct coordinates for only 8. One image was still usable,
but the bounding box covered part of the infant’s chest as
well, and one failed to process since no coordinates were
found due to a large amount of occlusion. Using the bounding
boxes as input for SAM, we generated masks for each image
and, since the model always returns three masks per image
in order to resolve ambiguity, with one internal score each,
we have selected the resulting mask with the highest internal
score automatically.



Fig. 1. Dice scores for all methods in the UNIFESP dataset.

For comparison, two other face segmentation methods were
applied in the same datasets.

1) Landmark segmentation: Consists in the localization
of 106 facial landmarks [18], followed by the creation
of a convex hull, subsequently filled to generate the
facial mask. The method is constrained by two primary
limitations, namely the absence of landmarks for the
forehead and the inherent inability to discern obstructive
elements. However, despite these limitations, it remains
a solid base for comparative analysis, presenting high
performance on images devoid of obstructions;

2) DeepLabV3+: Fourth iteration of the DeepLab model
(a convolution based neural network) developed for
semantic segmentation by the google research group
[21]. The model used in this paper is a version fine-tuned
for face segmentation in the presence of obstruction [19].
It is important to point out that the dataset used by [19]
for the fine-tune process consisted mostly of images of
adults.

To quantify the effectiveness of the segmentation carried
out, the standard dice similarity coefficient (score) was calcu-
lated for all masks generated, as presented in Figures 1 and
2.

A. Landmark segmentation

As shown in Figures 1 and 2 the landmark segmentation
method has a high score for the UNIFESP dataset, achieving a
mean of 0.76 for the dice similarity coefficient, which could be
higher if not for the absence of forehead landmarks, as shown
in Figure 3c and 4c. When used in the occlusion dataset, a
noticeable lowering in the score can be seen, which, despite the
landmark problem, occurs by wrong estimation of landmark
position, resulting in distorted or rotated masks that don’t
perfectly align with the face.

B. DeepLabV3+ fine-tuned

Observing the DeepLabV3+ fine-tuned results in Figure 1, it
is clear that, for the UNIFESP dataset a higher mean than the

Fig. 2. Dice scores for all methods in the occlusion dataset.

landmark segmentation is presented but a standard deviation
more than seven times higher makes it a much more unstable
option. The same problem can be seen for the occlusion
dataset, Figure 2, and, after manually evaluating the generated
masks, we concluded that in most cases the masks segmented
part of the face together with parts of the body (Figure 4d),
but only on situations in which the skin is visible. Five out
of ten images from the occlusion dataset presented masked
most of the image correctly scoring values higher than 0.7
and the remaining presented a low masked pixel count, not
segmenting the face and resulting in scores lower than 0.25,
which elevated the standard deviation to 0.38 for this dataset.

C. SAM

With an average score of 0.98 and a standard deviation of
0.03 for the UNIFESP dataset, SAM was the best performer
from the three methods in the unobstructed face scenario.
Furthermore, droping the mean to 0.91 and increasing the
standard deviation by only 0.02 when applied to the occlusion
dataset, this method can be considered robust to the facial
obstruction by medical devices, even though it was not fine-
tuned for this type of image.

After a qualitative analysis of the masks generated by SAM,
the problems consisted in missing chunks of small areas in
the mask, as noticeable in Figure 5d, and parts of the neck
and chest segmented in conjunction with the face, as shown
in Figures 3e. Some cases presented the segmentation of the
medical devices instead of the face as one of the three output
masks, as illustrated in Figure 5, which may prove to be a
problem when applied to a larger dataset.

IV. CONCLUSION

In this paper, we proposed and implemented a comparative
analysis between SAM and two other segmentation models,
a traditional landmark one and the DeepLabV3+ recently
developed, with the aim of experimentally investigating the
most promising methodology for neonatal face segmentation
and further pain assessment classification. All models were



(a) Original image

(b) Ground truth mask

(c) Landmark segmentation

(d) DeepLabV3+

(e) SAM highest score mask

Fig. 3. Segmentation of an image from the UNIFESP dataset.

evaluated against both a free face dataset and a high facial
obstruction dataset. SAM performed impressively well for
both no occlusion and high occlusion 2D face images, scoring
on average 0.98 and 0.91 at the standard dice similarity
coefficient, with a standard deviation lower than and equal to
0.05 respectively. The main SAM’s drawback, however, was
to separate exclusively the face segmentation from the neck
and chest ones. For future work, we will focus on fine-tuning
SAM to address this drawback and evaluate complementary
computational methods to turn this binary segmentation into
a semantic map of regions of interest like NFCS using larger

datasets.
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Fig. 4. Segmentation of an image from the occlusion dataset using all methods.
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Fig. 5. Segmentation of both both face and googles by SAM from the same input.

[15] Y. S. Dosso, D. Kyrollos, K. J. Greenwood, J. Harrold, and J. R. Green,
“Nicuface: Robust neonatal face detection in complex nicu scenes,”
IEEE Access, vol. 10, pp. 62 893–62 909, 2022.

[16] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,”
arXiv preprint arXiv:2304.02643, 2023.

[17] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “Retinaface:
Single-shot multi-level face localisation in the wild,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 5202–5211.

[18] Y. Liu, H. Shen, Y. Si, X. Wang, X. Zhu, H. Shi, Z. Hong, H. Guo,
Z. Guo, Y. Chen, B. Li, T. Xi, J. Yu, H. Xie, G. Xie, M. Li, Q. Lu,
Z. Wang, S. Lai, Z. Chai, and X. Wei, “Grand challenge of 106-point
facial landmark localization,” 2019 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW), pp. 613–616, 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:148571603

[19] K. T. R. Voo, L. Jiang, and C. C. Loy, “Delving into high-quality

synthetic face occlusion segmentation datasets,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2022.

[20] T. Marcondes Heiderich and A. Leslie, “Neonatal procedural pain can be
assessed by computer software that has good sensitivity and specificity
to detect facial movements,” Acta Paediatrica, vol. 104, 11 2014.

[21] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image seg-
mentation,” in Computer Vision – ECCV 2018, V. Ferrari, M. Hebert,
C. Sminchisescu, and Y. Weiss, Eds. Cham: Springer International
Publishing, 2018, pp. 833–851.


